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Abstract

Do we really need 3D labels in order to learn how to

predict 3D? In this paper, we show that one can learn a

mapping from appearance to 3D properties without ever

seeing a single explicit 3D label. Rather than use explicit

supervision, we use the regularity of indoor scenes to learn

the mapping in a completely unsupervised manner. We

demonstrate this on both a standard 3D scene understand-

ing dataset as well as Internet images for which 3D is un-

available, precluding supervised learning. Despite never

seeing a 3D label, our method produces competitive results.

1. Introduction

Consider the image in Fig. 1. When we see this image,

we can easily recognize and compensate for the underlying

3D structure: for example, we have no trouble recogniz-

ing the orientation of the bookshelves and the floor. But

how can computers do this? Traditionally, the answer is to

use a supervised approach: simply collect large amounts of

labeled data to learn a mapping from RGB to 3D. In the-

ory, this is mathematically impossible, but the argument is

that there is sufficient regularity to learn the mapping from

data. In this paper, we take this argument one step further:

we claim that there is enough regularity in indoor scenes

to learn a model for 3D scene understanding without ever

seeing an explicit 3D label.

At the heart of our approach is the observation that im-

ages are a product of two separate phenomena. From a

graphics point of view, the image we see is a combination of

(1) the coarse scene geometry or meshes in our coordinate

frame and (2) the texture in some canonical representation

that is put on top of these meshes. For instance, the scene in

Fig. 1 is the combination of planes at particular orientations

for the bookshelf and the floor, as well as the fronto-parallel

rectified texture maps representing the books and the alpha-

bet tiles. We call the coarse geometry the 3D structure and

the texture maps the style1. In the 3D world these are dis-

1Of course, the books in Fig. 1 themselves could be further represented

by 3D models. However, in this paper, we ignore this fine change in far

structure, and represent the books in terms of their contribution to texture.
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Figure 1. How can we learn to understand images in a 3D way?

In this paper, we show a way to do this without using a single

3D label. Our approach treats images as a combination of a 3D

model (3D structure) with canonical textures (style) applied on

top. In this paper, we learn style elements that recognize tex-

ture (e.g., bookshelves, tile floors) rectified to a canonical view.

Rather than use explicit supervision, we use the regularity of in-

door scenes and a hypothesize-and-verify approach to learn these

elements. We thus learn models for single image 3D without see-

ing a single explicit 3D label. 3D model from [18].

tinct, but when viewed as a single image, the signals for

both get mixed together with no way to separate them.

Based on this observation, we propose style elements

as a basic unit of 3D inference. Style elements detect the

presence of style, or texture that is correctly rectified to

a canonical fronto-parallel view. They include things like

cabinets, window-blinds, and tile floors. We use these style

elements to recognize when a texture has been rectified to

fronto-parallel correctly. This lets us recognize the orien-

tation of the scene in a hypothesize-and-verify framework:

for instance, if we warp the bookshelf in Fig. 2 to look as

if it is facing right, our rectified bookshelf detector will re-

spond strongly; if we warp it to look as if it is facing left,

our rectified bookshelf detector will respond poorly.

In this paper, we show that we can learn these style ele-

ments in an unsupervised manner by leveraging the regular-
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Final Interpretation Rectified to Scene Directions 

Figure 2. We infer a 3D interpretation of a new scene with style elements by detecting them in the input image rectified to the main

directions of the scene. For instance, our bookshelf style-element (orange) will respond well to the bookshelf when it is rectified with the

correct direction (facing leftwards) and poorly when it is not. We show how we can automatically learn these style elements, and thus a

model for 3D scene understanding without any 3D supervision. Instead, the regularity of the world acts as the supervisory signal.

ity of the world’s 3D structure. The key assumption of our

approach is that we expect the structure of indoor scenes to

resemble an inside-out-box on average: on the left of the

image, surfaces should face right and in the middle, they

should face us. We show how this prior belief can vali-

date style elements in a hypothesize-and-verify approach:

we propose a style element and check how well its detec-

tions match this belief about 3D structure over a large set of

unlabeled images; if an element’s detections substantially

mismatch, our hypothesis was probably wrong. To the best

of our knowledge, this is the first paper to propose an unsu-

pervised learning-based approach for 3D scene understand-

ing from a single image.

Why unsupervised? We wish to show that unsupervised

3D learning can be effective for predicting 3D. We do

so on two datasets: NYUv2, a standard 3D dataset, and

Places-205, which contains scenes not covered by Kinect

datasets, such as supermarkets and airports. Our method

is unsupervised and does not use any training data or

any pre-trained geometry models; nevertheless: (1) Our

method nearly matches comparable supervised approaches

on NYUv2: it is within < 3◦ of 3DP [16] and better in

many metrics on vertical regions. (2) When fused with 3DP,

our method achieves state-of-the-art results in 4/6 metrics

on NYUv2. (3) As an unsupervised approach, our method

can learn from unlabeled Internet images like Places. This

is fundamentally impossible for supervised methods, which

must resort to pre-trained models and suffer performance

loss from the domain shift. Our approach can use this data

and outperforms 3DP by 3.7%.

Why Style Elements? Operating in this style space lets us

learn about the world in a viewpoint-independent fashion.

In this paper, we show how this enables us to learn unsu-

pervised models for 3D, but we see broader advantages to

this: first, we can detect particular combinations of style

and structure that were not present at training time, which

is impossible in many existing models; second, since our

style elements are viewpoint-independent, we can share in-

formation across different viewpoints. We illustrate these

advantages in Fig. 3: our method learns one element for

all the orientations of the cabinets, but a standard viewer-

centric approach learns one element per orientation.

2. Related Work

The task of predicting the 3D structure or layout from a

single image is arguably as old as computer vision. Early

work used extracted contours [33, 23, 7] or geometric prim-

itives [2, 4] and rules to infer structure. However, these

primitives were too difficult to detect reliably in natural im-

ages, and the community moved towards learning-based ap-

proaches. Over the past decade, one dominant paradigm

has emerged: at training time, one takes a large collection

of images and 3D labels and learns a mapping between the

two. The argument for this paradigm is that scenes are suf-

ficiently regular so that such a mapping can be learned from

data. The mapping is often learned over segments [34, 22],

discriminative patches [16], or pixels [26]. At test time, this

local mapping is used on a single image to infer the 3D la-

bels; in other works, it is again presumed that there is such

regularity that one can impose even more top-down con-

straints, such as the Manhattan-world assumption [8], an

indoor box model [20, 35], or others [27, 6, 5, 17, 1, 44].

In this work, we tackle the same class of problem, but

show that there is enough regularity to even do unsuper-

vised learning of models. In particular, we do not use an

explicit 3D supervisory signal at any point. Additionally,

our method learns across viewpoints, unlike most work on

single-image 3D which learn view-dependent representa-

tions. The most related work among these methods is [25],

which recognizes regions at canonical depths; in contrast,

our method is unsupervised and predicts surface normals.

Our approach uses visual elements discovered from a

large dataset and draws from a rich literature on discrimi-

native patch-discovery [37, 11, 10, 24, 3]. Like Juneja et
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Figure 3. An illustration of sharing enabled by style elements.

Top: elements from a 3DP model; Bottom: (left) a style element

and (right) selections from its top 15 discovery-set detections. 3DP

detects each and every cabinet orientation with a separate element

because it is viewer-centric; our model compactly recognizes all

cabinets orientations with one element.

al. [24], we take a hypothesize-and-verify approach which

filters a large set of candidate patch hypotheses by patch de-

tections on a dataset. Among these works, our work is most

closely related to discriminative patches for 3D [16, 32]

or visual-style-sensitive patches [29]. These frameworks,

however, capture the Cartesian product of appearance and

the label (style or 3D), meaning that for these frameworks

to capture an oven-front at a particular angle, they need to

see an oven-front at that particular angle. On the other hand,

our approach analytically compensates for 3D structure by

rectifying the image data. Thus our elements can predict la-

bels not seen at training time (e.g., an oven at a previously

unseen angle). We illustrate this in Fig. 3.

Warping images to a canonical view has been used to

boost performance of local patch descriptors for tasks like

location recognition [41, 38], in which 3D structure is

known or estimated via pre-trained models, or in detection

[21, 14], in which it is given at training time. Our work,

on the other hand, is unsupervised and jointly reasons about

3D structure and style.

The idea of figuring out the 3D structure by optimizing

properties of the unwarped image has been used in shape-

from-texture (e.g., [15, 31]) and modern texture analysis

[43] and compression [39] approaches. These works are

complementary to our own: many obtain a detailed inter-

pretation on presegmented regions or in specific domains

by optimizing some criterion such as regularity within one

image or a single domain. Our style elements on the other

hand, are discovered automatically via the regularity in

large amounts of data, and are more general than instance-

level texture patterns. They can further interpret novel,

generic non-presegmented scenes, although our interpreta-

tions on these cluttered scenes are more coarse in compari-

son.

3. Overview

Given a dictionary of discovered style elements, we can

use this dictionary of detectors in rectified images to deter-

mine the orientation of surfaces: the elements only respond

when the scene is rectified correctly. But how do we obtain

this dictionary of correctly rectified style elements if we do

not have 3D labels?

In Section 4.2, we show how to solve this chicken-and-

egg problem with a hypothesize-and-verify approach: we

hypothesize a style element, run it on the dataset, and check

whether its pattern of detections is plausible. We evaluate

the style element’s detections by comparing it with a prior

that assumes that the world is an inside-out-box. Training

thus takes a collection of RGB images as input, and pro-

duces a dictionary of detectors as output. In Section 4.3, we

describe how to use these style elements to interpret a new

image: we run our style elements in a new image, and the

detector responses vote for the underlying structure.

As this work is unsupervised, we make some assump-

tions. We use the Manhattan-world assumption [8] to re-

duce our label space to three orthogonal directions; we find

these directions and rectification homographies for them us-

ing vanishing points estimated by [20]. We note, however,

that there can be other directions present; we simply do not

learn or detect style elements on them. We further assume

that the images are upright so we can process the horizon-

tal and vertical directions separately. Finally, our method

models each style element as having a single label.

4. Method

Our method begins with a discovery set of images and

finds style elements that will help us interpret a new im-

age. This task entails determining the orientation of sur-

faces throughout the discovery set so that we can obtain

fronto-parallel rectified representations of the texture.

Since we have no explicit 3D labels, this task seems

hopeless: in theory, each part of each image could face any

direction! We take a hypothesize-and-verify approach that

lets us inject knowledge via a prior on the 3D structure of

scenes. We guess a large number of style elements by rec-

tifying the images and sampling patches. Most guesses are

wrong, but some are right. We identify the correct ones by

computing agreement between our prior and what each hy-

pothesis would imply about the 3D structure of the world.
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Figure 4. Selected style elements automatically discovered by our method. In each, we show the element on the left and its top detections

on the discovery set; these and other detections are used to identify good and bad style elements. Notice that the top detections of most

vertical style elements have a variety of orientations.

4.1. Prior

Consider the TV on the top-left of Fig. 4. How can we

know that it is a good style element (i.e., rectified to be

fronto-parallel) without knowing the underlying 3D of the

image? While we do not know the 3D at that location, if

we looked at the whole discovery set, we would observe a

distinct pattern in terms of where TVs appear and in what

direction they face: due to the regularity of human scenes,

TVs on the left-hand-side of the image tend to face right-

wards; on the right-hand-side, they tend to face leftwards.

Thus, if we were to run our TV detector over the discovery

set, we would expect to see this same distribution. On the

other hand, it would be suspicious if we had a detector that

only found leftwards facing TVs irrespective of where they

appear in the image. We now explain how to formalize this

intuition by constructing a prior that gives a probability of

each orientation as a function of image location; this lets us

score hypothetical style elements by their detections.

Our goal is to build a prior that evaluates the likelihood of

a surface orientation as a function of pixel coordinate. Our

overarching assumption is that our images are taken with

an upright camera inside a box. Then, as in [22], we factor

the question of orientation into two independent questions

– “is the region vertical or horizontal?” and “if it is ver-

tical, which vertical direction does it face?”. We then as-

sume the probability of vertical/horizontal depends on the

y-coordinate in the image. For the vertical direction, we

note that if we assume the world is a box, we can deter-

mine how likely each vertical direction is at each pixel as a

function of its x coordinate.

We formalize this prior as follows, proceeding analyti-

cally since we do not have access to data. Since we ex-

pect horizontal surfaces like floors to be more common at
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Figure 5. Selecting hypotheses by their detections. We compare hypothesized style elements’ detections with our prior. We show a good

(left) and a bad (right) style hypothesis in red squares. For each, we show a scatter plot of their detections on the discovery set, plotting

the x-location in the image on the x-axis and how left-vs-right the detection is on the y-axis. We illustrate a few of these detections: for

instance, the bedroom scene in the middle is a leftwards facing detection on the right-side of the image. On the far left, we show what

our prior expects – a steady change from right-facing to left-facing. We rank elements by how well their detections match this prior: for

instance, we reject the incorrect style element on the right since it predicts that everything faces left, which is unlikely under the prior.

the bottom of the image, we model the vertical/horizontal

distinction with a negative exponential on the y-location,

∝ exp(−y2/σ2). Since the camera is upright, the horizon

determines the sign of the horizontal directions. For vertical

directions, we assume the camera is inside a box with aspect

ratio ∼ Uniform[1, 2] and all rotations equally likely. The

likelihood of each direction (left-to-right) as a function of x
location can then be obtained in a Monte-Carlo fashion: we

histogram normals at each location over renderings of 100K

rooms sampled according to the assumptions.

4.2. HypothesizingandVerifying Style Elements

Now that we have a way to verify a style element, we

can use it in a hypothesize-and-verify approach. We first

explain how we generate our hypotheses and then how we

use the prior introduced in the the previous section to verify

hypothesized style patches.

We first need a way to generate hypotheses. Unfortu-

nately, there are an infinite number of possible directions to

try at each pixel. However, if we assume the world is a box,

our search space is dramatically smaller: there are only 6

possible directions and these can be obtained by estimating

Manhattan-world vanishing points in the image. Once we

have rectified the image to these main scene directions, we

sample a large collection (≈ 25K total) of patches on these

rectified images. Each patch is converted to a detector via

an ELDA detector [19] over HOG [9]. Most patches will

be wrong because the true scene geometry disagrees with

them. One wrong hypothesis appears on the right of Fig. 5

in which a shelf has been rectified to the wrong direction.

We sift through these hypotheses by comparing what

their detection pattern over the discovery set implies about

3D structure with our prior. For instance, if a style patch

corresponds to a correctly rectified TV monitor, then our

detections should, on average, match our box assumption.

If it corresponds to an incorrectly rectified monitor then it

will not match. We perform this by taking the ELDA detec-

tor for each patch and looking at the location and implied

orientations of the top 1K detections over the training set.

Since our prior assumes vertical and horizontal are separate

questions, we have different criteria for each. For vertical

surfaces, we compute average orientation as a function of x
location and compare it to the average orientation under the

prior, using the mean absolute difference as our criterion.

For horizontal surfaces, our prior assumes that x location

is independent from horizontal sign (i.e., floors do not just

appear on the left); we additionally do not expect floor to

share many style elements with ceilings. We thus compute

the correlation between x and horizontal sign and the purity

of up-vs-down labelings in the top firings. We illustrate this

for two hypothesized vertical style elements in Fig. 5.

We use these criteria to rank a collection of hypothetical

vertical and horizontal style elements. Our final model is

the top 500 from each. We show some of the style elements

we discover on NYU v2 in Fig. 4.

4.3. Inference

Given a new image and our style elements, we com-

bine our prior and detections of the style elements to inter-

pret the scene. We extract three directions from vanishing

points to get our label space and run the style elements on

the rectified images. The detections and the prior then vote

for the final label. We maintain a multinomial distribution

at each pixel over both whether the pixel is horizontal-vs-

vertical and the vertical direction. Starting with the prior,

we add a likelihood from detections: we count overlapping

detections agreeing with the direction, weighted by score.

We then take the maximum response, deciding whether the

pixel is horizontal or vertical, and if the latter, the vertical

orientation.

Our method produces good interpretations in many

places, but does not handle ambiguous parts like untextured

carpets well. These ambiguities are normally handled by

transferring context [16] or doing some form of learned rea-
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Figure 6. Sample results on NYUv2. First two rows: selected; last two row: random. In row 1, notice that the sides of objects are being

labeled (discernible via conflicting colors), even though this severely violates the prior. In row 2, notice that our predictions can extend

across the image or form convex corners: even though our prior is a box, we ignore in light of evidence from style elements.

Input GT 3DP Prior Proposed Fusion Fus. Choice

Figure 7. Comparison with the supervised 3DP method. The methods have complementary errors and we can fuse their results: 3DP often

struggles with near-perpendicular surfaces; however these are easy to recognize once rectified by the proposed method. Our method has

more trouble distinguishing floors from walls. We show the fusion result and which prediction is being used (Red: proposed; blue: 3DP).

soning [20, 35, 27, 17]. Without explicit 3D signal, we rely

on unsupervised label propagation over segments: we ex-

tract multiple segmentations by varying the parameters of

[13]2. Each segment assumes the mode of its pixels, and

the final label of a pixel is the mode over the segmentations.

4.4. Implementation Details:

We finally report a number of implementation details of

our method; more details appear in the supplement. Patch

representation: Throughout the approach, we use HOG fea-

tures [9] with a 8 × 8 pixel cells at a canonical size of 80
pixels. Rectification: we obtain Manhattan-world vanishing

points from [20] and rectify following [42]: after autocali-

bration, the remaining parameters up to a similarity trans-

form are determined via vanishing point orthogonality; the

similarity transform is handled by aligning the Manhattan

2 (� = 0:5; 1; 1:5; 2; k = 100; 200; min = 50; 100)

directions with the image axes and by operating at multiple

scales. Sample rectified images appear in Fig. 2: our detec-

tors are discovered and tested on these images. At test time,

we max-pool detector responses over multiple rectifications

per vertical direction. Initial Patch Pool: Our hypotheses

are obtained by rectifying each image in the discovery set

to the scene directions and following the sampling strategy

of [37] while rejecting patches whose corresponding quadri-

lateral has area < 1002 pixels.

5. Experimental Validation

We now describe experiments done to validate the ap-

proach. We are guided by the following questions: (1) How

well does the method work? (2) Can the approach be com-

bined with supervised methods? and (3) Are there scenarios

that only an unsupervised approach can handle?

To answer the first two questions, we use the NYUv2
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