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Abstract

Finding correspondences in wide baseline setups is a

challenging problem. Existing approaches have focused

largely on developing better feature descriptors for corre-

spondence and on accurate recovery of epipolar line con-

straints. This paper focuses on the challenging problem

of finding correspondences once approximate epipolar con-

straints are given. We introduce a novel method that in-

tegrates a deformation model. Specifically, we formulate

the problem as finding the largest number of corresponding

points related by a bounded distortion map that obeys the

given epipolar constraints. We show that, while the set of

bounded distortion maps is not convex, the subset of maps

that obey the epipolar line constraints is convex, allowing

us to introduce an efficient algorithm for matching. We fur-

ther utilize a robust cost function for matching and employ

majorization-minimization for its optimization. Our experi-

ments indicate that our method finds significantly more ac-

curate maps than existing approaches.

1. Introduction

Finding point correspondences in image pairs of a static

scene is a classical problem in stereo and structure from

motion (SFM). Finding correspondences in wide baseline

setups, i.e., when the cameras’ focal centers are distant, is

particularly challenging. Images obtained in such setups are

generally subject to significant distortion and their content

may differ substantially also due to occlusion.

The problem of wide baseline stereo matching has re-

ceived significant attention in recent years (see a brief re-

view in Section 2). Existing approaches have focused

largely on developing better feature descriptors for corre-

spondence and on accurate recovery of epipolar line con-

straints. However, although challenging, the problem of

finding correspondences once the epipolar geometry has

been estimated has not yet received sufficient attention.

In this paper we introduce a novel method for finding

correspondences in wide baseline image pairs of a static

scene. Noting that matching is often ambiguous even when
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epipolar constraints are taken into account, we propose to

address the problem by using deformation maps to model

geometric changes along epipolar lines. Specifically, given

two images and an estimated fundamental matrix, our al-

gorithm seeks to compute a geometric map that relates the

images and satisfies two requirements; First, it should re-

spect the epipolar constraints, and, secondly, we bound the

amount of distortion that the mapping can exert locally. We

refer to such a map by epipolar consistent bounded dis-

tortion (EBD) map. Our core theoretical contribution is

in showing that, while the set of maps whose distortion is

bounded is non-convex, its intersection with maps that sat-

isfy the epipolar constraints (with an ordering assumption

[2]) is convex, allowing us to introduce an efficient match-

ing algorithm.

Bounded distortion (BD) maps are continuous, locally

injective transformations whose conformal distortion at ev-

ery point (defined as the condition number of their Jaco-

bian matrices) is bounded. Intuitively, the conformal distor-

tion measures how different the local map is from a simi-

larity transformation, i.e., how much the local aspect ratio

is changed. Bounding the conformal distortion is motivated

by the following observation. Suppose two cameras are set

so that their image planes are parallel (including as special

case rectified setups). For any fronto-parallel plane it can

be readily verified that its projections onto the two image

planes are related by a similarity transformation. Therefore

such projections undergo no distortion. Bounding the dis-

tortion in these setups therefore limits the slant and tilt of

the recovered planes.

To formulate our solution we define a cost function that

seeks an EBD map that maximizes the number of matches.

We optimize this robust objective using majorization-

minimization. The use of a robust objective allows us to

recover when certain portions of the images are distorted

beyond the bounds allowed by our algorithm or when the

set of initial correspondences include outliers. We note that

our algorithm both discards outliers from the set of input

matches and constructs a dense continuous map that deter-

mines the motion of every pixel.

We have tested our method on datasets containing pairs

of images with ground truth matches and compared it to

several state-of-the-art methods. Our method consistently

outperformed these methods.
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2. Previous work

The problem of wide baseline stereo matching has been

approached by a number of studies. Considerable effort has

been put into designing better features and descriptors and

into utilizing them to estimating the fundamental matrix.

Several studies have used affine invariant features [33, 35].

A wide variety of alternatives to the SIFT descriptor [24]

have been proposed, emphasizing speed (e.g, the Daisy de-

scriptor [31]) or invariance to extreme transformations such

as scale changes [14]. Other studies have utilized line seg-

ments [4], regional features (e.g., MSER [15] and texture-

based descriptors [28]). [27] groups coplanar points by

identifying homographies and uses them to estimate epipo-

lar lines. A few of those descriptors were designed to also

account for occlusion (e.g., [31, 32]). Finally, a number of

studies have approached the problem from a multiview per-

spective [29, 9].

Relevant to our work are also generic methods for robust,

dense matching, based on a variety of point-feature and re-

gional descriptors, such as the SIFT-flow [23, 22], patch-

match [3], NRDC [13], LDOF [7] and, more recently, SPM

[16], as well as models of deformation (e.g., [5, 8, 18]),

which can potentially be applied in a wide baseline setting.

Another recent study [19] proposed an algorithm for mo-

saic stitching by finding a map that smoothly departs from a

global affine transformation. Our experiments include com-

parison to [18] and [22] modified to seek matches near cor-

responding epipolar lines. We show that our method outper-

forms these techniques, suggesting that our global deforma-

tion model is more suitable for wide baseline stereo.

Our deformation model is derived from the work of [20],

that proposed an approach for optimizing functionals over

bounded distortion mappings using a sequence of convex

optimization problems. [21] further used this approach for

robust feature matching in general pairs of images (analo-

gous to RANSAC [10], but allowing many degrees of free-

dom). Our work shows that the set of EBD maps are convex,

allowing us to introduce an efficient iterative algorithm.

3. Method

In this section we describe our algorithmic approach to

the problem of wide baseline image matching. We assume

we are given two images I, J ⊂ R
2, with their funda-

mental matrix F either supplied as input or computed au-

tomatically, e.g., using RANSAC [10]. Our goal is to find

a map Φ from I to J that relates corresponding points in

the two images; i.e., for every pair of corresponding points,

(p,q) ∈ I × J , the desired map satisfies Φ(p) = q. We

start with a large set of candidate corresponding pairs of

points (pm,qm) ∈ I × J , m = 1, ..., n that may contain

a significant fraction of outlier matches. Then, we search

for a map Φ, from the family of EBD maps, that matches as

many pairs (pm,qm) as possible. Specifically, we aim at

optimizing

min
Φ

n∑

m=1

‖Φ(pm)− qm‖02 (1a)

s.t. Φ ∈ Dµ, (1b)

where for v ∈ R
2 the norm ‖·‖0

2
is defined by: ‖v‖0

2
= 1

if v 6= 0, and ‖v‖0
2
= 0 otherwise, and Dµ is the set of

µ−bounded distortion mappings that respect the epipolar

constraints, as defined below. The optimization problem

(1) strives to maximize the number of matched pairs un-

der the deformation model, Dµ. This can be seen by not-

ing that the energy (1a) counts how many pairs (pm,qm)
are not matched by Φ. Similarly to [21], we solve (1)

by: 1) computing a set of candidate pairs of correspon-

dences (pm,qm); and 2) optimizing (1) using an iterative

re-weighted least-squares (IRLS) approach. However, dif-

ferently from previous work, we devise a novel formulation

of the bounded distortion deformation model that is shown

to be convex when matching images under the epipolar con-

straints. The convex model facilitates the optimization of

(1), allows considerably faster optimization times, incorpo-

rates epipolar constraints, and does not require convexifica-

tion. We explain the deformation model next.

3.1. Convex Epipolar BD Deformations

At the core of our method is a convex characterization

of the space Dµ of EBD deformations. In a nut-shell, Dµ

is a one parameter family of non-rigid deformations that al-

low bounded amount (µ) of distortion and respect epipolar

constraints. To formulate Dµ we introduce a triangulation

T = (V, E ,F) on image I , where V = {vi} ⊂ I is the

vertex set, E = {eij} the edge set, and F = {fijk} the

triangles (faces).

A mapping Φ : I → J ∈ Dµ is represented by pre-

scribing new locations to the vertices of the triangulation

in the second image, Ṽ = {ṽi} ⊂ J . The mapping Φ is

defined as the unique piecewise-linear (PL) mapping satis-

fying Φ(vi) = ṽi. We denote by Φijk
.
= Φ|fijk the affine

map of the restriction of Φ to the triangle fijk ∈ F .

Using the entire collection of PL mappings {Φ} defined

on a triangulation T is way too general as every vertex is

allowed to move arbitrarily and in the context of stereo this

will allow unreasonable geometries to be considered. In-

stead, we will restrict our attention to a one parameter fam-

ily of mapping spaces Dµ that translate to a reasonable as-

sumption of the scene’s geometry. In particular, in addition

to imposing epipolar line constraints, we suggest to bound

the deviation of the affine maps Φijk from similarity trans-

formations using a parameter 0 < µ < 1. We next derive

this constraint for a single affine transformation and later

show how to set the constraints for the entire triangulation

T to define Dµ.
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3.1.1 Epipolar bounded distortion affine map

We now focus on a single affine map. A general planar

affine map can be written uniquely as

f(x) = Bx+ Cx+ t, (2)

where,

B =

(
a b

−b a

)
, C =

(
c d

d −c

)
, t =

(
t1

t2

)

are a similarity matrix, an anti-similarity matrix (i.e., a re-

flected similarity), and a translation vector, respectively.

Following [20], the determinant of the differential of f , that

is B+C, takes a diagonal form when expressed in terms of

B,C

det(B + C) = a2 − c2 + b2 − d2 =
‖B‖2 − ‖C‖2

2
,

where ‖·‖ denotes the Frobenious norm. Hence, the affine

map f is orientation preserving if ‖B‖ ≥ ‖C‖.
The singular values Σ ≥ σ ≥ 0 of B + C also have a

simple form in terms of the matrices B and C

Σ =
‖B‖+ ‖C‖√

2
, σ =

|‖B‖ − ‖C‖|√
2

.

The ratio of the maximal to minimal singular values, i.e. ,

Σ/σ, provides a scale invariant measure of deviation from

similarity. Restricting f to be orientation preserving and of

bounded deviation from similarity can be done by requiring

the ratio

Kf =
Σ

σ
=
‖B‖+ ‖C‖
‖B‖ − ‖C‖

to be non-negative and bounded. Equivalently, we could

bound the ratio of the anti-similarity and similarity parts di-

rectly, i.e.,

µf =
‖C‖
‖B‖ =

√
c2 + d2

a2 + b2

by

µf ≤ µ, (3)

where 0 < µ < 1. µ is a parameter, µf =
Kf−1

Kf+1
, and we

name this constraint (3) the µ-bounded distortion constraint.

Note that for pure similarity µf = 0 and the distortion ex-

erted by the map grows as µf is increased. The bounded dis-

tortion constraint (3) is not convex and requires some con-

vexification to work with in practice [20]. However, surpris-

ingly, it becomes convex when we intersect this constraint

with the epipolar line constraints (assuming epipolar line

pairs can be oriented, as we explain below). More gener-

ally, when the affine map f is known to map some directed

line ℓ1 (e.g., epipolar line) to another directed line ℓ2, while

preserving the direction, then Eq. (3) can be formulated as

a convex constraint in B,C, see Figure 1 for an illustration.

We summarize this in the following Proposition.

Proposition 1 The collection of µ-bounded distortion pla-

nar affine transformations that map a directed line ℓ1 to

another directed line ℓ2 is convex.

We start by proving the proposition for the case that the di-

rected lines both coincide with the X-axis with the positive

direction,

ℓ1 = ℓ2 = ℓ = span {e1}
where e1 = (1, 0)T . By assumption we have in particular

that f(0), f(e1) ∈ ℓ and eT1 f(0) < eT1 f(e1). This implies

that

eT2 t = 0 , d = b , a+ c > 0 (4)

where e2 = (0, 1)T . Plugging this into (3), squaring and

rearranging we get

(1− µ2)b2 + c2 ≤ µ2a2. (5)

If we show that a > 0 then taking the square-root of both

sides of (5) leads to a (convex) second-order cone (SOC)

constraint, √
(1− µ2)b2 + c2 ≤ µa. (6)

Indeed, since a + c > 0 and (5) implies that |a| > |c| we

must have a > 0. We have therefore shown that any affine

map (2) that satisfies the assumption (3) and maps the real

axis ℓ to itself by preserving the positive direction has to sat-

isfy (4) and (6). In the other direction, any non-zero affine

map that satisfy (4) and (6) maps ℓ to itself while preserving

the positive direction (since a+ c > 0) and satisfies (3).

For general directed lines ℓ1, ℓ2 we can represent any

affine map f∗ satisfying the assumptions of Proposition 1

as

f∗ = g2 ◦ f ◦ g−1
1 (7)

where gi, i = 1, 2, are similarities that map the X-axis ℓ
(with positive direction) to ℓi, and f is µ-bounded distor-

tion that maps ℓ to itself while preserving the positive direc-

tion as above. Note that this change of coordinates does not

change the distortion µf of the affine map. Therefore, the

collection {f∗} of all affine maps satisfying the assumption

of the proposition with general lines is convex.

The consequence of this proposition is that the set of

µ-bounded distortion affine transformations that map an

epipolar line in one image to an epipolar line in another

image is convex, provided that the pair of epipolar lines can

be oriented. Consider a pair of epipolar lines ℓ1 and ℓ2. It

can be readily shown that any planar patch in 3D whose

front side is visible to both cameras will project to ℓ1 and ℓ2
with consistent orientation. We note however that for more

general scene structures orientation may not always be pre-

served. Still, many stereo algorithms assume ordering (dat-

ing back to [2]). We therefore conclude with the following

corollary.

Corollary 1 The collection of µ-bounded distortion planar

affine transformations that map a directed epipolar line ℓ1
to another directed epipolar line ℓ2 is convex.
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Figure 1. Epipolar bounded distortion affine mapping.

3.1.2 Mappings of triangulations

We use the results of the previous subsection to formulate

our convex mapping space Dµ, where each of its members,

Φ ∈ Dµ, is a continuous piecewise linear map whose re-

striction to any triangle fijk ∈ F is an affine map Φijk. Let

us denote

Φijk(x) = Bijkx+ Cijkx+ tijk.

The coefficient of this affine map Bijk, Cijk, and tijk are

all linear functions of the degrees of freedom Ṽ (i.e., the

mapped vertices) of the mapping Φ as follows,

[Bijk + Cijk | tijk] =
[
ṽi ṽj ṽk

] [vi vj vk

1 1 1

]
−1

(8)

where here vi, ṽi ∈ R
2×1 are viewed as vectors in the

plane. Note that the inverted matrix (the rightmost matrix

in (8)) is constant as it only depends on the source triangula-

tion’s vertices V . Therefore, if the triangle fijk has an edge

on an epipolar line ℓ1, we can set ℓ2 = Fℓ1 with F being the

fundamental matrix and combine (8) with (7), (6) and (4) to

constrain Φijk to be µ-bounded distortion and to respect the

epipolar constraint ℓ1 → ℓ2. See Figure 1 for an illustration.

For the third vertex of fijk (shown in red) we can impose

its epipolar constraint by adding the suitable linear equation.

Adding these equations for all triangles tijk ∈ F (one SOC

and a few linear equality constraints per triangle) results in

a convex SOCP realization of the space of PL mappingsDµ

with a single distortion parameter µ ∈ (0, 1).

3.1.3 Triangulating the source image

In order to construct Dµ we require a triangulation T =
(V, E ,F) with the property that each triangle has an edge on

an epipolar line ℓ1 of image I . We call such a T an epipolar

triangulation. We construct such a triangulation by plac-

ing an equispaced grid of distance η over a polar coordinate

frame centered at the epipole (we used η = 25 pixels). For

each triangle we enforce its edges to coincide with the ap-

propriate epipolar lines by applying constrained Delaunay

triangulation. We only keep triangles whose intersection

with the image is non-empty. Figure 2 depicts an example.

We further determine the orientations of the epipolar lines.

This can be done simply by recovering projective camera

matrices from the fundamental matrix F and testing the ori-

entation induced, say, by the Z = const plane.

Figure 2. Example of an epipolar triangulation of an image. For

illustration purposes we show a coarse triangulation.

3.2. Optimization

To optimize (1) we first use a simple modification of

SIFT [24] to find candidate pairs of corresponding points

(pm,qm) that satisfy the epipolar constraint. If the funda-

mental matrix F is not provided we use standard SIFT and

RANSAC to first estimate F .

Next, we optimize (1) using IRLS combined with con-

vex epipolar µ-bounded distortion constraints. Assuming a

fixed list of pairs (pm,qm), we reformulate (1) as

min
Φ

n∑

m=1

gp,ε(‖hm‖) (9a)

s.t. hm = Φ(pm)− qm , m = 1..n (9b)

Φ ∈ Dµ, (9c)

where hm ∈ R
2×1 are auxiliary variables, and the func-

tions gp,ε will be defined soon. The map Φ is represented

by the images of the vertices of the triangulation T , that

is {ṽi}. Namely, each vertex vi is mapped to a new (un-

known) location in the second image ṽi ∈ J , and Φ is the

unique piecewise linear interpolation Φijk over the trian-

gles fijk, as described in Section 3.1.2. The unknowns in

the optimization problem (9) are therefore the target vertex

locations {ṽi}.
The constraint (9b) is set for every m by finding the tri-

angle fijk containing pm and encoding pm in barycentric

coordinates of the corners vi,vj ,vk of that triangle, namely

pm = cm,ivi + cm,jvj + cm,kvk, where the barycentric

weights satisfy cm,i, cm,j , cm,k ≥ 0 and cm,i + cm,j +
cm,k = 1. The image of pm under Φ is defined as

Φ(pm) = cm,iṽi + cm,jṽj + cm,kṽk. (10)

This equation is used in (9b). The EBD constraint (9c) is

set by adding Equations (8),(7),(6) and (4) for every triangle

2231



fijk ∈ F of the triangulation T . Note that (6) is a second

order cone, and the rest of the equations are linear equalities

and inequalities.

Lastly, optimizing the energy (9a) w.r.t. Φ requires to

cope with the non-convexity and non-smoothness of the en-

ergy (1a). The IRLS point of view suggests replacing the

zero norm with its approximations

gp,ε(r) =

{
rp r > ε
p
2
εp−2r2 +

(
1− p

2

)
εp 0 ≤ r ≤ ε

(11)

The gp,ε functions are smooth (C1) and converge to r0

as p, ε → 0. For a fixed p, ε, (9a) is optimized itera-

tively by replacing gp,ε(r) with a convex quadratic func-

tional called majorizer, Gp,ε(r, s), with the properties that

Gp,ε(s, s) = gp,ε(s), and Gp,ε(r, s) ≥ gp,ε(r), for all r.

These two properties guarantee that the IRLS monotoni-

cally reduces the energy in each iteration. The majorizers

Gp,ε are similar to those in [6],

Gp,ε(r, s) =

{
p
2
sp−2r2 +

(
1− p

2

)
sp s > ε

p
2
εp−2r2 +

(
1− p

2

)
εp 0 ≤ s ≤ ε

(12)

Replacing gp,ε(‖hm‖) in (9a) with Gp,ε(‖hm‖ , ‖h′

m‖),
where h′

m = Φ′(pm)− qm, and Φ′ is the map found at the

previous iteration, results in the following convex quadratic

energy in hm (remember that h′

m are constants),

min
Φ

n∑

m=1

w(‖h′

m‖) ‖hm‖2 (13a)

s.t. hm = Φ(pm)− qm (13b)

Φ ∈ Dµ (13c)

where w(s) = max{s, ε}p−2 is constant at each iteration.

In view of (10) this implies a convex quadratic energy in the

unknowns {ṽi}. We iteratively solve this problem, updating

h′

j ,Φ
′ in each iteration until convergence. Each iteration is

a convex Second Order Cone Program (SOCP) and is solved

using MOSEK [1].

In practice, we fix p = 0.001 and ε to be the diameter of

image I and solve the above IRLS. Upon convergence, we

update ε ← ε/2 and repeat. We continue this until ε = 1
(pixels). This heuristic of starting from a large ε and de-

creasing it helps avoiding local minima of the energy (1a)

as the larger the ε the more convex the problem is; for ex-

ample, for sufficiently large ε the global minimum of (9)

lies in the convex (quadratic) part of all terms gp,ε and can

be found by a single SOCP. Our algorithm is summarized in

Algorithm 1.

4. Experiments

Datasets. We evaluate our method by applying the opti-

mization algorithm presented in Sec. 3 to pairs of images

Algorithm 1

Require: Two images I and J , fundamental matrix F , dis-

tortion bound µ, edge length η, and a bound on the

Sampson distance δ

1: // Find putative matches

{(pm,qm)} = EpipolarSIFT(I, J, F, δ)

2: // Epipolar triangulation of I according to F
T = DelaunayTri(I, Constraints(F ), η)

3: Compute barycentric coordinates for {pm}nm=1

4: // Optimization

p = 0.001, ε = diameter(I);
5: ∀m, h′

m = pm − qm

6: while ε ≥ 1 do

7: while Not converged do

8: Solve Eq. (13) using SOCP solver, obtaining Φ
9: ∀m, h′

m = Φ(pm)− qm

10: end while

11: ε = ε/2
12: end while

13: return A subset of matched points {(pmi
,qmi

)} and a

map Φ

from the dataset of [30]. The dataset contains two multi-

view collections of high-resolution images (2048 × 3072),
referred to as “Herzjesu” and “Fountain”, provided with

ground truth depth maps. However, in order to compare to

state-of-the-art algorithms, which are considerably slower

at those resolutions, we use the lower-resolution (308×461)
suggested in [31, 32]. The Herzjesu dataset contains 8 im-

ages and the Fountain dataset contains 11 images. There-

fore, in total there are 83 stereo pairs with varying distances

between focal points. We tested each pair twice, seeking a

map from the left image to the right one and vice versa, ob-

taining 166 matching problems. Note that we do not rectify

the images or apply any other pre-processing.

For evaluation we further process the ground truth depth

values to obtain ground truth matches. Specifically, for each

dataset we employ ray-casting (z-buffering) to the 3D sur-

face, obtaining ground-truth correspondences at sub-pixel

accuracy. We further used ray casting to determine an oc-

clusion mask and excluded those pixels (for the left image)

from our evaluation. (These masks of course are not known

to the algorithm and used only for evaluation.)

Epipolar SIFT. Our algorithm takes as input pairs of pu-

tative correspondences and builds an EBD map that is con-

sistent with as many input matches as possible. For the ex-

periments we used SIFT matches (using the VLFeat pack-

age [34]). Classical SIFT matching seeks putative matches

throughout the entire image domain. As we assume that

epipolar geometry is known (either exactly or approxi-

mately), we modify the matching procedure as follows.

2232



Figure 3. Putative matches obtained with the classical SIFT al-

gorithm, which seeks matches over the entire image. The figure

shows images 7 and 3 from the Fountain dataset. Corresponding

points are marked by points of the same color and size with color

varying with position along the X-axis in the left image and size

varying with position along the Y -axis.

Figure 4. Putative matches obtained with Epipolar SIFT. In this

case the search for matches is restricted by the Sampson distance

to the immediate surroundings of the corresponding epipolar line.

It is evident that the set of putative matches is richer than that

obtained with the classical SIFT matching algorithm, Fig. 3.

Figure 5. Matches {(pm,qm)} obtained with our EBD solver.

Figure 6. The map Φ obtained with our EBD solver.

Given a SIFT descriptor at location p in the left image, we

restrict the search for a putative match, q, to the area close to

the corresponding epipolar line in the right image. This area

is determined by limiting the Sampson distance between p

and q, i.e.

(qTFp)2

(Fp)21 + (Fp)22 + (FTq)21 + (FTq)22
< δ (14)

where F is the fundamental matrix, p and q are written in

homogeneous coordinates, and (Fp)i denotes the ith entry

of the vector Fp. We further accept a match (p,q) if its

SIFT score is at least twice higher (Lowe’s criterion) than

the score of (p,q′) for any q′ within Sampson distance δ.

We set δ to 5.

The Epipolar SIFT methodology is designed to achieve

two objectives. First, it restricts the matches to epipolar

lines, and hence removes unnecessary outliers. Secondly,

perhaps more importantly, since we only consider matches

along epipolar lines each inlier match has fewer competing

candidates and so it is more likely to satisfy Lowe’s crite-

rion yielding a richer set of putative matches. Fig. 3 shows

an example of putative matches obtained using the classical

SIFT, while Fig. 4 shows the putative matches obtained with

the described methodology, the Epipolar SIFT. It is evident

that the set of putative matches obtained with Epipolar SIFT

is richer than that obtained with the classical method.

Algorithms for evaluation. We compare our method

(EBD) to the following algorithms:

1. BD: Feature matching by bounded distortion sug-

gested by Lipman et al. [20]. This method serves as

baseline to our method since it seeks correspondences

consistent with a bounded distortion transformation,

but does not take epipolar constraints into account.

2. Spectral: The spectral technique of Leordeanu and

Hebert [18]. This method uses graph methods to find

point matches by minimizing pairwise energies.

3. Multi-view Stereo (PMVS2): This code, by Fu-

rukawa et al. [11, 12], originally designed for multi-

view stereo is applied to pairs of images.

4. SiftFlow: by Liu et al. [22] finds dense correspon-

dence by minimizing an MRF energy whose unary

term measures the match between SIFT descriptors,

5. Homography: Mapping by looking for the best ho-

mography (computed with RANSAC [10])

6. Stereo: An MRF-based stereo algorithm by Lee et

al. [17], which finds dense correspondence between

the images after rectification.

7. WxBS-M: Wide baseline stereo matching by main-

taining global (epipolar) and local affine consis-

tency [25]. The method utilizes multiple detector

(Hessian-Affine and MSER) and SIFT-based descrip-

tors.

We note that the algorithms of [18] and [22] were not

designed specifically for stereo input. For a fair comparison

we therefore tested those algorithms in two settings, first in

their original (unrestricted) setting, and secondly in a setting

that integrates the knowledge of epipolar geometry into the
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Figure 7. The fraction of pixels mapped by each method to within an error specified on the horizontal axis from their ground truth target

location. We present the median for all pairs of images. Dotted lines represent methods disregarding epipolar constraints; dashed lines

represent methods using approximate F ; solid lines represent methods using exact F , Herzjesu (left) and Fountain (right).
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Figure 8. Performance as a function of baseline length. We present the median for all pairs of images, Herzjesu (left) and Fountain (right).

Algorithm Herzjesu Fountain

EBD (ours), exact F 69.11 54.77

EBD (ours), approx F 68.28 51.65

Spectral, exact F 56.13 47.70

Spectral, approx F 56.70 44.40

PMVS2, exact F 52.47 44.01

SiftFlow, exact F 47.45 32.44

SiftFlow, approx F 47.97 32.19

Homography, exact F 39.95 27.40

Stereo, exact F 34.89 26.84

WxBS-M, approx F 34.30 21.97

Table 1. The fraction of pixels mapped by each method to within

one pixel from their ground truth target location. Median com-

puted for all pairs of images in the Herzjesu and Fountain datasets.

algorithms. The latter is achieved as follows. For [18] we

used a version of the algorithm that allows it to select from a

candidate set of matches that were either extracted from the

entire image (for the unrestricted setting) or from the epipo-

lar SIFT matches (i.e., the same input given to our algo-

rithm). Furthermore, since this algorithm does not compute

a map (it only return a sparse set of matches) we further ap-

plied cubic interpolation to extend the matches to the entire

image. (Interpolation was also applied to PMVS2 [11, 12]

and WxBS-M [26].) For [22] we modified the code to al-

low only maps on or close to corresponding epipolar lines

(we set the Sampson distance to 2, which gave the best re-

sult). For the homography we used putative matches ob-

tained with the epipolar SIFT, and for the stereo algorithm

we used ground truth matches to perform the rectification.

Results. Figures 5 and 6 show an example for the results

obtained with our method when applied to the input shown

in Figure 4. The figures show the set of correspondences

{pm,qm)} and the map Φ returned by our optimization, re-

spectively. To further evaluate the map computed with our

algorithm for the entire dataset, we checked for each tested

pair of images I and J all pixels in I after masking it with

the ground truth occlusion map. For each non-occluded

pixel p we measured the Euclidean distance ‖Φ(p) − q‖,
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Figure 9. F measure: the success of our algorithm in partitioning

the set of candidate matches into inliers and outliers, as a function

of the baseline in the sequence for the Herzjesu (left) and Fountain

(right) datasets. The inlier ratios are detailed in Table 2.

Frame Diff 1 2 3 4 5 6 7 8 9 10

Herzjesu 0.93 0.89 0.82 0.68 0.52 0.34 0.23

Fountain 0.96 0.93 0.88 0.82 0.71 0.59 0.43 0.25 0.15 0.085

Table 2. The mean fraction of inliers in the set of putative matches,

as a function of the frame difference.

where q is the ground truth point corresponding to p. We

then produced a cumulative histogram depicting the frac-

tion of non-occluded points in I against their displacement

error from the ground truth target position. In Figure 7 we

report for each error value the median number of points that

achieved this error or less over all pairs of images. Table 1

further details the median fraction of non-occluded pixels

that were mapped within one pixel accuracy by our map

Φ. We show our results both with an exact fundamental

matrix (obtained from ground truth) and with an approxi-

mated one (computed with RANSAC [10] using classical

SIFT). Our results are further compared to Spectral [18],

PMVS2 [11, 12], SiftFlow [23] (with and without epipolar

constraints), to homography estimation, classical stereo es-

timation [17] and WxBS-M [26]. (To simplify the table we

only include results for the epipolar-enhanced algorithms.)

As can be seen from the figures and the table our method

outperformed all the tested methods on both datasets with

both an exact and an approximate fundamental matrix.

We note further that for all algorithms there was no

marked difference between the use of exact and approxi-

mate fundamental matrix (solid lines vs. dashed) and all

methods benefited from incorporating epipolar constraints

(compare to dotted lines, for non restricted version).

Figure 8 further shows a breakdown according to the

length of the baseline. For this figure we considered in each

of the two datasets all pairs Ii and Ii+k for each value k
(between 1 and 7 for Herzjesu and between 1 and 10 for

Fountain). For each such set of pairs we counted the num-

ber of pixels mapped by our computed map Φ with error

≤ 1 pixel and plotted the median of these numbers. As ex-

pected the closer together pairs are, the better our method is.

Compared to the other methods our method seem to achieve

Herzjesu (image 7) Fountain (image 7)

Herzjesu (image 3) Fountain (image 3)

Herzjesu (depth map) Fountain (depth map)

Figure 10. Depth maps computed with our method.

superior accuracy in almost all conditions. We believe that

the performance of the method is degraded as the length of

the baseline is increased due to the poor number of inlier

matches. Table 2 shows the mean fraction of inliers in the

set of putative matches as a function of frame difference.

Figure 9 shows the success of our algorithm in terms of F

measure. The F measure is calculated as follows. The set

of candidate matches is partitioned into inliers and outliers

(a putative match is considered as an outlier in case its de-

viation from the ground truth is larger than one pixel). The

input to our algorithm is the set of candidate point matches.

Our algorithm filters out inappropriate candidate

matches, resulting in a set of inliers and outliers. The ac-

curacy of our partition into inliers and outliers is measured

relatively to the partition of the input, yielding the F mea-

sure. Finally Figure 10 shows example depth maps com-

puted with our method.

For a pair of images in this dataset our algorithm (non-

optimized Matlab code) runs in 70 seconds on a 3.50 GHz

Intel Core i7. (The high resolution images require roughly

3.5 minutes.) This is compared to 280 seconds required

for the non-convex BD of [20]. In general, running the

non-convex BD with features restricted to epipolar lines is

significantly slower and achieves slightly inferior results to

EBD.
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