
Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch1,2 Abhinav Gupta1 Alexei A. Efros2

1 School of Computer Science 2 Dept. of Electrical Engineering and Computer Science

Carnegie Mellon University University of California, Berkeley

Abstract

This work explores the use of spatial context as a source

of free and plentiful supervisory signal for training a rich

visual representation. Given only a large, unlabeled image

collection, we extract random pairs of patches from each

image and train a convolutional neural net to predict the po-

sition of the second patch relative to the first. We argue that

doing well on this task requires the model to learn to recog-

nize objects and their parts. We demonstrate that the fea-

ture representation learned using this within-image context

indeed captures visual similarity across images. For exam-

ple, this representation allows us to perform unsupervised

visual discovery of objects like cats, people, and even birds

from the Pascal VOC 2011 detection dataset. Furthermore,

we show that the learned ConvNet can be used in the R-

CNN framework [19] and provides a significant boost over

a randomly-initialized ConvNet, resulting in state-of-the-

art performance among algorithms which use only Pascal-

provided training set annotations.

1. Introduction

Recently, new computer vision methods have leveraged

large datasets of millions of labeled examples to learn rich,

high-performance visual representations [29]. Yet efforts

to scale these methods to truly Internet-scale datasets (i.e.

hundreds of billions of images) are hampered by the sheer

expense of the human annotation required. A natural way

to address this difficulty would be to employ unsupervised

learning, which aims to use data without any annotation.

Unfortunately, despite several decades of sustained effort,

unsupervised methods have not yet been shown to extract

useful information from large collections of full-sized, real

images. After all, without labels, it is not even clear what

should be represented. How can one write an objective

function to encourage a representation to capture, for ex-

ample, objects, if none of the objects are labeled?

Interestingly, in the text domain, context has proven to

be a powerful source of automatic supervisory signal for

learning representations [3, 38, 9, 37]. Given a large text

corpus, the idea is to train a model that maps each word

to a feature vector, such that it is easy to predict the words

_ _ ? ? 

Example: 

Question 1: Question 2: 

Figure 1. Our task for learning patch representations involves ran-

domly sampling a patch (blue) and then one of eight possible

neighbors (red). Can you guess the spatial configuration for the

two pairs of patches? Note that the task is much easier once you

have recognized the object!

Answerkey:Q1:BottomrightQ2:Topcenter

in the context (i.e., a few words before and/or after) given

the vector. This converts an apparently unsupervised prob-

lem (finding a good similarity metric between words) into

a “self-supervised” one: learning a function from a given

word to the words surrounding it. Here the context predic-

tion task is just a “pretext” to force the model to learn a

good word embedding, which, in turn, has been shown to

be useful in a number of real tasks, such as semantic word

similarity [37].

Our paper aims to provide a similar “self-supervised”

formulation for image data: a supervised task involving pre-

dicting the context for a patch. Our task is illustrated in Fig-

ures 1 and 2. We sample random pairs of patches in one of

eight spatial configurations, and present each pair to a ma-

chine learner, providing no information about the patches’

original position within the image. The algorithm must then

guess the position of one patch relative to the other. Our

underlying hypothesis is that doing well on this task re-

quires understanding scenes and objects, i.e. a good visual

representation for this task will need to extract objects and

their parts in order to reason about their relative spatial lo-

cation. “Objects,” after all, consist of multiple parts that

can be detected independently of one another, and which
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occur in a specific spatial configuration (if there is no spe-

cific configuration of the parts, then it is “stuff” [1]). We

present a ConvNet-based approach to learn a visual repre-

sentation from this task. We demonstrate that the resulting

visual representation is good for both object detection, pro-

viding a significant boost on PASCAL VOC 2007 compared

to learning from scratch, as well as for unsupervised object

discovery / visual data mining. This means, surprisingly,

that our representation generalizes across images, despite

being trained using an objective function that operates on a

single image at a time. That is, instance-level supervision

appears to improve performance on category-level tasks.

2. Related Work

One way to think of a good image representation is as

the latent variables of an appropriate generative model. An

ideal generative model of natural images would both gener-

ate images according to their natural distribution, and be

concise in the sense that it would seek common causes

for different images and share information between them.

However, inferring the latent structure given an image is in-

tractable for even relatively simple models. To deal with

these computational issues, a number of works, such as

the wake-sleep algorithm [23], contrastive divergence [22],

deep Boltzmann machines [45], and variational Bayesian

methods [28, 43] use sampling to perform approximate in-

ference. Generative models have shown promising per-

formance on smaller datasets such as handwritten dig-

its [23, 22, 45, 28, 43], but none have proven effective for

high-resolution natural images.

Unsupervised representation learning can also be formu-

lated as learning an embedding (i.e. a feature vector for

each image) where images that are semantically similar are

close, while semantically different ones are far apart. One

way to build such a representation is to create a supervised

“pretext” task such that an embedding which solves the task

will also be useful for other real-world tasks. For exam-

ple, denoising autoencoders [53, 4] use reconstruction from

noisy data as a pretext task: the algorithm must connect

images to other images with similar objects to tell the dif-

ference between noise and signal. Sparse autoencoders also

use reconstruction as a pretext task, along with a sparsity

penalty [39], and such autoencoders may be stacked to form

a deep representation [32, 31]. (however, only [31] was suc-

cessfully applied to full-sized images, requiring a million

CPU hours to discover just three objects). We believe that

current reconstruction-based algorithms struggle with low-

level phenomena, like stochastic textures, making it hard to

even measure whether a model is generating well.

Another pretext task is “context prediction.” A strong

tradition for this kind of task already exists in the text do-

main, where “skip-gram” [37] models have been shown to

generate useful word representations. The idea is to train a

3 2 1 

5 4 

8 7 6 

); Y = 3 , X = ( 
Figure 2. The algorithm receives two patches in one of these eight

possible spatial arrangements, without any context, and must then

classify which configuration was sampled.

model (e.g. a deep network) to predict, from a single word,

the n preceding and n succeeding words. In principle, sim-

ilar reasoning could be applied in the image domain, a kind

of visual “fill in the blank” task, but, again, one runs into the

problem of determining whether the predictions themselves

are correct [12], unless one cares about predicting only very

low-level features [14, 30, 50]. To address this, [36] predicts

the appearance of an image region by consensus voting of

the transitive nearest neighbors of its surrounding regions.

Our previous work [12] explicitly formulates a statistical

test to determine whether the data is better explained by a

prediction or by a low-level null hypothesis model.

The key problem that these approaches must address is

that predicting pixels is much harder than predicting words,

due to the huge variety of pixels that can arise from the same

semantic object. In the text domain, one interesting idea is

to switch from a pure prediction task to a discrimination

task [38, 9]. In this case, the pretext task is to discriminate

true snippets of text from the same snippets where a word

has been replaced at random. A direct extension of this to

2D might be to discriminate between real images vs. im-

ages where one patch has been replaced by a random patch

from elsewhere in the dataset. However, such a task would

be trivial, since discriminating low-level color statistics and

lighting would be enough. To make the task harder and

more high-level, in this paper, we instead classify between

multiple possible configurations of patches sampled from

the same image, which means they will share lighting and

color statistics, as shown on Figure 2.

Another line of work in unsupervised learning from im-

ages aims to discover object categories using hand-crafted

features and various forms of clustering (e.g. [48, 44]

learned a generative model over bags of visual words). Such

representations lose shape information, and will readily dis-
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cover clusters of, say, foliage. A few subsequent works have

attempted to use representations more closely tied to shape

[33, 40], but relied on contour extraction, which is difficult

in complex images. Many other approaches [20, 27, 16]

focus on defining similarity metrics which can be used in

more standard clustering algorithms; [42], for instance,

re-casts the problem as frequent itemset mining. Geom-

etry may also be used to for verifying links between im-

ages [41, 6, 21], although this can fail for deformable ob-

jects.

Video can provide another cue for representation learn-

ing. For most scenes, the identity of objects remains un-

changed even as appearance changes with time. This kind

of temporal coherence has a long history in visual learning

literature [18, 56], and contemporaneous work shows strong

improvements on modern detection datasets [54].

Finally, our work is related to a line of research on dis-

criminative patch mining [13, 47, 26, 34, 49, 11], which has

emphasized weak supervision as a means of object discov-

ery. Like the current work, they emphasize the utility of

learning representations of patches (i.e. object parts) before

learning full objects and scenes, and argue that scene-level

labels can serve as a pretext task. For example, [13] trains

detectors to be sensitive to different geographic locales, but

the actual goal is to discover specific elements of architec-

tural style.

3. Learning Visual Context Prediction

We aim to learn an image representation for our pre-

text task, i.e., predicting the relative position of patches

within an image. We employ Convolutional Neural Net-

works (ConvNets), which are well known to learn complex

image representations with minimal human feature design.

Building a ConvNet that can predict a relative offset for a

pair of patches is, in principle, straightforward: the network

must feed the two input patches through several convolu-

tion layers, and produce an output that assigns a probability

to each of the eight spatial configurations (Figure 2) that

might have been sampled (i.e. a softmax output). Note,

however, that we ultimately wish to learn a feature embed-

ding for individual patches, such that patches which are vi-

sually similar (across different images) would be close in

the embedding space.

To achieve this, we use a late-fusion architecture shown

in Figure 3: a pair of AlexNet-style architectures [29] that

process each patch separately, until a depth analogous to

fc6 in AlexNet, after which point the representations are

fused. For the layers that process only one of the patches,

weights are tied between both sides of the network, such

that the same fc6-level embedding function is computed for

both patches. Because there is limited capacity for joint

reasoning—i.e., only two layers receive input from both

patches—we expect the network to perform the bulk of the

Patch 2 Patch 1 

pool1 (3x3,96,2) pool1 (3x3,96,2) 

LRN1 LRN1 

pool2 (3x3,384,2) pool2 (3x3,384,2) 

LRN2 LRN2 

fc6 (4096) fc6 (4096) 

conv5 (3x3,256,1) conv5 (3x3,256,1) 

conv4 (3x3,384,1) conv4 (3x3,384,1) 

conv3 (3x3,384,1) conv3 (3x3,384,1) 

conv2 (5x5,384,2) conv2 (5x5,384,2) 

conv1 (11x11,96,4) conv1 (11x11,96,4) 

fc7 (4096) 

fc8 (4096) 

fc9 (8) 

pool5 (3x3,256,2) pool5 (3x3,256,2) 

Figure 3. Our architecture for pair classification. Dotted lines in-

dicate shared weights. ‘conv’ stands for a convolution layer, ‘fc’

stands for a fully-connected one, ‘pool’ is a max-pooling layer, and

‘LRN’ is a local response normalization layer. Numbers in paren-

theses are kernel size, number of outputs, and stride (fc layers have

only a number of outputs). The LRN parameters follow [29]. All

conv and fc layers are followed by ReLU nonlinearities, except fc9

which feeds into a softmax classifier.

semantic reasoning for each patch separately. When design-

ing the network, we followed AlexNet where possible.

To obtain training examples given an image, we sample

the first patch uniformly, without any reference to image

content. Given the position of the first patch, we sample the

second patch randomly from the eight possible neighboring

locations as in Figure 2.

3.1. Avoiding “trivial” solutions

When designing a pretext task, care must be taken to en-

sure that the task forces the network to extract the desired

information (high-level semantics, in our case), without tak-

ing “trivial” shortcuts. In our case, low-level cues like

boundary patterns or textures continuing between patches

could potentially serve as such a shortcut. Hence, for the

relative prediction task, it was important to include a gap

between patches (in our case, approximately half the patch

width). Even with the gap, it is possible that long lines span-

ning neighboring patches could could give away the correct

answer. Therefore, we also randomly jitter each patch loca-

tion by up to 7 pixels (see Figure 2).

However, even these precautions are not enough: we

were surprised to find that, for some images, another triv-

ial solution exists. We traced the problem to an unexpected

culprit: chromatic aberration. Chromatic aberration arises

from differences in the way the lens focuses light at differ-

ent wavelengths. In some cameras, one color channel (com-

monly green) is shrunk toward the image center relative to

the others [5, p. 76]. A ConvNet, it turns out, can learn to lo-

calize a patch relative to the lens itself (see Section 4.2) sim-
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Input Random Initialization ImageNet AlexNet Ours 

Figure 4. Examples of patch clusters obtained by nearest neighbors. The query patch is shown on the far left. Matches are for three different

features: fc6 features from a random initialization of our architecture, AlexNet fc7 after training on labeled ImageNet, and the fc6 features

learned from our method. Queries were chosen from 1000 randomly-sampled patches. The top group is examples where our algorithm

performs well; for the middle AlexNet outperforms our approach; and for the bottom all three features work well.

ply by detecting the separation between green and magenta

(red + blue). Once the network learns the absolute location

on the lens, solving the relative location task becomes triv-

ial. To deal with this problem, we experimented with two

types of pre-processing. One is to shift green and magenta

toward gray (‘projection’). Specifically, let a = [−1, 2,−1]
(the ’green-magenta color axis’ in RGB space). We then

define B = I − aTa/(aaT ), which is a matrix that sub-

tracts the projection of a color onto the green-magenta color

axis. We multiply every pixel value by B. An alternative ap-

proach is to randomly drop 2 of the 3 color channels from

each patch (‘color dropping’), replacing the dropped colors

with Gaussian noise (standard deviation ∼ 1/100 the stan-

dard deviation of the remaining channel). For qualitative

results, we show the ‘color-dropping’ approach, but found

both performed similarly; for the object detection results,

we show both results.

Implementation Details: We use Caffe [25], and train on

the ImageNet [10] 2012 training set ( 1.3M images), using

only the images and discarding the labels. First, we resize

each image to between 150K and 450K total pixels, preserv-

ing the aspect-ratio. From these images, we sample patches

at resolution 96-by-96. For computational efficiency, we

only sample the patches from a grid like pattern, such that

each sampled patch can participate in as many as 8 separate

pairings. We allow a gap of 48 pixels between the sampled

patches in the grid, but also jitter the location of each patch

in the grid by −7 to 7 pixels in each direction. We pre-

process patches by (1) mean subtraction (2) projecting or

dropping colors (see above), and (3) randomly downsam-

pling some patches to as little as 100 total pixels, and then

upsampling it, to build robustness to pixelation. When ap-
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Initial layout, with sampled patches in red 

Image layout 

is discarded We can recover image layout automatically Cannot recover layout with color removed 

Figure 5. We trained a network to predict the absolute (x, y) coordinates of randomly sampled patches. Far left: input image. Center left:

extracted patches. Center right: the location the trained network predicts for each patch shown on the left. Far right: the same result after

our color projection scheme. Note that the far right patches are shown after color projection; the operation’s effect is almost unnoticeable.

plying simple SGD to train the network, we found that the

network predictions would degenerate to a uniform predic-

tion over the 8 categories, with all activations for fc6 and

fc7 collapsing to 0. This meant that the optimization be-

came permanently stuck in a saddle point where it ignored

the input from the lower layers (which helped minimize

the variance of the final output), and therefore that the net

could not tune the lower-level features and escape the sad-

dle point. Hence, Our final implementation employs batch

normalization [24], which forces the network activations to

vary across examples. We also find that high momentum

values (e.g. .999) accelerated learning. For experiments,

we use a ConvNet trained on a K40 GPU for approximately

four weeks.

4. Experiments

We first demonstrate the network has learned to associate

semantically similar patches, using simple nearest-neighbor

matching. We then apply the trained network in two do-

mains. First, we use the model as “pre-training” for a stan-

dard vision task with only limited training data: specifically,

we use the VOC 2007 object detection. Second, we evalu-

ate visual data mining, where the goal is to start with an

unlabeled image collection and discover object classes. Fi-

nally, we analyze the performance on the layout prediction

“pretext task” to see how much is left to learn from this su-

pervisory signal.

4.1. Nearest Neighbors

Recall our intuition that training should assign similar

representations to semantically similar patches. In this sec-

tion, our goal is to understand which patches our network

considers similar. We begin by sampling random 96x96

patches, which we represent using fc6 features (i.e. we re-

move fc7 and higher shown in Figure 3, and use only one

of the two stacks). We find nearest neighbors using normal-

ized correlation of these features. Results for some patches

(selected out of 1000 random queries) are shown in Fig-

ure 4. For comparison, we repeated the experiment using

fc7 features from AlexNet trained on ImageNet (obtained

by upsampling the patches), and using fc6 features from our

architecture but without any training (random weights ini-

pool5 

conv6 (3x3,4096,1) 

conv6b (1x1,1024,1) 

fc7 (4096) 

…
 

Image (227x227) 

fc8 (21) 

pool6 (3x3,1024,2) 

Figure 6. Our architecture for Pascal

VOC detection. Layers from conv1

through pool5 are copied from our

patch-based network (Figure 3). The

new ’conv6’ layer is created by con-

verting the fc6 layer into a convolu-

tion layer. Kernel sizes, output units,

and stride are given in parentheses, as

in Figure 3.

tialization). As shown in Figure 4, the matches returned by

our feature often capture the semantic information that we

are after, matching AlexNet in terms of semantic content (in

some cases, e.g. the car wheel, our matches capture pose

better). Interestingly, in a few cases, random (untrained)

ConvNet also does reasonably well.

4.2. Aside: Learnability of Chromatic Aberration

We noticed in early nearest-neighbor experiments that

some patches retrieved match patches from the same ab-

solute location in the image, regardless of content, be-

cause those patches displayed similar aberration. To further

demonstrate this phenomenon, we trained a network to pre-

dict the absolute (x, y) coordinates of patches sampled from

ImageNet. While the overall accuracy of this regressor is

not very high, it does surprisingly well for some images:

for the top 10% of images, the average (root-mean-square)

error is .255, while chance performance (always predict-

ing the image center) yields a RMSE of .371. Figure 5

shows one such result. Applying the proposed “projection”

scheme increases the error on the top 10% of images to .321.

4.3. Object Detection

Previous work on the Pascal VOC challenge [15] has

shown that pre-training on ImageNet (i.e., training a Con-

vNet to solve the ImageNet challenge) and then “fine-

tuning” the network (i.e. re-training the ImageNet model

for PASCAL data) provides a substantial boost over training

on the Pascal training set alone [19, 2]. However, as far as

we are aware, no works have shown that unsupervised pre-

training on images can provide such a performance boost,

no matter how much data is used.

Since we are already using a ConvNet, we adopt the cur-
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VOC-2007 Test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

DPM-v5[17] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

[8] w/o context 52.6 52.6 19.2 25.4 18.7 47.3 56.9 42.1 16.6 41.4 41.9 27.7 47.9 51.5 29.9 20.0 41.1 36.4 48.6 53.2 38.5

Regionlets[55] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7

Scratch-R-CNN[2] 49.9 60.6 24.7 23.7 20.3 52.5 64.8 32.9 20.4 43.5 34.2 29.9 49.0 60.4 47.5 28.0 42.3 28.6 51.2 50.0 40.7

Scratch-Ours 52.6 60.5 23.8 24.3 18.1 50.6 65.9 29.2 19.5 43.5 35.2 27.6 46.5 59.4 46.5 25.6 42.4 23.5 50.0 50.6 39.8

Ours-projection 58.4 62.8 33.5 27.7 24.4 58.5 68.5 41.2 26.3 49.5 42.6 37.3 55.7 62.5 49.4 29.0 47.5 28.4 54.7 56.8 45.7

Ours-color-dropping 60.5 66.5 29.6 28.5 26.3 56.1 70.4 44.8 24.6 45.5 45.4 35.1 52.2 60.2 50.0 28.1 46.7 42.6 54.8 58.6 46.3

Ours-Yahoo100m 56.2 63.9 29.8 27.8 23.9 57.4 69.8 35.6 23.7 47.4 43.0 29.5 52.9 62.0 48.7 28.4 45.1 33.6 49.0 55.5 44.2

Ours-VGG 63.6 64.4 42.0 42.9 18.9 67.9 69.5 65.9 28.2 48.1 58.4 58.5 66.2 64.9 54.1 26.1 43.9 55.9 69.8 50.9 53.0

ImageNet-R-CNN[19] 64.2 69.7 50 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

Table 1. Results on VOC-2007. R-CNN performance with our unsupervised pre-training is 5% MAP better than training from scratch, but

still 8% below pre-training with ImageNet label supervision.

rent state-of-the-art R-CNN pipeline [19]. R-CNN works

on object proposals that have been resized to 227x227. Our

algorithm, however, is aimed at 96x96 patches. We find that

downsampling the proposals to 96x96 loses too much detail.

Instead, we adopt the architecture shown in Figure 6. As

above, we use only one stack from Figure 3. Second, we re-

size the convolution layers to operate on inputs of 227x227.

This results in a pool5 that is 7x7 spatially, so we must con-

vert the previous fc6 layer into a convolution layer (which

we call conv6) following [35]. Note our conv6 layer has

4096 channels, where each unit connects to a 3x3 region

of pool5. A conv layer with 4096 channels would be quite

expensive to connect directly to a 4096-dimensional fully-

connected layer. Hence, we add another layer after conv6

(called conv6b), using a 1x1 kernel, which reduces the di-

mensionality to 1024 channels (and adds a nonlinearity).

Finally, we feed the outputs through a pooling layer to a

fully connected layer (fc7) which in turn connects to a fi-

nal fc8 layer which feeds into the softmax. We fine-tune

this network according to the procedure described in [19]

(conv6b, fc7, and fc8 start with random weights), and use

fc7 as the final representation. We do not use bounding-

box regression, and take the appropriate results from [19]

and [2].

Table 1 shows our results. Our architecture trained from

scratch (random initialization) performs slightly worse than

AlexNet trained from scratch. However, our pre-training

makes up for this, boosting the from-scratch number by

6% MAP, and outperforms an AlexNet-style model trained

from scratch on Pascal by over 5%. This puts us about 8%

behind the performance of R-CNN pre-trained with Ima-

geNet labels [19]. This is the best result we are aware of

on VOC 2007 without using labels outside the dataset. We

ran additional baselines initialized with batch normaliza-

tion, but found they performed worse than the ones shown.

To understand the effect of various dataset biases [52],

we also performed a preliminary experiment pre-training

on a randomly-selected 2M subset of the Yahoo/Flickr 100-

million Dataset [51], which was collected entirely automat-

ically. The performance after fine-tuning is slightly worse

than Imagenet, but there is still a considerable boost over the

from-scratch model. We also performed a preliminary ex-

periment with a VGG-style [46] (16-layer) network, shown

as “Ours-VGG” in Table 1.

4.4. Visual Data Mining

Visual data mining [41, 13, 47, 42], or unsupervised ob-

ject discovery [48, 44, 20], aims to use a large image col-

lection to discover image fragments which happen to depict

the same semantic objects. Applications include dataset vi-

sualization, content-based retrieval, and tasks that require

relating visual data to other unstructured information (e.g.

GPS coordinates [13]). For automatic data mining, our

approach from section 4.1 is inadequate: although object

patches match to similar objects, textures match just as

readily to similar textures. Suppose, however, that we sam-

pled two non-overlapping patches from the same object.

Not only would the nearest neighbor lists for both patches

share many images, but within those images, the nearest

neighbors would be in roughly the same spatial configura-

tion. For texture regions, on the other hand, the spatial con-

figurations of the neighbors would be random, because the

texture has no global layout.

To implement this, we first sample a constellation of

four adjacent patches from an image (we use four to reduce

the likelihood of a matching spatial arrangement happen-

ing by chance). We find the top 100 images which have

the strongest matches for all four patches, ignoring spatial

layout. We then use a type of geometric verification [7]

to filter away the images where the four matches are not

geometrically consistent. Because our features are more

semantically-tuned, we can use a much weaker type of ge-

ometric verification than [7]. Finally, we rank the different

constellations by counting the number of times the top 100

matches geometrically verify.

Implementation Details: To compute whether a set of four

matched patches geometrically verifies, we first compute

the best-fitting square S to the patch centers (via least-

squares), while constraining that side of S be between 2/3
and 4/3 of the average side of the patches. We then compute

the squared error of the patch centers relative to S (normal-

ized by dividing the sum-of-squared-errors by the square of

the side of S). The patch is geometrically verified if this

normalized squared error is less than 1. When sampling

1427



1 

4 

25 

30 

46 

7 

12 

29 

35 

73 

88 

131 

121 

142 

229 

240 

351 

179 

187 

232 

256 

464 

70 

71 

1 

4 

25 

30 

46 

7 

12 

29 

35 

73 

88 

131 

121 

142 

229 

240 

351 

179 

187 

232 

464 

70 

71 

Figure 7. Object clusters discovered by our algorithm. The number beside each cluster indicates its ranking, determined by the fraction of

the top matches that geometrically verified. For all clusters, we show the raw top 7 matches that verified geometrically. The full ranking is

available on our project webpage.

patches do not use any of the data augmentation preprocess-

ing steps (e.g. downsampling). We use the color-dropping

version of our network.

We applied the described mining algorithm to Pascal

VOC 2011, with no pre-filtering of images and no addi-

tional labels. We show some of the resulting patch clusters

in Figure 7. The results are visually comparable to our pre-

vious work [12], although we discover a few objects that

were not found in [12], such as monitors, birds, torsos, and

plates of food. The discovery of birds and torsos—which

are notoriously deformable—provides further evidence for

the invariances our algorithm has learned. We believe we

have covered all objects discovered in [12], with the ex-

ception of (1) trusses and (2) railroad tracks without trains

(though we do discover them with trains). For some objects

like dogs, we discover more variety and rank the best ones

higher. Furthermore, many of the clusters shown in [12] de-

pict gratings (14 out of the top 100), whereas none of ours

do (though two of our top hundred depict diffuse gradients).

As in [12], we often re-discover the same object multiple

times with different viewpoints, which accounts for most of

the gaps between ranks in Figure 7. The main disadvan-

tages of our algorithm relative to [12] are 1) some loss of

purity, and 2) that we cannot currently determine an object

mask automatically (although one could imagine dynami-

cally adding more sub-patches to each proposed object).

To ensure that our algorithm has not simply learned an

object-centric representation due to the various biases [52]

in ImageNet, we also applied our algorithm to 15,000 Street

View images from Paris (following [13]). The results in

Figure 8 show that our representation captures scene lay-

out and architectural elements. For this experiment, to rank

clusters, we use the de-duplication procedure originally pro-

posed in [13].

4.4.1 Quantitative Results

As part of the qualitative evaluation, we applied our algo-

rithm to the subset of Pascal VOC 2007 selected in [47]:

specifically, those containing at least one instance of bus,
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Figure 8. Clusters discovered and automatically ranked via our al-

gorithm (§ 4.4) from the Paris Street View dataset.

dining table, motorbike, horse, sofa, or train, and evaluate

via a purity coverage curve following [12]. We select 1000

sets of 10 images each for evaluation. The evaluation then

sorts the sets by purity: the fraction of images in the clus-

ter containing the same category. We generate the curve by

walking down the ranking. For each point on the curve, we

plot average purity of all sets up to a given point in the rank-

ing against coverage: the fraction of images in the dataset

that are contained in at least one of the sets up to that point.

As shown in Figure 9, we have gained substantially in terms

of coverage, suggesting increased invariance for our learned

feature. However, we have also lost some highly-pure clus-

ters compared to [12]—which is not very surprising consid-

ering that our validation procedure is considerably simpler.

Implementation Details: We initialize 16,384 clusters by

sampling patches, mining nearest neighbors, and geomet-

ric verification ranking as described above. The resulting

clusters are highly redundant. The cluster selection proce-

dure of [12] relies on a likelihood ratio score that is cali-

brated across clusters, which is not available to us. To se-

lect clusters, we first select the top 10 geometrically-verified

neighbors for each cluster. Then we iteratively select the

highest-ranked cluster that contributes at least one image to

our coverage score. When we run out of images that aren’t

included in the coverage score, we choose clusters to cover

each image at least twice, and then three times, and so on.

4.5. Accuracy on the Relative Prediction Task Task

Can we improve the representation by further training

on our relative prediction pretext task? To find out, we
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P
u
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Purity-Coverage for Proposed Objects

Visual Words .63 (.37)
Russel et al. .66 (.38)
HOG Kmeans .70 (.40)
Singh et al. .83 (.47)
Doersch et al. .83 (.48)
Our Approach .87 (.48)

Figure 9. Purity vs coverage for objects discovered on a subset of

Pascal VOC 2007. The numbers in the legend indicate area under

the curve (AUC). In parentheses is the AUC up to a coverage of .5.

briefly analyze classification performance on pretext task

itself. We sampled 500 random images from Pascal VOC

2007, sampled 256 pairs of patches from each, and clas-

sified them into the eight relative-position categories from

Figure 2. This gave an accuracy of 38.4%, where chance

performance is 12.5%, suggesting that the pretext task is

quite hard (indeed, human performance on the task is simi-

lar). To measure possible overfitting, we also ran the same

experiment on ImageNet, which is the dataset we used for

training. The network was 39.5% accurate on the training

set, and 40.3% accurate on the validation set (which the net-

work never saw during training), suggesting that little over-

fitting has occurred.

One possible reason why the pretext task is so difficult

is because, for a large fraction of patches within each im-

age, the task is almost impossible. Might the task be easiest

for image regions corresponding to objects? To test this

hypothesis, we repeated our experiment using only patches

sampled from within Pascal object ground-truth bounding

boxes. We select only those boxes that are at least 240 pix-

els on each side, and which are not labeled as truncated,

occluded, or difficult. Surprisingly, this gave essentially the

same accuracy of 39.2%, and a similar experiment only on

cars yielded 45.6% accuracy. So, while our algorithm is

sensitive to objects, it is almost as sensitive to the layout of

the rest of the image.
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