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Abstract

Global structure-from-motion (SfM) methods solve all

cameras simultaneously from all available relative motions.

It has better potential in both reconstruction accuracy and

computation efficiency than incremental methods. However,

global SfM is challenging, mainly because of two reasons.

Firstly, translation averaging is difficult, since an essential

matrix only tells the direction of relative translation. Sec-

ondly, it is also hard to filter out bad essential matrices

due to feature matching failures. We propose to compute

a sparse depth image at each camera to solve both prob-

lems. Depth images help to upgrade an essential matrix to

a similarity transformation, which can determine the scale

of relative translation. Thus, camera registration is formu-

lated as a well-posed similarity averaging problem. Depth

images also make the filtering of essential matrices sim-

ple and effective. In this way, translation averaging can

be solved robustly in two convex L1 optimization problems,

which reach the global optimum rapidly. We demonstrate

this method in various examples including sequential data,

Internet data, and ambiguous data with repetitive scene

structures.

1. Introduction

Structure-from-motion (SfM) methods estimate 3D

scene structures and camera poses from 2D images. The

‘gold standard’ algorithm, bundle adjustment (BA)[40],

minimizes the reprojection error to achieve a maximum

likelihood estimation. SfM methods can be roughly cat-

egorized as incremental or global according to their ways

to initialize BA. Incremental methods (e.g. [38]) initialize

cameras one by one. They are typically slow and subject

to large drifting errors [9], though impressive results are

demonstrated [2] on huge scale Internet image sets. Global

methods (e.g. [15]) initialize all cameras simultaneously

and have better potential in efficiency and accuracy.

Global SfM methods face two major challenges. Firstly,

motion averaging, in particular, translation averaging is

hard. It is hard to determine global camera positions from

local relative translations encoded in epipolar geometry

(EG). Many translation estimation methods [15, 4, 3, 29]

degenerate at collinear camera motion, because an essential

matrix does not tell the scale of translation (i.e. the baseline

length).

Secondly, global SfM methods are more fragile on noisy

data, e.g. Internet images, due to poor relative motion esti-

mation caused by feature matching failures. Global meth-

ods have to carefully filter out wrong EGs before motion

averaging. In comparison, local methods benefit from the

RANSAC process to exclude bad feature correspondences

when adding additional cameras to the reconstruction. EG

filtering is still an open problem despite various consistency

filters adopted in [21, 27, 42].

We tackle both problems by constructing a sparse ‘depth

image’ for each camera, which contains depth values at a

sparse set of feature points. Depth images upgrade an essen-

tial matrix to a similarity transformation, which encodes the

relative rotation, translation, and scale between two depth

images. The relative scale change encodes the baseline

length, so that similarity averaging is much well-posed. In

comparison, from essential matrices, translations can only

be solved for cameras in a parallel rigid graph [29]. While

some methods [34, 26, 12, 42] use depths of scene points

to go beyond the parallel rigid graph, they exploit the depth

information of a single point at a time and are sensitive to

outlier points. Our method based on depth images is a more

holistic approach.

Our similarity averaging algorithm includes three steps,

i.e. rotation averaging, scale averaging, and scale-aware

translation averaging. We take the robust method in [8] for

rotation averaging. Both our scale and translation averaging

are formulated as convex L1 optimization problems, which

converge rapidly to a global optimum.

At the same time, depth images make the filtering of bad

EGs easy. During the construction of depth images, we filter

pairwise relative motions by the depth consistency of recon-

structed feature points, which excludes EGs with large er-

rors. For pathological data with repetitive scene structures

(e.g. examples published in [33]), our depth images allow

straightforward ‘missing correspondences’ analysis [44] to
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discard outlier EGs. These filters make our method robust

on challenging data.

In experiments, we demonstrate our algorithm on se-

quential data, Internet data, and ambiguous data with repeti-

tive structures. Our method consistently outperforms recent

global SfM methods [42, 29] and well known incremental

methods [38, 43]. In terms of runtime efficiency, our BA

initialization is up to 3 or 9 times faster than the methods in

[42] and [29] respectively. Our complete system is up to 30

times faster than a parallelized version of Bundler [38].

2. Related Work

Incremental methods [32, 38, 31, 2] add cameras one

by one to initialize the final BA. The reconstruction quality

heavily depends on the initial pair of cameras and the order

of adding other cameras, which might be optimized by the

‘next-best-view’ algorithms (e.g. [13, 18]). Some incremen-

tal methods [14, 24] hierarchically merge small reconstruc-

tions into larger ones. All incremental methods are subject

to significant drifting errors on large image sets, especially

when the input EGs are noisy. Frequent intermediate BA

reduces drifting but creates computation bottleneck.

Rotation averaging [15] solves all camera orientations

simultaneously from input pairwise relative rotations. This

problem is complicated due to the nontrivial topology of

the rotation manifold [19]. Linear algorithm is presented

by ignoring the manifold constraint [26]. Better result is

achieved by Lie-algebra representations [16] and further

combined with robust L1 optimization [8]. Rotation averag-

ing is also intensively studied in robotics and control, with

an up-to-date survey at [7].

Translation averaging computes camera positions, typ-

ically with their orientations fixed beforehand. A key chal-

lenge here is that an essential matrix only encodes the di-

rection of translation. Therefore, as rigorously proved in

[29], essential matrices only determine camera positions in

a parallel rigid graph. As a result, essential matrix based

methods [15, 4, 3, 29] are ill-posed at collinear camera mo-

tion, which excludes them from many robotics applications

where linear motion is common. Cui et al. [12] reinforce

essential matrices with feature tracks, but require careful

feature track filtering.

Trifocal tensor based methods [36, 10, 27, 21] are robust

to collinear motion, because the relative scales of transla-

tions are encoded in a trifocal tensor. However, they only

reconstruct images within a connected camera triplet graph,

which is often a much smaller subset of images. As dis-

cussed in [12], it is also not easy to balance the number of

constraints for different triplets.

Some methods [34, 23, 26, 11, 42, 37] solve scene points

and camera poses together. Generally speaking, the L∞

methods [23, 26] are sensitive to outliers. The discrete-

continuous optimization [11] is computationally inefficient.

(a) (b)

Figure 1. Left: an EG graph where each camera is a vertex and

two cameras are connected if the essential matrix between them

is known. Right: a stellate graph includes all vertices and edges

directly linked to a center vertex i.

The 1DSfM method [42] is more suitable for Internet im-

ages which tend to produce O(n2) essential matrices for

n images. The method in [37] adopts the linear constraint

in [34] and initializes the solution by stitching pairwise

reconstructions. Its initialization bears some similarity to

our method. But it achieves poor accuracy as reported in

[21, 29]. A key difference is that our method reconstructs

‘depth images’ to upgrade essential matrices to similarities

for well-posed motion averaging. Furthermore, we include

EG filters in the construction of depth images, which plays

a critical role in the robustness of our algorithm.

Outlier EG filtering is critical for both incremental and

global SfM methods. Global SfM methods are more sensi-

tive to this filtering, since incremental methods can benefit

from RANSAC based correspondence filtering when adding

cameras. Various filters have been designed based on loop

consistency check [45], random sampling of EGs [17],

‘missing correspondences’ [44], and local feature clustering

[41]. For densely matched images, Wilson et al. [42] de-

sign a smart filter based on 1D SfM, which allows straight-

forward translation averaging. Some challenging patholog-

ical data with repetitive scene structures are published in

[33]. The ‘missing correspondence’ analysis, when com-

bined with timestamp [33] or iterative graph optimization

[22], successfully reconstructs those challenging data. Our

system includes three EG filters applied to depth images,

i.e. the depth consistency check, the optional local BA, the

optional ‘missing correspondence’ analysis. These filters

enable our method to deal with challenging data.

3. Overview

Our input is a set of images with known essential ma-

trices, e.g. computed from the five-point algorithm[28, 25].

We aim to solve all camera positions and orientations in a

global coordinate system. As shown in Figure 1 (a), these

inputs can be represented by an EG graph, where each cam-

era is a vertex and two cameras are connected if the essen-

tial matrix between them is known. The essential matrix on

an edge (i, j) encodes the relative rotation Rij and the rel-

ative translation direction tij of two cameras i and j. We

aim to estimate the camera positions ci and orientations Ri
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Figure 2. Pipeline of the proposed method. See text for more details.

in a global coordinate system, which are constrained by the

following equations,

Rij = RjR⊤

i , (1)

tij ∼ Rj(ci − cj). (2)

Here, ∼ means equal up to a scale.

A key difficulty arises from the fact that tij is a unit vec-

tor, since the baseline length is not determined by an es-

sential matrix. As rigorously proved in [29], the essential

matrices only determine camera positions in a parallel rigid

graph, e.g. collinear cameras cannot be solved. We seek to

bootstrap the global SfM problem by constructing a sparse

‘depth image’ Di at each camera i from a stellate graph

shown in Figure 1 (b), which includes all vertices and edges

directly linked to i. A depth image contains the depth values

at sparse features. With these depth images, we can upgrade

an essential matrix to a similarity transformation which en-

codes additional scale changes. The baseline lengths can

be easily computed from these scale changes. Therefore,

translation averaging becomes a well-posed problem.

Figure 2 provides an overview of our system pipeline.

We first construct a depth image for each camera. This step

further performs depth consistency check to exclude noisy

essential matrices. Following the construction of depth im-

ages, there are two optional EG filters. The local BA is

applied to images in the local stellate graph to improve pair-

wise relative motion and also exclude some poor essential

matrices. The ‘missing correspondence’ analysis is applied

between image pairs to exclude outlier essential matrices

due to repetitive scene structures. In the next, we start to

register all cameras in a global coordinate system by a novel

similarity averaging. Specifically, we first solve camera ori-

entations by rotation averaging [8]. At the same time, the

global scale of each depth image is solved by scale aver-

aging. Once the scales and rotations are fixed, we solve

baseline lengths and then camera positions by a scale-aware

translation averaging. Once all cameras are fixed, we adopt

multiple view triangulation [20] to compute the scene struc-

ture, and apply a final BA to optimize cameras and 3D

points together.

4. Sparse Depth Image Construction

For each EG edge, we have a local pairwise reconstruc-

tion computed by two-view triangulation with the relative

pose. The baseline length is set as 1. We build a depth im-

age Di by stitching the pairwise reconstructions within a

stellate graph centered at camera i. Since the stellate graph

does not contain any loop, this process is simple and robust.

For better computation efficiency, we only consider at most

80 cameras connecting to i. These cameras are selected as

those with largest number of feature correspondences.

We put all pairwise reconstructions in the stellate graph

under the local coordinate system attached to the camera i.
So we only need to solve a scale siij for each image pair

(i, j) to stitch these reconstructions together. Here, the up-

per index i indicates the stellate graph centered at i. For a

feature point in the image i, if it is reconstructed in both im-

age pairs (i, j) and (i, k), its depths relate the scales of both

reconstructions as the following,

siik/s
i
ij = dij/dik := dijk. (3)

Here, dij and dik are the depths of that feature point in re-

constructions from (i, j) and (i, k) respectively. We apply

a median filter to estimate dijk from all feature points. Jiang

et al. [21] compute similar relative scales in a triplet and use

them to register cameras in a triplet graph. In comparison,

we compute relative scales in a stellate graph and use them

to construct depth images. So our method is not limited to

triplet graphs.

Taking log of both sides in Equation 3, we have

log(siik)− log(siij) = log(dijk), (4)

which provides a linear equation for the scales of two pair-

wise reconstructions.

By collecting all such linear equations within the stellate

graph, we obtain a large linear equation system

Ax = b. (5)

Here, x and b are vectors by concatenating log(siij) and

log(dijk) respectively. The matrix A is sparse. Each row

of it contains only two nonzero values 1 and -1. In order

to remove the gauge ambiguity, we set the scale of the edge

with largest number of matches as a unit, i.e. log(siij) = 0,

suppose j has the largest number of matches with i.
In order to obtain a robust estimation in presence of out-

liers, we solve Equation 5 by L1 optimization as follows,

argmin
x

‖Ax − b‖
1
. (6)
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Figure 3. The cumulative distribution function (CDF) of relative

motion errors for the Gendarmenmarkt data in Section 6.2. The

input EGs contain significant errors in both rotation and transla-

tion directions. Our depth consistency, local BA, and missing cor-

respondence analysis improves local relative motions for robust

global SfM.

This L1 optimization is convex and achieves the global op-

timum as studied in [6, 30]. We adopt the efficient package

[5] to solve Equation 6.

Depth consistency check Merging the pairwise recon-

structions gives multiple depth values for each feature point

in camera i. We check their consistency to identify bad

EGs. Specifically, we first adopt median filter to compute

an optimal depth for each feature point. All depth values

deviating more than 5% of the filtered depth are considered

as outliers. We remove an image pair (i, j) as a bad EG if it

produces less than 5 inliers, because 5 points determine an

essential matrix.

To examine the effectiveness of this depth consistency

check, we visualize the errors in local relative motion for

the data Gendarmenmarkt (see Section 6.2) in Figure 3. We

take the result from an incremental method [38] as reference

‘ground truth’ and plot the cumulative distribution function

(CDF) of errors in relative rotations and translation direc-

tions. As shown in Figure 3, depth consistency check ex-

cludes bad EGs and hence improves the robustness of the

following motion averaging.

Optional local BA We can optionally apply a local BA

to all the cameras and edges in the stellate graph. Unlike

the intermediate BA in incremental SfM methods, this local

BA is efficient and can be easily parallelized. In our ex-

periment, it takes less than one second to optimize a depth

image since the size of a stellate graph is small. This lo-

cal BA refines the relative motion (Rij , tij) between cam-

era pairs. Furthermore, after local BA, we discard feature

points with large re-projection error, e.g. 16 pixels in all our

experiments. We then remove an image pair if the number

of reconstructed features is less than 5. As shown in Fig-

Figure 4. Missing correspondence analysis. The blue frame indi-

cates the field-of-view(FOV) of the camera. Green and red dots

are matched and missing features. See text for more details.

ure 3, the local BA further improves local relative motions.

Optional missing correspondence analysis ‘Missing

correspondence’ analysis [44] is proved to be an effective

way to filter EGs for the challenging data with large repeti-

tive scene structures [33, 22], and it is straightforward with

depth images. For an image pair (i, j), we project all the

3D points in Di to the image plane of j. As illustrated in

Figure 4, we visualize these projected points as green and

red dots within the image frame. Note we ignore the vis-

ibility test and assume all points within the field-of-view

(FOV) of j are visible. The green dots indicate points that

are matched with features in j. The ‘missing correspon-

dences’ are points without matches in j, i.e. the red dots in

Figure 4. The ratio of these red and green dots are analyzed

in [44, 22] to discard outlier EGs due to repetitive scene

structures.

We take the bounding box (the green dashed line box

in Figure 4) of the matched features. We consider missing

correspondences, i.e. red dots, within this bounding box are

due to the imperfect repeatability [35] of feature matching.

Thus, we only consider red dots outside of the bounding

box as true missing correspondences. We threshold the ra-

tio of these points among all red dots to decide if an edge

(i, j) is an outlier. Specifically, we evaluate M i
j = n1/n2.

Here, n1 is the number of red dots outside of the bounding

box, and n2 is the total number of red dots. If M i
j > ǫ,

we consider (i, j) as outlier and remove it. We set ǫ to 0.2

for Internet data and 0.1 otherwise. As shown in Figure 3,

missing correspondence analysis removes outlier EGs with

large errors.

5. Similarity Averaging

Once the depth images are constructed, we compute a

similarity transformation for each edge (i, j) of the EG

graph. In principal, this similarity can be computed from

3D-3D correspondences between depth images. In prac-

tice, we find that the local reconstructions are not precise

enough to allow accurate 3D-3D registration. So we keep

the relative rotation and translation (Rij , tij) from essential

matrices or after the local BA if it is turned on, and estimate

a relative scale Sij simply by

Sij = sjji/s
i
ij , (7)
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where siij and sjji are the scales for (i, j) computed by solv-

ing Equation 6 during the construction of Di and Dj .

Putting the relative rotation, translation, and scaling to-

gether, we obtain a local relative similarity transformation

(Rij , tij , Sij) for any edge (i, j) in the EG graph. We then

solve the similarity averaging problem to determine all cam-

era poses. Intuitively, this amounts to stitch all depth images

together to form a global 3D reconstruction. Our similarity

averaging includes three steps: rotation averaging, scale av-

eraging, and scale-aware translation averaging.

We adopt the robust method proposed in [8] for rotation

averaging.

5.1. Robust Scale Averaging

We compute a scaling factor si for each depth image Di

to register them together. According to the known pairwise

relative scale, we have

si/sj = Sij . (8)

Taking log of both sides in Equation 8 gives us

log(si)− log(sj) = log(Sij). (9)

Collecting this equation from all edges in the EG graph,

we stack them into a linear equation system

Asxs = bs, (10)

where xs and bs are vectors by concatenating log(si) and

log(Sij) respectively. As is a sparse matrix similar to A in

Equation 5. To remove gauge ambiguity, we set the scaling

factor of the first image as unit, i.e. log(s1) = 0. We then

solve Equation 10 by the following convex L1 optimization,

argmin
xs

‖Asxs − bs‖1 . (11)

5.2. Robust Scale­Aware Translation Averaging

Once the global scaling factor of each depth image is

determined, we compute the baseline length as,

bij =
1

2
(sis

i
ij + sjs

j
ij). (12)

With global camera orientations computed from [8], we ob-

tain a linear equation of camera positions as,

Rj(ci − cj) = bijtij . (13)

Collecting this equation from all edges in the EG graph,

we can form a linear system,

Acxc = bc, (14)

where xc and bc are vectors formed by concatenating ci and

bijtij respectively. Ac is a sparse matrix, where each three

consecutive rows are all zeros except two rotation matrices

Rj and −Rj . We remove gauge ambiguity by fixing the

first camera at original, i.e. c1 = 0. All camera positions

are then solved by the following convex L1 problem,

argmin
xc

‖Acxc − bc‖1 . (15)

Note the methods in [27, 29] also solve Equation 13 to

estimate camera positions. They solve the baseline length

bij simultaneously with camera positions. Their formu-

lation is complicated by the quadratic constraint b2ij =

||ci − cj ||
2. Typically, this constraint is ignored to simplify

optimization. In comparison, we solve bij beforehand to

make the translation averaging simple.

6. Experiment

We evaluate our method on various datasets including

sequential data, Internet data and challenging pathological

data with large duplicate structures. All experiments are

run on a machine with two 2.3Hz Intel Xeon E5-2650 pro-

cessors with 16 threads enabled in total. The depth image

generation is parallelized using OpenMP. We use the Ceres

solver [1] for the final BA.

6.1. Evaluation on Sequential Data

Global SfM methods solve all camera poses simultane-

ously from all available relative motions. Thus, they are

more robust to drifting problems compared with incremen-

tal methods. We demonstrate this on four small to large

scale sequential data. The Herz-Jesu-P25 data from [39]

and the Building data from [45] has 25 and 128 images

respectively. The Pittsburgh data consists of 388 Google

street view images; The Campus data is captured by a

smartphone with 1040 images. We compare our method

with a typical incremental method, VisualSFM [43], and

two recent global methods [29, 42] on these four datasets.

The results are shown in Figure 5 and Figure 6.

Figure 5 shows that VisualSFM [43] has good perfor-

mance when the EGs are good or the sequence is short,

while it suffers from severe drifting problem for long se-

quences with noisy EGs. There are some images with glass

walls in the Pittsburgh data and many images with trees in

the Campus data. The quality of pairwise relative motions

for these two datasets are poor. So sequential methods like

VisualSFM [43] suffer from large drifting errors on these

two datasets. Note the loop closure constraints have been

provided to VisualSFM in this experiment. But the large

drifting error makes the loop closure unsuccessful. The

method in [29] generates distortions for the Pittsburgh and

Campus data, because the near collinear motion in these ex-

amples makes its essential matrix based translation estima-

tion degenerate.
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Figure 6. A failure case of 1DSfM [42] on the Herz-Jesu-P25 data.

(a)

(b) (c)
Figure 8. Results on the challenging Gendarmenmarkt data. The

image in (a) shows the bilaterally symmetric architecture layout.

The results cited from 1DSfM[42] and our method are shown at

(b) and (c). Our method succeeds on this data thanks for the EG

filtering in local BA and ‘missing correspondence’ analysis.

The 1DSfM [42] failed on most of these examples, be-

cause it is designed for Internet images that tend to have

O(n2) essential matrices for n input images. Thus, sequen-

tial images with O(n) essential matrices is not suitable for

this method 1. Its result for Herz-Jesu-P25 is shown in Fig-

ure 6. Distortions in camera motion can be observed by

comparing it with the results in Figure 5.

In comparison, our method performs well for all these

examples. It has no visible drifting errors and deals with

collinear motions.

6.2. Evaluation on Internet Data

Our method adopts robust optimization in every step

and has better performances compared with previous global

SfM methods. We demonstrate this on the medium- to

large-scale Internet datasets recently published in [42]. We

turn on missing correspondence analysis only for the data

Gendarmenmarkt. The results on the Piccadilly and Trafal-

gar data are shown in Figure 7. Table 1 provides quanti-

tative comparison with several global methods [21, 42, 29,

12]. We use the results of an optimized incremental SfM

system based on Bundler [38] as the reference ‘ground-

truth’ and compute the mean and median camera position

1This is according to our discussion with the authors of [42]

(a) BOOKS (b) BOXES

(c) CUP (d) DESK

(e) OATS (f) HOUSE

Figure 9. Our results on challenging pathological data with large

repetitive structures.

errors for evaluation. The number of reconstructed cameras

are also listed for comparison. The results of all other meth-

ods are cited from corresponding papers.

From Table 1, we can see that our method with local

BA generally has the best accuracy (before the final BA)

and reconstructs the largest number of cameras. After fi-

nal BA, all these methods achieve similar accuracy. Our

method without local BA also produces good results, which

demonstrates the robustness of our similarity averaging.

We also evaluate the runtime efficiency of these meth-

ods in Table 2. Running times of all individual steps are

provided for our method. Even with local BA, our method

is several times faster than other global SfM methods. For

example, our method is about 9 times faster than [29] in ini-

tializing BA (i.e., TΣ−TBA) on the Vienna Cathedral data.

It is about 30 times faster than the parallelized version of

Bundler [38] on the Piccadilly data.

The Gendarmenmarkt data is reported as a failure case in

[42], due to its repetitive scene structures. None of the pre-

vious global SfM methods can reconstruct it successfully.
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(a) Herz-Jesu-P25 (b) Building (c) Pittsburgh (d) Campus
Figure 5. Evaluation on sequential data. From top to bottom, each row shows sample input images, 3D reconstructions generated by our

method, VisualSFM [43], and the least unsquared deviations (LUD) method [29] respectively.

Figure 7. Sample results on the Internet data published in [42]. The left and right are the results on the Piccadilly and Trafalgar data with

2276 and 4945 images reconstructed respectively.

With local BA and missing correspondence analysis turned

on, our method successfully reconstructs this example. We

compare our result with that cited from [42] in Figure 8.

6.3. Evaluation on Ambiguous Data

We demonstrate the robustness of our method on some

challenging pathological data with large repetitive struc-

tures published by [33]. As shown in Figure 9, our method

successfully reconstructs all six examples when missing

correspondence analysis is turned on.

6.4. Discussions

We further test our method on the very challenging Quad

data which consists of 6514 images. Our method generates

a distorted result for this example. But it produces a reason-

able result as shown in Figure 10 when camera orientations
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Data Jiang [21] 1DSfM [42] LUD [29] Cui [12] Ours without LBA Ours with LBA

Name Ni Nc x̃ Nc x̃ Nc x̃ x̄ Nc x̃ Nc x̃ x̄ Nc x̃ x̄ x̃∗ x̄∗

Alamo 613 478 0.6 529 1.1 547 0.4 2.0 500 0.6 577 0.5 2.0 574 0.5 2.0 0.5 3.1

Ellis Island 242 205 3.2 214 3.7 - - - 211 3.1 220 3.3 6.7 223 2.5 5.5 0.7 4.2

Metropolis 384 92 1.7 291 9.9 288 1.6 4.0 - - 317 3.8 10.8 317 2.7 10.6 3.1 16.6

Montreal N.D. 467 333 0.5 427 2.5 435 0.5 1.0 426 0.8 450 0.5 0.8 452 0.4 0.7 0.3 1.1

Notre Dame 552 518 0.4 507 10.0 536 0.3 0.8 539 0.3 547 0.3 0.6 549 0.2 0.6 0.2 1.0

NYC Library 369 245 1.0 295 2.5 320 2.0 6.0 288 1.4 337 1.1 2.6 338 0.8 1.9 0.3 1.6

Piazza del Popolo 350 248 1.1 308 3.1 305 1.5 5.0 294 2.6 336 3.1 3.9 340 2.0 2.7 1.6 2.5

Piccadilly 2468 423 2.8 1956 4.1 - - - - - 2271 1.8 3.1 2276 1.3 2.5 0.4 2.2

Roman Forum 1122 696 13.6 989 6.1 - - - - - 1069 3.9 10.7 1077 2.9 9.4 2.5 10.1

Tower of London 499 386 5.0 414 11.0 425 4.7 20.0 393 4.4 463 4.0 13.5 465 1.9 11.2 1.0 12.5

Union Square 680 119 4.3 710 5.6 - - - - - 570 6.9 15.5 570 5.5 12.7 3.2 11.7

Vienna Cathedral 897 478 6.9 770 6.6 750 5.4 10.0 578 3.5 830 2.8 7.2 842 2.7 5.9 1.7 4.9

Yorkminster 450 223 2.6 401 3.4 404 2.7 5.0 341 3.7 419 2.6 7.2 417 2.3 5.7 0.6 14.2

Trafalgar 5288 1481 3.8 4591 - - - - - - 4881 7.4 11.3 4945 5.4 8.9 3.6 8.6

Gendarmenmarkt 733 260 23.2 - - - - - - - - - - 609 5.4 27.7 4.2 27.3

Table 1. Comparison on Internet data. x̃ and x̄ denote the median and mean position errors in meters for different methods by taking the

result of [38] as a reference. x̃∗ and x̄
∗ denote the median and mean position errors for our method after the final bundle adjustment. Ni

is the number of cameras in the largest connected component of our input EG graph, and Nc is the number of reconstructed cameras. For

[21], the model with the largest number of cameras is considered. The bold font highlights the best result in each row.
Data Ours 1DSfM [42] LUD [29] Jiang [21] [38]

Name Ni TD TLBA TMC Ts TR Tc TBA TΣ TBA TΣ TBA TΣ TBA TΣ TΣ

Alamo 613 15 52 0 2 5 9 481 578 752 910 133 750 162 191 1654

Ellis Island 242 2 32 0 1 1 2 169 208 139 171 - - 616 621 1191

Metropolis 384 3 24 0 1 3 3 25 60 201 244 38 142 112 121 1315

Montreal N.D. 467 6 51 0 1 2 4 613 684 1135 1249 167 553 1593 1619 2710

Notre Dame 552 12 49 0 2 3 7 461 552 1445 1599 126 1047 1286 1351 6154

NYC Library 369 2 32 0 1 2 3 171 213 392 468 54 200 464 471 3807

Piazza del Popolo 350 4 36 0 1 2 2 147 194 191 249 31 162 632 643 1287

Piccadilly 2468 16 191 0 11 67 110 1053 1480 2425 3483 - - 3755 3817 44369

Roman Forum 1122 8 91 0 3 8 29 339 491 1245 1457 - - 1080 1124 4533

Tower of London 499 3 43 0 1 3 5 503 563 606 648 86 228 2432 2456 1900

Union Square 680 1 34 0 1 3 5 47 92 340 452 - - 12 14 1244

Vienna Cathedral 897 13 89 0 2 8 13 440 582 2837 3139 208 1467 1145 1187 10276

Yorkminster 450 3 38 0 1 2 4 611 663 777 899 148 297 391 401 3225

Trafalgar 5288 62 379 0 54 181 529 1581 2901 - 12240 - - 2618 2881 29160

Gendarmenmarkt 733 4 67 1 1 2 6 131 214 - - - - 193 198 -

Table 2. Running times in seconds for Internet data. We report time spent on each step of our method, including depth image reconstruction

(TD), local bundle adjustment (TLBA), missing correspondence analysis (TMC ), rotation averaging (TR), scale averaging (Ts), scale-aware

translation averaging (Tc), final bundle adjustment (TBA), and total running times (TΣ). We cite the final bundle adjustment time and total

running time from [42], [29], and [38] for a comparison. Ceres [1] is adopted to solve the final BA for all methods except [29].

Figure 10. Our result on the Quad data. The camera orientations

are computed from Bundler[38].

from Bundler [38] is used (instead of those from rotation

averaging [8]).

7. Conclusion

This paper presents a novel framework for global SfM.

By constructing a sparse depth image at each camera, es-

sential matrices are upgraded to similarity transformations.

The camera pose estimation from similarity transforma-

tions are well-posed, while essential matrices only deter-

mine cameras in a parallel rigid graph [29]. The construc-

tion of depth images also makes EG filtering simple and

effective. This novel global SfM framework generates su-

perior results in both reconstruction accuracy and computa-

tion efficiency.
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