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Abstract

Lossy compression introduces complex compression ar-

tifacts, particularly the blocking artifacts, ringing effects

and blurring. Existing algorithms either focus on removing

blocking artifacts and produce blurred output, or restores

sharpened images that are accompanied with ringing ef-

fects. Inspired by the deep convolutional networks (DCN)

on super-resolution [5], we formulate a compact and effi-

cient network for seamless attenuation of different compres-

sion artifacts. We also demonstrate that a deeper model can

be effectively trained with the features learned in a shal-

low network. Following a similar “easy to hard” idea, we

systematically investigate several practical transfer settings

and show the effectiveness of transfer learning in low-level

vision problems. Our method shows superior performance

than the state-of-the-arts both on the benchmark datasets

and the real-world use case (i.e. Twitter).

1. Introduction

Lossy compression (e.g. JPEG, WebP and HEVC-MSP)

is one class of data encoding methods that uses inexact

approximations for representing the encoded content. In

this age of information explosion, lossy compression is

indispensable and inevitable for companies (e.g. Twitter

and Facebook) to save bandwidth and storage space. How-

ever, compression in its nature will introduce undesired

complex artifacts, which will severely reduce the user ex-

perience (e.g. Figure 1). All these artifacts not only de-

crease perceptual visual quality, but also adversely affect

various low-level image processing routines that take com-

pressed images as input, e.g. contrast enhancement [16],

super-resolution [30, 5], and edge detection [3]. However,

under such a huge demand, effective compression artifacts

reduction remains an open problem.

We take JPEG compression as an example to explain

compression artifacts. JPEG compression scheme divides

an image into 8×8 pixel blocks and applies block discrete

cosine transformation (DCT) on each block individually.

Quantization is then applied on the DCT coefficients to

(a) Left: the JPEG-compressed image, where we could see blocking arti-

facts, ringing effects and blurring on the eyes, abrupt intensity changes on

the face. Right: the restored image by the proposed deep model (AR-CNN),

where we remove these compression artifacts and produce sharp details.

(b) Left: the Twitter-compressed image, which is first re-scaled to a small

image and then compressed on the server-side. Right: the restored image by

the proposed deep model (AR-CNN)

Figure 1. Example compressed images and our restoration results

on the JPEG compression scheme and the real use case – Twitter.

save storage space. This step will cause a complex com-

bination of different artifacts, as depicted in Figure 1(a).

Blocking artifacts arise when each block is encoded with-

out considering the correlation with the adjacent blocks, re-

sulting in discontinuities at the 8×8 borders. Ringing ef-

fects along the edges occur due to the coarse quantization

of the high-frequency components (also known as Gibbs

phenomenon [9]). Blurring happens due to the loss of

high-frequency components. To cope with the various com-

pression artifacts, different approaches have been proposed,

some of which can only deal with certain types of artifacts.

For instance, deblocking oriented approaches [18, 21, 26]

perform filtering along the block boundaries to reduce only

blocking artifacts. Liew et al. [17] and Foi et al. [6]

use thresholding by wavelet transform and Shape-Adaptive

DCT transform, respectively. These approaches are good at
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removing blocking and ringing artifacts, but tend to produce

blurred output. Jung et al. [13] propose restoration method

based on sparse representation. They produce sharpened

images but accompanied with noisy edges and unnatural

smooth regions.

To date, deep learning has shown impressive results on

both high-level and low-level vision problems . In particu-

lar, the SRCNN proposed by Dong et al. [5] shows the great

potential of an end-to-end DCN in image super-resolution.

The study also points out that conventional sparse-coding-

based image restoration model can be equally seen as a deep

model. However, we find that the three-layer network is not

well suited in restoring the compressed images, especially

in dealing with blocking artifacts and handling smooth re-

gions. As various artifacts are coupled together, features ex-

tracted by the first layer is noisy, causing undesirable noisy

patterns in reconstruction.

To eliminate the undesired artifacts, we improve the SR-

CNN by embedding one or more “feature enhancement”

layers after the first layer to clean the noisy features. Experi-

ments show that the improved model, namely “Artifacts Re-

duction Convolutional Neural Networks (AR-CNN)”, is ex-

ceptionally effective in suppressing blocking artifacts while

retaining edge patterns and sharp details (see Figure 1).

However, we are met with training difficulties in training

a deeper DCN. “Deeper is better” is widely observed in

high-level vision problems, but not in low-level vision tasks.

Specifically, “deeper is not better” has been pointed out in

super-resolution [4], where training a five-layer network be-

comes a bottleneck. The difficulty of training is partially

due to the sub-optimal initialization settings.

The aforementioned difficulty motivates us to investigate

a better way to train a deeper model for low-level vision

problems. We find that this can be effectively solved by

transferring the features learned in a shallow network to

a deeper one and fine-tuning simultaneously1. This strat-

egy has also been proven successful in learning a deeper

CNN for image classification [24]. Following a similar gen-

eral intuitive idea, easy to hard, we discover other interest-

ing transfer settings in this low-level vision task: (1) We

transfer the features learned in a high-quality compression

model (easier) to a low-quality one (harder), and find that

it converges faster than random initialization. (2) In the

real use case, companies tend to apply different compres-

sion strategies (including re-scaling) according to their pur-

poses (e.g. Figure 1(b)). We transfer the features learned

in a standard compression model (easier) to a real use case

(harder), and find that it performs better than learning from

scratch.

1Generally, the transfer learning method will train a base network first,

and copy the learned parameters or features of several layers to the corre-

sponding layers of a target network. These transferred layers can be left

frozen or fine-tuned to the target dataset. The remaining layers are ran-

domly initialized and trained to the target task.

The contributions of this study are two-fold: (1) We

formulate a new deep convolutional network for efficient

reduction of various compression artifacts. Extensive ex-

periments, including that on real use cases, demonstrate

the effectiveness of our method over state-of-the-art meth-

ods [6, 12] both perceptually and quantitatively. (2) We ver-

ify that reusing the features in shallow networks is helpful

in learning a deeper model for compression artifact reduc-

tion. Under the same intuitive idea – easy to hard, we reveal

a number of interesting and practical transfer settings. Our

study is the first attempt to show the effectiveness of feature

transfer in a low-level vision problem.

2. Related work

Existing algorithms can be classified into deblocking ori-

ented and restoration oriented methods. The deblocking

oriented methods focus on removing blocking and ring-

ing artifacts. In the spatial domain, different kinds of fil-

ters [18, 21, 26] have been proposed to adaptively deal with

blocking artifacts in specific regions (e.g., edge, texture,

and smooth regions). In the frequency domain, Liew et

al. [17] utilize wavelet transform and derive thresholds at

different wavelet scales for denoising. The most success-

ful deblocking oriented method is perhaps the Pointwise

Shape-Adaptive DCT (SA-DCT) [6], which is widely ac-

knowledged as the state-of-the-art approach [12, 16]. How-

ever, as most deblocking oriented methods, SA-DCT could

not reproduce sharp edges, and tend to overly smooth tex-

ture regions. The restoration oriented methods regard the

compression operation as distortion and propose restoration

algorithms. They include projection on convex sets based

method (POCS) [32], solving an MAP problem (FoE) [25],

sparse-coding-based method [13] and the Regression Tree

Fields based method (RTF) [12], which is the new state-of-

the art method. The RTF takes the results of SA-DCT [6] as

bases and produces globally consistent image reconstruc-

tions with a regression tree field model. It could also be

optimized for any differentiable loss functions (e.g. SSIM),

but often at the cost of other evaluation metrics.

Super-Resolution Convolutional Neural Network (SR-

CNN) [5] is closely related to our work. In the study, in-

dependent steps in the sparse-coding-based method are for-

mulated as different convolutional layers and optimized in

a unified network. It shows the potential of deep model in

low-level vision problems like super-resolution. However,

the model of compression is different from super-resolution

in that it consists of different kinds of artifacts. Designing

a deep model for compression restoration requires a deep

understanding into the different artifacts. We show that di-

rectly applying the SRCNN architecture for compression

restoration will result in undesired noisy patterns in the re-

constructed image.

Transfer learning in deep neural networks becomes pop-
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Figure 2. The framework of the Artifacts Reduction Convolutional Neural Network (AR-CNN). The network consists of four convolutional

layers, each of which is responsible for a specific operation. Then it optimizes the four operations (i.e., feature extraction, feature enhance-

ment, mapping and reconstruction) jointly in an end-to-end framework. Example feature maps shown in each step could well illustrate the

functionality of each operation. They are normalized for better visualization.

ular since the success of deep learning in image classifica-

tion [15]. The features learned from the ImageNet show

good generalization ability [35] and become a powerful

tool for several high-level vision problems, such as Pascal

VOC image classification [20] and object detection [7, 22].

Yosinski et al. [34] have also tried to quantify the degree

to which a particular layer is general or specific. Over-

all, transfer learning has been systematically investigated

in high-level vision problems, but not in low-level vision

tasks. In this study, we explore several transfer settings on

compression artifacts reduction and show the effectiveness

of transfer learning in low-level vision problems.

3. Methodology

Our proposed approach is based on the current success-

ful low-level vision model – SRCNN [5]. To have a better

understanding of our work, we first give a brief overview of

SRCNN. Then we explain the insights that lead to a deeper

network and present our new model. Subsequently, we ex-

plore three types of transfer learning strategies that help in

training a deeper and better network.

3.1. Review of SRCNN

The SRCNN aims at learning an end-to-end mapping,

which takes the low-resolution image Y (after interpola-

tion) as input and directly outputs the high-resolution one

F (Y). The network contains three convolutional layers,

each of which is responsible for a specific task. Specifi-

cally, the first layer performs patch extraction and repre-

sentation, which extracts overlapping patches from the in-

put image and represents each patch as a high-dimensional

vector. Then the non-linear mapping layer maps each

high-dimensional vector of the first layer to another high-

dimensional vector, which is conceptually the representa-

tion of a high-resolution patch. At last, the reconstruction

layer aggregates the patch-wise representations to generate

the final output. The network can be expressed as:

Fi(Y) = max (0,Wi ∗Y +Bi) , i ∈ {1, 2}; (1)

F (Y) = W3 ∗ F2(Y) +B3. (2)

where Wi and Bi represent the filters and biases of the ith

layer respectively, Fi is the output feature maps and ’∗’ de-

notes the convolution operation. The Wi contains ni filters

of support ni−1 × fi × fi, where fi is the spatial support of

a filter, ni is the number of filters, and n0 is the number of

channels in the input image. Note that there is no pooling or

full-connected layers in SRCNN, so the final output F (Y)
is of the same size as the input image. Rectified Linear Unit

(ReLU, max(0, x)) [19] is applied on the filter responses.

These three steps are analogous to the basic operations

in the sparse-coding-based super-resolution methods [31],

and this close relationship lays theoretical foundation for its

successful application in super-resolution. Details can be

found in the paper [5].

3.2. Convolutional Neural Network for Compres-
sion Artifacts Reduction

Insights. In sparse-coding-based methods and SRCNN,

the first step – feature extraction – determines what should

be emphasized and restored in the following stages. How-

ever, as various compression artifacts are coupled together,

the extracted features are usually noisy and ambiguous for

accurate mapping. In the experiments of reducing JPEG

compression artifacts (see Section 4.1.2), we find that some

quantization noises coupled with high frequency details

are further enhanced, bringing unexpected noisy patterns

around sharp edges. Moreover, blocking artifacts in flat

areas are misrecognized as normal edges, causing abrupt

intensity changes in smooth regions. Inspired by the fea-

ture enhancement step in super-resolution [29], we intro-

duce a feature enhancement layer after the feature extrac-

tion layer in SRCNN to form a new and deeper network

578



– AR-CNN. This layer maps the “noisy” features to a rel-

atively “cleaner” feature space, which is equivalent to de-

noising the feature maps.

Formulation. The overview of the new network AR-

CNN is shown in Figure 2. The three layers of SRCNN

remain unchanged in the new model. We also use the same

annotations as in Section 3.1. To conduct feature enhance-

ment, we extract new features from the n1 feature maps of

the first layer, and combine them to form another set of fea-

ture maps. This operation F1′ can also be formulated as a

convolutional layer:

F1′(Y) = max (0,W1′ ∗ F1(Y) +B1′) , (3)

where W1′ corresponds to n1′ filters with size n1 × f1′ ×
f1′ . B1′ is an n1′ -dimensional bias vector, and the output

F1′(Y) consists of n1′ feature maps. Overall, the AR-CNN

consists of four layers, namely the feature extraction, fea-

ture enhancement, mapping and reconstruction layer.

It is worth noticing that AR-CNN is not equal to a deeper

SRCNN that contains more than one non-linear mapping

layers2. A deeper SRCNN imposes more non-linearity in

the mapping stage, which equals to adopting a more ro-

bust regressor between the low-level features and the final

output. Similar ideas have been proposed in some sparse-

coding-based methods [14, 2]. However, as the compres-

sion artifacts are complex, low-level features extracted by a

single layer are noisy. Thus the performance bottleneck lies

on the features but not the regressor. AR-CNN improves

the mapping accuracy by enhancing the extracted low-level

features, and the first two layers together can be regarded as

a better feature extractor. This leads to better performance

than a deeper SRCNN. Experimental results of AR-CNN,

SRCNN and deeper SRCNN will be shown in Section 4.1.2.

3.3. Model Learning

Given a set of ground truth images {Xi} and their corre-

sponding compressed images {Yi}, we use Mean Squared

Error (MSE) as the loss function:

L(Θ) =
1

n

n∑

i=1

||F (Yi; Θ)−Xi||
2, (4)

where Θ = {W1,W1′ ,W2,W3, B1, B1′ , B2, B3}, n is the

number of training samples. The loss is minimized using

stochastic gradient descent with the standard backpropaga-

tion. We adopt a batch-mode learning method with a batch

size of 128.

3.4. Easy-Hard Transfer

Transfer learning in deep models provides an effective

way of initialization. In fact, conventional initialization

2Adding non-linear mapping layers has been suggested as an extension

of SRCNN in [5].

input output
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target

data -

target

data -

target

T

input

input

input

output
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Figure 3. Easy-hard transfer settings. First row: The baseline 4-

layer network trained with dataA-qA. Second row: The 5-layer

AR-CNN targeted at dataA-qA. Third row: The AR-CNN targeted

at dataA-qB. Fourth row: The AR-CNN targeted at Twitter data.

Green boxes indicate the transferred features from the base net-

work, and gray boxes represent random initialization. The ellip-

soidal bars between weight vectors represent the activation func-

tions.

strategies (i.e. randomly drawn from Gaussian distributions

with fixed standard deviations [15]) are found not suitable

for training a very deep model, as reported in [10]. To ad-

dress this issue, He et al. [10] derive a robust initialization

method for rectifier nonlinearities, Simonyan et al. [24] pro-

pose to use the pre-trained features on a shallow network for

initialization.

In low-level vision problems (e.g. super resolution), it is

observed that training a network beyond 4 layers would en-

counter the problem of convergence, even that a large num-

ber of training images (e.g. ImageNet) are provided [5]. We

are also met with this difficulty during the training process

of AR-CNN. To this end, we systematically investigate sev-

eral transfer settings in training a low-level vision network

following an intuitive idea of “easy-hard transfer”. Specifi-

cally, we attempt to reuse the features learned in a relatively

easier task to initialize a deeper or harder network. Inter-

estingly, the concept “easy-hard transfer” has already been

pointed out in neuro-computation study [8], where the prior

training on an easy discrimination can help learn a second

harder one.

Formally, we define the base (or source) task as A and the

target tasks as Bi, i ∈ {1, 2, 3}. As shown in Figure 3, the

base network baseA is a four-layer AR-CNN trained on a

large dataset dataA, of which images are compressed using

a standard compression scheme with the compression qual-

ity qA. All layers in baseA are randomly initialized from a

Gaussian distribution. We will transfer one or two layers of

baseA to different target tasks (see Figure 3). Such transfers

can be described as follows.

Transfer shallow to deeper model. As indicated by [4],

a five-layer network is sensitive to the initialization param-

eters and learning rate. Thus we transfer the first two layers

of baseA to a five-layer network targetB1. Then we ran-
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(a) High compression quality (quality 20 in Matlab encoder)

(b) Low compression quality (quality 10 in Matlab encoder)

Figure 4. First layer filters of AR-CNN learned under different

JPEG compression qualities.

domly initialize its remaining layers3 and train all layers to-

ward the same dataset dataA. This is conceptually similar to

that applied in image classification [24], but this approach

has never been validated in low-level vision problems.

Transfer high to low quality. Images of low compres-

sion quality contain more complex artifacts. Here we use

the features learned from high compression quality images

as a starting point to help learn more complicated features in

the DCN. Specifically, the first layer of targetB2 are copied

from baseA and trained on images that are compressed with

a lower compression quality qB.

Transfer standard to real use case. We then explore

whether the features learned under a standard compression

scheme can be generalized to other real use cases, which

often contain more complex artifacts due to different levels

of re-scaling and compression. We transfer the first layer of

baseA to the network targetB3, and train all layers on the

new dataset.

Discussion. Why the features learned from relatively

easy tasks are helpful? First, the features from a well-

trained network can provide a good starting point. Then

the rest of a deeper model can be regarded as shallow one,

which is easier to converge. Second, features learned in dif-

ferent tasks always have a lot in common. For instance,

Figure 3.4 shows the features learned under different JPEG

compression qualities. Obviously, filters a, b, c of high qual-

ity are very similar to filters a′, b′, c′ of low quality. This

kind of features can be reused or improved during fine-

tuning, making the convergence faster and more stable. Fur-

thermore, a deep network for a hard problem can be seen as

an insufficiently biased learner with overly large hypothesis

space to search, and therefore is prone to overfitting. These

few transfer settings we investigate introduce good bias to

enable the learner to acquire a concept with greater gener-

ality. Experimental results in Section 4.2 validate the above

analysis.

3Random initialization on remaining layers are also applied similarly

for tasks B2, and B3.

4. Experiments

We use the BSDS500 database [1] as our base training

set. Specifically, its disjoint training set (200 images) and

test set (200 images) are all used for training, and its valida-

tion set (100 images) is used for validation. As in other

compression artifacts reduction methods (e.g. RTF [12]),

we apply the standard JPEG compression scheme, and use

the JPEG quality settings q = 40, 30, 20, 10 (from high

quality to very low quality) in MATLAB JPEG encoder. We

only focus on the restoration of the luminance channel (in

YCrCb space) in this paper.

The training image pairs {Y,X} are prepared as follows

– Images in the training set are decomposed into 32 × 32
sub-images4 X = {Xi}

n

i=1
. Then the compressed sam-

ples Y = {Yi}
n

i=1
are generated from the training samples

with MATLAB JPEG encoder [12]. The sub-images are ex-

tracted from the ground truth images with a stride of 10.

Thus the 400 training images could provide 537,600 train-

ing samples. To avoid the border effects caused by convo-

lution, AR-CNN produces a 20× 20 output given a 32× 32
input Yi. Hence, the loss (Eqn. (4)) was computed by com-

paring against the center 20× 20 pixels of the ground truth

sub-image Xi. In the training phase, we follow [11, 5] and

use a smaller learning rate (10−5) in the last layer and a

comparably larger one (10−4) in the remaining layers.

4.1. Comparison with the State-of-the-Arts

We use the LIVE1 dataset [23] (29 images) as test set to

evaluate both the quantitative and qualitative performance.

The LIVE1 dataset contains images with diverse properties.

It is widely used in image quality assessment [27] as well

as in super-resolution [30]. To have a comprehensive qual-

itative evaluation, we apply the PSNR, structural similarity

(SSIM) [27]5, and PSNR-B [33] for quality assessment. We

want to emphasize the use of PSNR-B. It is designed specif-

ically to assess blocky and deblocked images. The network

settings are f1 = 9, f1′ = 7, f2 = 1, f3 = 5, n1 = 64,

n1′ = 32, n2 = 16 and n3 = 1, denoted as AR-CNN

(9-7-1-5) or simply AR-CNN. A specific network is trained

for each JPEG quality. Parameters are randomly initialized

from a Gaussian distribution with a standard deviation of

0.001.

4.1.1 Comparison with SA-DCT

We first compare AR-CNN with SA-DCT [6], which is

widely regarded as the state-of-the-art deblocking oriented

method [12, 16]. The quantization results of PSNR, SSIM

4We use sub-images because we regard each sample as an image rather

than a big patch.
5We use the unweighted structural similarity defined over fixed 8 × 8

windows as in [28].
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Table 1. The average results of PSNR (dB), SSIM, PSNR-B (dB)

on the LIVE1 dataset.

Eval. Mat Quality JPEG SA-DCT AR-CNN

10 27.77 28.65 28.98

PSNR 20 30.07 30.81 31.29

30 31.41 32.08 32.69

40 32.35 32.99 33.63

10 0.7905 0.8093 0.8217

SSIM 20 0.8683 0.8781 0.8871

30 0.9000 0.9078 0.9166

40 0.9173 0.9240 0.9306

10 25.33 28.01 28.70

PSNR-B 20 27.57 29.82 30.76

30 28.92 30.92 32.15

40 29.96 31.79 33.12

Table 2. The average results of PSNR (dB), SSIM, PSNR-B (dB)

on 5 classical test images [6].

Eval. Mat Quality JPEG SA-DCT AR-CNN

10 27.82 28.88 29.04

PSNR 20 30.12 30.92 31.16

30 31.48 32.14 32.52

40 32.43 33.00 33.34

10 0.7800 0.8071 0.8111

SSIM 20 0.8541 0.8663 0.8694

30 0.8844 0.8914 0.8967

40 0.9011 0.9055 0.9101

10 25.21 28.16 28.75

PSNR-B 20 27.50 29.75 30.60

30 28.94 30.83 31.99

40 29.92 31.59 32.80

and PSNR-B are shown in Table 1. On the whole, our AR-

CNN outperforms the SA-DCT on all JPEG qualities and

evaluation metrics by a large margin. Note that the gains on

PSNR-B is much larger than that on PSNR. This indicates

that AR-CNN could produce images with less blocking ar-

tifacts. We have also conducted evaluation on 5 classical

test images used in [6]6, and observed the same trend. The

results are shown in Table 2.

To compare the visual quality, we present some restored

images7 with q = 10 in Figure 10. From Figure 10, we

could see that the result of AR-CNN could produce much

sharper edges with much less blocking and ringing arti-

facts compared with SA-DCT. The visual quality has been

largely improved on all aspects compared with the state-of-

the-art method. Furthermore, AR-CNN is superior to SA-

DCT on the implementation speed. For SA-DCT, it needs

3.4 seconds to process a 256× 256 image. While AR-CNN

only takes 0.5 second. They are all implemented using C++

on a PC with Intel I3 CPU (3.1GHz) with 16GB RAM.

4.1.2 Comparison with SRCNN

As discussed in Section 3.2, SRCNN is not suitable for

compression artifacts reduction. For comparison, we train

two SRCNN networks with different settings. (i) The orig-

6The 5 test images in [6] are baboon, barbara, boats, lenna and peppers.
7More qualitative results are provided in the supplementary file.

Table 3. The average results of PSNR (dB), SSIM, PSNR-B (dB)

on the LIVE1 dataset with q = 10 .

Eval. JPEG SRCNN Deeper AR-CNN

Mat SRCNN

PSNR 27.77 28.91 28.92 28.98

SSIM 0.7905 0.8175 0.8189 0.8217

PSNR-B 25.33 28.52 28.46 28.70
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Figure 5. Comparisons with SRCNN and Deeper SRCNN.

Table 4. The average results of PSNR (dB), SSIM, PSNR-B (dB)

on the test set BSDS500 dataset.

Eval. Quality JPEG RTF RTF AR-CNN

Mat +SA-DCT

PSNR 10 26.62 27.66 27.71 27.79

20 28.80 29.84 29.87 30.00

SSIM 10 0.7904 0.8177 0.8186 0.8228

20 0.8690 0.8864 0.8871 0.8899

PSNR-B 10 23.54 26.93 26.99 27.32

20 25.62 28.80 28.80 29.15

inal SRCNN (9-1-5) with f1 = 9, f3 = 5, n1 = 64 and

n2 = 32. (ii) Deeper SRCNN (9-1-1-5) with an additional

non-linear mapping layer (f2′ = 1, n2′ = 16). They all use

the BSDS500 dataset for training and validation as in Sec-

tion 4. The compression quality is q = 10. The AR-CNN is

the same as in Section 4.1.1.

Quantitative results tested on LIVE1 dataset are shown

in Table 3. We could see that the two SRCNN networks

are inferior on all evaluation metrics. From convergence

curves shown in Figure 5, it is clear that AR-CNN achieves

higher PSNR from the beginning of the learning stage. Fur-

thermore, from their restored images7 in Figure 11, we find

out that the two SRCNN networks all produce images with

noisy edges and unnatural smooth regions. These results

demonstrate our statements in Section 3.2. In short, the

success of training a deep model needs comprehensive un-

derstanding of the problem and careful design of the model

structure.

4.1.3 Comparison with RTF

RTF [12] is the recent state-of-the-art restoration oriented

method. Without their deblocking code, we can only com-

pare with the released deblocking results. Their model is

trained on the training set (200 images) of the BSDS500

dataset, but all images are down-scaled by a factor of

0.5 [12]. To have a fair comparison, we also train new AR-

CNN networks on the same half-sized 200 images. Test-
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Table 5. Experimental settings of “easy-hard transfer”.

transfer short network training initialization

strategy form structure dataset strategy

base base-q10 9-7-1-5 BSDS-q10 Gaussian (0, 0.001)

network base-q20 9-7-1-5 BSDS-q20 Gaussian (0, 0.001)

shallow base-q10 9-7-1-5 BSDS-q10 Gaussian (0, 0.001)

to transfer deeper 9-7-3-1-5 BSDS-q10 1,2 layers of base-q10

deep He [10] 9-7-3-1-5 BSDS-q10 He et al. [10]

high base-q10 9-7-1-5 BSDS-q10 Gaussian (0, 0.001)

to transfer 1 layer 9-7-1-5 BSDS-q10 1 layer of base-q20

low transfer 2 layers 9-7-1-5 BSDS-q10 1,2 layer of base-q20

standard base-Twitter 9-7-1-5 Twitter Gaussian (0, 0.001)

to transfer q10 9-7-1-5 Twitter 1 layer of base-q10

real transfer q20 9-7-1-5 Twitter 1 layer of base-q20
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Figure 6. Transfer shallow to deeper model.

ing is performed on the test set of the BSDS500 dataset

(images scaled by a factor of 0.5), which is also consistent

with [12]. We compare with two RTF variants. One is the

plain RTF, which uses the filter bank and is optimized for

PSNR. The other is the RTF+SA-DCT, which includes the

SA-DCT as a base method and is optimized for MAE. The

later one achieves the highest PSNR value among all RTF

variants [12].

As shown in Table 4, we obtain superior performance

than the plain RTF, and even better performance than the

combination of RTF and SA-DCT, especially under the

more representative PSNR-B metric. Moreover, training on

such a small dataset has largely restricted the ability of AR-

CNN. The performance of AR-CNN will further improve

given more training images.

4.2. Experiments on Easy-Hard Transfer

We show the experimental results of different “easy-hard

transfer” settings, of which the details are shown in Table 5.

Take the base network as an example, the base-q10 is a

four-layer AR-CNN (9-7-1-5) trained on the BSDS500 [1]

dataset (400 images) under the compression quality q =
10. Parameters are initialized by randomly drawing from

a Gaussian distribution with zero mean and standard devi-

ation 0.001. Figures 6 - 8 show the convergence curves on

the validation set.

4.2.1 Transfer shallow to deeper model

In Table 5, we denote a deeper (five-layer) AR-CNN as “9-

7-3-1-5”, which contains another feature enhancement layer

(f1′′ = 3 and n1′′ = 16). Results in Figure 6 show that the
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Figure 7. Transfer high to low quality.
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Figure 8. Transfer standard to real use case.

transferred features from a four-layer network enable us to

train a five-layer network successfully. Note that directly

training a five-layer network using conventional initializa-

tion ways is unreliable. Specifically, we have exhaustively

tried different groups of learning rates, but still have not

observed convergence. Furthermore, the “transfer deeper”

converges faster and achieves better performance than us-

ing He et al.’s method [10], which is also very effective in

training a deep model. We have also conducted comparative

experiments with the structure “9-7-1-1-5” and observed the

same trend.

4.2.2 Transfer high to low quality

Results are shown in Figure 7. Obviously, the two networks

with transferred features converge faster than that training

from scratch. For example, to reach an average PSNR

of 27.77dB, the “transfer 1 layer” takes only 1.54 × 108

backprops, which are roughly a half of that for “base-q10”.

Moreover, the “transfer 1 layer” also outperforms the ‘base-

q10” by a slight margin throughout the training phase. One

reason for this is that only initializing the first layer pro-

vides the network with more flexibility in adapting to a new

dataset. This also indicates that a good starting point could

help train a better network with higher convergence speed.

4.2.3 Transfer standard to real use case – Twitter

Online Social Media like Twitter are popular platforms for

message posting. However, Twitter will compress the up-

loaded images on the server-side. For instance, a typical

8 mega-pixel (MP) image (3264 × 2448) will result in a

compressed and re-scaled version with a fixed resolution

of 600 × 450. Such re-scaling and compression will intro-

duce very complex artifacts, making restoration difficult for

existing deblocking algorithms (e.g. SA-DCT). However,

AR-CNN can fit to the new data easily. Further, we want
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Original
PSNR /SSIM /PSNR-B

JPEG
32.46 dB /0.8558 /29.64 dB

SA-DCT
33.88 dB /0.9015 /33.02 dB

AR-CNN
34.37 dB /0.9079 /34.10 dB

Figure 10. Results on image “parrots” show that AR CNN is better than SA-DCT on removing blocking artifacts.

JPEG
30.12 dB /0.8817 /26.86 dB

SRCNN 
32.60 dB /0.9301 /31.47 dB

Deeper SRCNN
32.58 dB /0.9298 /31.52 dB

AR-CNN
32.88 dB /0.9343 /32.22 dB

Figure 11. Results on image “monarch” show that AR CNN is better than SRCNN on removing ringing effects.

Original / PSNR Twitter / 26.55 dB Transfer q10 / 27.92 dB

Figure 12. Restoration results of AR-CNN on Twitter compressed images. The origina image (8MP version) is too large for display and

only part of the image is shown for better visualization.

Base-               / 27.75 dBTwitter

to show that features learned under standard compression

schemes could also facilitate training on a completely dif-

ferent dataset. We use 40 photos of resolution 3264× 2448
taken by mobile phones (totally 335,209 training subim-

ages) and their Twitter-compressed version8 to train three

networks with initialization settings listed in Table 5.

From Figure 8, we observe that the “transfer q10”

and “transfer q20” networks converge much faster than

the “base-Twitter” trained from scratch. Specifically, the

“transfer q10” takes 6 × 107 backprops to achieve 25.1dB,

while the “base-Twitter” uses 10× 107 backprops. Despite

of fast convergence, transferred features also lead to higher

PSNR values compared with “base-Twitter”. This observa-

tion suggests that features learned under standard compres-

sion schemes are also transferrable to tackle real use case

problems. Some restoration results7 are shown in Figure 12.

We could see that both networks achieve satisfactory quality

8We will share this dataset on our project page.

improvements over the compressed version.

5. Conclusion

Applying deep model on low-level vision problems re-

quires deep understanding of the problem itself. In this pa-

per, we carefully study the compression process and pro-

pose a four-layer convolutional network, AR-CNN, which

is extremely effective in dealing with various compres-

sion artifacts. We further systematically investigate several

easy-to-hard transfer settings that could facilitate training

a deeper or better network, and verify the effectiveness of

transfer learning in low-level vision problems. As discussed

in SRCNN [5], we find that larger filter sizes also help im-

prove the performance. We will leave them to further work.
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