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Abstract

Convolutional neural networks (CNNs) have recently

been very successful in a variety of computer vision tasks,

especially on those linked to recognition. Optical flow esti-

mation has not been among the tasks CNNs succeeded at. In

this paper we construct CNNs which are capable of solving

the optical flow estimation problem as a supervised learning

task. We propose and compare two architectures: a generic

architecture and another one including a layer that cor-

relates feature vectors at different image locations. Since

existing ground truth data sets are not sufficiently large to

train a CNN, we generate a large synthetic Flying Chairs

dataset. We show that networks trained on this unrealistic

data still generalize very well to existing datasets such as

Sintel and KITTI, achieving competitive accuracy at frame

rates of 5 to 10 fps.

1. Introduction

Convolutional neural networks have become the method

of choice in many fields of computer vision. They are clas-

sically applied to classification [25, 24], but recently pre-

sented architectures also allow for per-pixel predictions like

semantic segmentation [28] or depth estimation from single

images [10]. In this paper, we propose training CNNs end-

to-end to learn predicting the optical flow field from a pair

of images.

While optical flow estimation needs precise per-pixel lo-

calization, it also requires finding correspondences between

two input images. This involves not only learning image

feature representations, but also learning to match them at

different locations in the two images. In this respect, optical

flow estimation fundamentally differs from previous appli-

cations of CNNs.
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Figure 1. We present neural networks which learn to estimate op-

tical flow, being trained end-to-end. The information is first spa-

tially compressed in a contractive part of the network and then

refined in an expanding part.

Since it was not clear whether this task could be solved

with a standard CNN architecture, we additionally devel-

oped an architecture with a correlation layer that explicitly

provides matching capabilities. This architecture is trained

end-to-end. The idea is to exploit the ability of convolu-

tional networks to learn strong features at multiple levels of

scale and abstraction and to help it with finding the actual

correspondences based on these features. The layers on top

of the correlation layer learn how to predict flow from these

matches. Surprisingly, helping the network this way is not

necessary and even the raw network can learn to predict op-

tical flow with competitive accuracy.

Training a network to predict generic optical flow re-

quires a sufficiently large training set. Although data aug-

mentation does help, the existing optical flow datasets are

still too small to train a network on par with state of the art.

Getting optical flow ground truth for realistic video material

is known to be extremely difficult [7]. Trading in realism
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for quantity, we generate a synthetic Flying Chairs dataset

which consists of random background images from Flickr

on which we overlay segmented images of chairs from [1].

These data have little in common with the real world, but

we can generate arbitrary amounts of samples with custom

properties. CNNs trained on just these data generalize sur-

prisingly well to realistic datasets, even without fine-tuning.

Leveraging an efficient GPU implementation of CNNs,

our method is faster than most competitors. Our networks

predict optical flow at up to 10 image pairs per second on

the full resolution of the Sintel dataset, achieving state-of-

the-art accuracy among real-time methods.

2. Related Work

Optical Flow. Variational approaches have dominated

optical flow estimation since the work of Horn and

Schunck [19]. Many improvements have been introduced

[29, 5, 34]. The recent focus was on large displacements,

and combinatorial matching has been integrated into the

variational approach [6, 35]. The work of [35] termed Deep-

Matching and DeepFlow is related to our work in that fea-

ture information is aggregated from fine to coarse using

sparse convolutions and max-pooling. However, it does

not perform any learning and all parameters are set man-

ually. The successive work of [30] termed EpicFlow has

put even more emphasis on the quality of sparse matching

as the matches from [35] are merely interpolated to dense

flow fields while respecting image boundaries. We only use

a variational approach for optional refinement of the flow

field predicted by the convolutional net and do not require

any handcrafted methods for aggregation, matching and in-

terpolation.

Several authors have applied machine learning tech-

niques to optical flow before. Sun et al. [32] study statis-

tics of optical flow and learn regularizers using Gaussian

scale mixtures; Rosenbaum et al. [31] model local statis-

tics of optical flow with Gaussian mixture models. Black et

al. [4] compute principal components of a training set of

flow fields. To predict optical flow they then estimate coef-

ficients of a linear combination of these ’basis flows’. Other

methods train classifiers to select among different inertial

estimates [21] or to obtain occlusion probabilities [27].

There has been work on unsupervised learning of dis-

parity or motion between frames of videos using neural

network models. These methods typically use multiplica-

tive interactions to model relations between a pair of im-

ages. Disparities and optical flow can then be inferred from

the latent variables. Taylor et al. [33] approach the task

with factored gated restricted Boltzmann machines. Konda

and Memisevic [23] use a special autoencoder called ‘syn-

chrony autoencoder’. While these approaches work well

in a controlled setup and learn features useful for activity

recognition in videos, they are not competitive with classi-

cal methods on realistic videos.

Convolutional Networks. Convolutional neural net-

works trained with backpropagation [25] have recently been

shown to perform well on large-scale image classification

by Krizhevsky et al. [24]. This gave the beginning to a

surge of works on applying CNNs to various computer vi-

sion tasks.

While there has been no work on estimating optical flow

with CNNs, there has been research on matching with neu-

ral networks. Fischer et al. [12] extract feature represen-

tations from CNNs trained in supervised or unsupervised

manner and match these features based on Euclidean dis-

tance. Zbontar and LeCun [36] train a CNN with a Siamese

architecture to predict similarity of image patches. A dras-

tic difference of these methods to our approach is that they

are patch based and leave the spatial aggregation to postpro-

cessing, whereas the networks in this paper directly predict

complete flow fields.

Recent applications of CNNs include semantic segmen-

tation [11, 15, 17, 28], depth prediction [10], keypoint pre-

diction [17] and edge detection [13]. These tasks are simi-

lar to optical flow estimation in that they involve per-pixel

predictions. Since our architectures are largely inspired by

the recent progress in these per-pixel prediction tasks, we

briefly review different approaches.

The simplest solution is to apply a conventional CNN in

a ‘sliding window’ fashion, hence computing a single pre-

diction (e.g. class label) for each input image patch [8, 11].

This works well in many situations, but has drawbacks:

high computational costs (even with optimized implementa-

tions involving re-usage of intermediate feature maps) and

per-patch nature, disallowing to account for global output

properties, for example sharp edges. Another simple ap-

proach [17] is to upsample all feature maps to the desired

full resolution and stack them together, resulting in a con-

catenated per-pixel feature vector that can be used to predict

the value of interest.

Eigen et al. [10] refine a coarse depth map by training an

additional network which gets as inputs the coarse predic-

tion and the input image. Long et al. [28] and Dosovitskiy et

al. [9] iteratively refine the coarse feature maps with the

use of ‘upconvolutional’ layers 1 . Our approach integrates

ideas from both works. Unlike Long et al., we ‘upconvolve’

not just the coarse prediction, but the whole coarse feature

maps, allowing to transfer more high-level information to

the fine prediction. Unlike Dosovitskiy et al., we concate-

nate the ‘upconvolution’ results with the features from the

‘contractive’ part of the network.

1These layers are often named ’deconvolutional’, although the opera-

tion they perform is technically convolution, not deconvolution
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Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the

expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-

lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very

good at learning input–output relations given enough la-

beled data. We therefore take an end-to-end learning ap-

proach to predicting optical flow: given a dataset consisting

of image pairs and ground truth flows, we train a network

to predict the x–y flow fields directly from the images. But

what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training

computationally feasible and, more fundamentally, to allow

aggregation of information over large areas of the input im-

ages. But pooling results in reduced resolution, so in order

to provide dense per-pixel predictions we need to refine the

coarse pooled representation. To this end our networks con-

tain an expanding part which intelligently refines the flow to

high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.

Architectures we use are depicted in Figures 2 and 3. We

now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input

images together and feed them through a rather generic net-

work, allowing the network to decide itself how to process

the image pair to extract the motion information. This is il-

lustrated in Fig. 2 (top). We call this architecture consisting

only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical

processing streams for the two images and to combine them

at a later stage as shown in Fig. 2 (bottom). With this ar-

chitecture the network is constrained to first produce mean-

ingful representations of the two images separately and then

combine them on a higher level. This roughly resembles the

standard matching approach when one first extracts features

from patches of both images and then compares those fea-

ture vectors. However, given feature representations of two

images, how would the network find correspondences?

To aid the network in this matching process, we intro-

duce a ‘correlation layer’ that performs multiplicative patch

comparisons between two feature maps. An illustration

of the network architecture ‘FlowNetCorr’ containing this

layer is shown in Fig. 2 (bottom). Given two multi-channel

feature maps f1; f2 : R2 ! Rc, with w, h, and c being their

width, height and number of channels, our correlation layer
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