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Abstract

Recent advances in Structure-from-Motion not only en-

able the reconstruction of large scale scenes, but are also

able to detect ambiguous structures caused by repeating el-

ements that might result in incorrect reconstructions. Yet, it

is not always possible to fully reconstruct a scene. The im-

ages required to merge different sub-models might be miss-

ing or it might be impossible to acquire such images in the

first place due to occlusions or the structure of the scene.

The problem of aligning multiple reconstructions that do

not have visual overlap is impossible to solve in general.

An important variant of this problem is the case in which

individual sides of a building can be reconstructed but not

joined due to the missing visual overlap. In this paper, we

present a combinatorial approach for solving this variant

by automatically stitching multiple sides of a building to-

gether. Our approach exploits symmetries and semantic in-

formation to reason about the possible geometric relations

between the individual models. We show that our approach

is able to reconstruct complete building models where tra-

ditional SfM ends up with disconnected building sides.

1. Introduction

Despite recent advances that make Structure-from-

Motion (SfM) methods more scalable [1, 15] and robust,

e.g., to challenges posed by repetitive structures [3,4,6,23],

the fact that there might not always be enough images to

obtain a single reconstruction remains a fundamental prob-

lem. For humans, determining the spatial arrangement of

the different sub-models is often rather easy, indicating that

even visually disconnected components contain information

about their spatial relations. Yet, few approaches exist that

attempt to automatically merge these components. There

are multiple reasons why a SfM model can disconnect into

multiple individual components: e.g. images obtained from

photo-collection communities such as Flickr tend to mostly

concentrate on a small set of iconic viewpoints [22]. In

general, for popular landmarks, many pictures are taken of

the front, few photos depict the sides and even fewer the

Figure 1. The Providence dataset from [5] disconnects into multi-

ple sub-models that cannot be connected by feature matching due

to trees blocking the view and missing images. Our method is able

to automatically merge the sub-models by recovering their relative

scales and joining them at the colored points.

back, and the changes of viewpoint are usually too large

between different sides. Consequently, there is often not

enough visual overlap between the different models to con-

nect them through feature matching. Even in a controlled

setting, where an expert familiar with SfM takes photos with

the explicit goal of reconstructing the scene, it might not al-

ways be possible to obtain enough data for a complete re-

construction (c.f . Fig. 1). Trees or vegetation might block

the view on different parts of a structure, preventing feature

matching from finding enough correspondences to connect

the parts. Convex building corners also represent a difficult

case, especially in narrow environments where it is hard to

take images with enough visual overlap while guaranteeing

a wide enough baseline to enable a stable reconstruction.

This problem is magnified in crowd-sourced reconstruction

efforts [17], where non-expert users often find it hard to

take enough pictures to enable the reconstructions of cor-

ners [16]. In addition, certain areas might not be accessible

or might be hidden behind trees or vegetation.

While a reconstruction can disconnect into multiple sub-
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models due to missing visual overlap, we notice that it is

often possible to obtain (nearly) complete reconstructions

for individual sides of a building. In this paper, we con-

sider the problem of automatically stitching 3D models cor-

responding to building sides into a single reconstruction.

As our main contribution, we present a novel combinatorial

approach for automatically solving this loop-closure prob-

lem that does not require temporal information. We use the

symmetries and repetitive structures usually found on dif-

ferent sides of a building to recover the relative scales of the

sub-models by exploiting feature matches discarded during

the reconstruction process. We propose a method that de-

tects connection points at which individual components can

potentially be connected. We use semantic information to

formulate a novel free-space compatibility measure in im-

age space, enabling us to detect whether two sub-models

can potentially be connected. A symmetry prior enables

our system to help retain the more likely of multiple pos-

sible loop-closures. We show that our approach is robust

enough to generate plausible results even if the individual

sub-models are not perfectly reconstructed. To our knowl-

edge, we are the first to tackle this model merging problem.

The rest of this paper is organized as follows. Section 1

presents a review of the related work. Sec. 2 analyzes the

problem of merging visually disconnected components in

more detail. Sec. 3 describes our novel model merging ap-

proach, which we evaluate in Sec. 4.

Related Work The ambiguities induced by repetitive and

symmetric scene elements cause significant problems for

SfM systems. To resolve these ambiguities, [23, 25] rea-

son about missing correspondences. Exact duplicate struc-

tures are handled by enforcing a consistent epipolar geome-

try [26] or by jointly optimizing the geometry and inferring

wrong matches [7,12]. [6] uses conflicting observations be-

tween apparently related images to disconnect wrongly at-

tached parts in a SfM reconstruction. The resulting sub-

models are then connected using feature matching. Larger

differences in viewpoints can be handled through viewpoint

normalization prior to feature extraction [28] or by render-

ing the point clouds from novel views [14].

[4] exploits symmetries and repetitions to improve the

quality of 3D models by explicitly incorporating these re-

lations into bundle adjustment. Similarly, [3] incorporates

symmetry detection into the SfM process.

In the context of efficient large-scale SfM, [15, 17] au-

tomatically register multiple models onto building outlines,

using GPS priors for initialization. Approaches that align

3D points to 2D lines, such as [8], fail if no corners are

present since registering 3D points on a plane against a

2D line is an ill-posed problem. [21] uses a digital surface

model to align multiple individual reconstructions that do

not share any overlap. [20] shows that even if feature match-

ing between images of different components is not possible,

potential overlap of the corresponding dense models can be

used to compute an alignment. In contrast, we explicitly

consider the case where no such overlap is available. [18]

orders a set of single-view façade reconstructions based on

visual overlap between the images, accelerating SfM and

dense multi-view stereo by exploiting the resulting geomet-

ric information. [19] uses existing 3D models and additional

street view imagery to accurately geo-register 3D models.

[11] registers disconnected reconstructions of an in-

door environment onto a floor plan by reasoning about the

temporal consistency of the movement of people between

rooms. [2] uses semantic labelings to reconstruct a piece-

wise planar floor plan for indoor scenes. As in this paper,

their goal is to recover the overall appearance of the scene

instead of accurately reconstructing the scene in detail.

Similar to our approach, [13] identifies the contours of

an object by detecting sky pixels. These contours are used

to prevent filling the sky during Poisson reconstruction from

multiple depth maps. In contrast, we use semantic labels to

formulate free-space compatibility directly in image space.

2. The Model Merging Problem

Given a set of visually disconnected SfM reconstructions

corresponding to different sides of a building, we define

the model merging problem as the problem of stitching to-

gether all components to obtain a faithful representation of

the true scene geometry. Since 3D reconstruction is usually

only possible up to an unknown scale factor, solving the

model merging problem includes determining the relative

scales between the components. In general, resolving the

scale ambiguity between sub-models is impossible as they

do not share any visual overlap. However, man made struc-

tures such as buildings often exhibit repeating and symmet-

ric structures. SfM approaches try to eliminate ambiguous

structures [6, 7, 12, 25, 26] as they often result in collaps-

ing spatially unrelated façades with similar appearance into

a single part of the model [6] or hallucinating structures

not contained in the scene [23]. However, these ambiguous

structures also contain valuable information as they enable

us to establish point correspondences between visually dis-

connected sub-models. In turn, these point correspondences

can be used to both recover the relative scales between the

sub-models and to align them along the vertical direction.

In this paper, we thus make the assumption that the build-

ing that we want to reconstruct contains such repeating and

symmetric structures.

As mentioned above, the motivation for this paper is to

provide an automatic loop-closure mechanism that gener-

ates a single, consistent reconstruction of a building from

visually disconnected sub-models. Assuming that each sub-

model is perfectly reconstructed and that there are no gaps,

we should be able to detect a clear boundary or corner for
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each of them. Merging sub-models thus corresponds to the

problem of determining which sub-models have to be con-

nected at their boundaries or corners and under which an-

gle. As we are interested in reconstructing buildings, we

make a Manhattan world assumption to limit the set of pos-

sible angles to multiples of 90◦, resulting in a combinatorial

optimization problem. Notice that there might be multiple

combinations of sub-models that close the loop. We found

that opposite sides of a building often contain aligned sym-

metric structures. If we detect such symmetry planes, we

can thus use them to determine the more plausible between

multiple solutions.

In theory, a valid combination of sub-models should not

contain any two sub-models that intersect each other. Thus,

free-space constraints could be used to distinguish between

valid and invalid combinations. In practice, it can happen

that the sub-models actually have a slight overlap at their

boundaries (c.f . Fig. 1) that would violate free-space con-

straints based on the 3D scene geometry. In order to avoid

this problem, we assume that some of the images showing

the boundaries of the sub-model observe a silhouette of the

building against the sky. Thus, we can formulate free-space

compatibility by determining whether the points from one

sub-model project into the sky.

3. Automatic Model Merging

Based on the assumptions detailed in the last section, we

derive our approach to merging multiple sub-models into a

single, consistent model. The input to our method is a set

of SfM reconstructions [26, 27] of the same building that

do not share enough visual overlap to merge them based on

feature matching and epipolar geometry estimation, as well

as the images that were used to compute the reconstructions.

These non-overlapping reconstructions will be referred to as

sub-models. Our approach consists on the following stages:

• Estimate the scale and relative height for all sub-

models. The goal of this step is to have all models on

the same axis-aligned reference frame. The 3D align-

ment of models then becomes a 2D problem. This

stage is described in section 3.1

• Find the best connection points for each sub-model.

This stage is described in section 3.2 and it aims at

finding the boundaries or corners of each sub-model as

candidates for stitching two sub-models.

• Generate all possible pairwise transformations based

on the estimated connection points and a Manhattan

world assumption. These hypotheses are then evalu-

ated using semantic labels in order to filter out improb-

able transformations (see section 3.3)

• Exhaustively generate all possible fully connected re-

constructions by combining the surviving pairwise

Figure 2. Relative scale and height estimation.

transformations. Choose the best ones according to a

loop-closure and a symmetry-alignment criterion. This

is detailed in section 3.4

3.1. Resolving Relative Scales

We exploit symmetries and repetitions detected in each

of the sub-models to define a natural coordinate frame for

each component. This coordinate system is aligned with the

vertical axis, i.e., façades represented by this model stand

on the xy-plane and are mostly aligned with the x direction.

We compute this alignment using feature matches that were

discarded during the SfM process as geometrically incon-

sistent. This procedure was proposed and fully explained

in [4]. We use this coordinate system instead of the ar-

bitrary coordinate frame of the original reconstruction as

it simplifies the problem of aligning different components.

This reduces the degrees of freedom (DOF) for the similar-

ity transformation that aligns two models from 7 DOF to 4

DOF plus a discrete set of orientations (under a Manhattan

world assumption), as we only need to find a 3D translation,

a rotation around the vertical direction, and a scaling factor.

Relative scale and height estimation We want to further

reduce the degrees of freedom of the similarity transforma-

tion such that we only need to estimate a single rotation

angle and a 2D translation. Therefore, we need to be able to

estimate the relative scale between different sub-models and

the z-translation (vertical translation) between them. In or-

der to do so, we rely on feature matches between different

sub-models. More specifically, we perform the following

steps:

• For each pair of sub-models, we do a 3D-3D match-

ing using the SIFT-features of the keypoints (and their

mirrored counterpart) from which each 3D point was

reconstructed. This results in a set of 3D-3D putative

correspondences. The assumption is that these corre-

spondences represent repetitive structures across sub-

models that should have the same scale and height.

• Sequential RANSAC for 3D similarities is performed

on the putative matches. A set of 3D similarities (3D

translation, rotation and scale) is obtained. This is il-

lustrated in figure 2.
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Figure 3. Connection points for sub-model 0 of the University

dataset. Connection points resulting from the intersection of

planes are colored in green, connection points created from the

boundaries of planes are shown in red.

• We do a consistency check between all triples of sub-

models that were successfully matched. This way, we

get rid of similarities that are not consistent in a loop

(a threshold t computed automatically from the point

cloud is used).

• Similarities that survived the loop-consistency check

are used to propagate a scale and a vertical trans-

lation between pairs of sub-models that didn’t have

enough 3D matches for similarity estimation, again us-

ing triples.

It is not always possible to find matches between all pairs

of components. Still, in our experiments, we were always

able to find a set of relative alignments that form a graph

with only a single connected component. We were, thus,

able to propagate the transformations and select an overall

scale and height alignment that is consistent among all sub-

models, finding a consistent coordinate frame.

3.2. Finding Connection Points

Without any knowledge of the size of the gaps in the re-

construction, it is impossible to tell how far different com-

ponents should be placed apart. We therefore make the as-

sumption that there are no gaps between sub-models, i.e.,

that we get a good approximation of the overall shape of

the building if we place different components directly next

to each other. In this case, both sub-models intersect in a

common connection point. Fixing the connection point thus

fixes the translation component of the similarity transforma-

tion.

Naturally, connection points can be found at the bound-

aries of each sub-model. In the previous steps, a natural

coordinate frame was chosen such that the vertical direc-

tion corresponds to the z-direction. We make the assump-

tion that splits occur along the façade direction (c.f . Sec. 2).

Making a Manhattan-world assumption, façades can be ap-

proximated by z-x and z-y planes. Therefore, connection

points can be defined as the boundaries and intersections

of these planes. Finding candidate connection points boils

down to estimating z-y and z-x planes for each sub-model.

This is done in two main steps: main plane estimation and

plane division. Plane estimation is done on dense data to

improve accuracy.

Algorithm 1 Plane division

1: Input: Set of x-y lines L
2: Output: Set of detected segments S
3: for all l ∈ L = {l1, . . . , lN} do

4: Divide l into K intervals I of equal length t
5: for all Ik : k ∈ {1, . . . ,K} do

6: Drop Ik if |Ik| < |l|/K
7: Divide surviving Ik along z direction into J inter-

vals Ikj of equal height t.
8: ∀Ikj : Drop Ikj if |Ikj | < |Ik|/J
9: The surviving adjacent Ikj give the height of Ik

10: end for

11: Create segments s from surviving adjacent Ik with

the same height.

12: Add all s to S
13: end for

Main plane estimation Given a set of points projected

onto the ground plane, we detect lines that correspond to

planes. Since we look for z-x and z-y planes, we only need

to search for 2D lines with normals parallel to the x- and

y-axis, respectively. If we first look for x-aligned lines and

then for y-aligned ones, a single point fully defines a line

hypothesis. A point x ∈ R
2 is an inlier to a line defined by

another point x0 ∈ R
2 and a normal direction n ∈ R

2 if

the closest distance between x and the line is below some

threshold δ, i.e., if

|nT
x− n

T
x0| ≤ δ . (1)

Since the normal is aligned with the axis, this is reduced to

comparing only one of the coordinates of the points. We

use a 1D Hough transform-inspired approach as follows: in

order to be an inlier, the value n
T
x has to be in the interval

∆(x0,n, δ) = [nT
x0−δ,nT

x0+δ], which is equivalent to

the case that the intervals ∆(x0,n, δ/2) and ∆(x,n, δ/2)
overlap. For each point x, we pre-compute the interval

boundaries for ∆(x,n, δ/2). We then sort the boundaries in

ascending order under the constraint that the starting value

of an interval appears before the endpoint of another interval

if they have the same value. Finding the line with the largest

number of inliers then reduces to traversing the sorted list.

This procedure is applied sequentially to find all lines.

Plane division Each detected line possibly consists of mul-

tiple connected segments, representing separate but aligned

façades. This step aims to find each separate façade plane.

Two aligned planes will be separated if they are not con-

nected to each other or if they have different heights. The

boundaries of each segment/plane, as well as the intersec-

tion of perpendicular planes with similar heights, corre-

spond to possible connection points. The plane division

procedure is described in alg. 1. The algorithm goes through

each line, divides it into intervals of length t (with t being a
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(a) Good alignment. (b) Bad alignment.

Figure 4. Evaluation of pairwise transformations using semantic

labels. White pixels correspond to free space violations.

threshold computed automatically as 10% of the estimated

point cloud height), and then rejects those intervals without

enough points (the notation |I| in alg. 1 denotes the point

count of an interval). In a second stage (inner loop in alg. 1),

each of these intervals is subdivided along the vertical di-

rection and those subintervals without enough points are

dropped. This way, only adjacent segments with roughly

the same height (with a difference up to t) are assembled

into a plane.

Finally, we obtain candidates for connection points by

taking the endpoints of all planes as well as the intersections

of multiple planes. An example of the resulting set of points

is shown in Fig. 3.

3.3. Generating and filtering pairwise connections

Given a pair of sub-models and their connection points,

and the assumptions of a Manhattan-world scene and an

outside-looking-in arrangement, we generate all possible

geometrically consistent connections in the following way:

• The fact that the z direction points upwards and the y
direction points towards the cameras determines that

the negative x direction is left and the positive x is

right. We can eliminate hypotheses that stitch connec-

tion points on the same side since it would not be con-

sistent with an outside-looking-in arrangement. Addi-

tionally, we only pair up connection points at similar

heights. This is illustrated in figure 5.

• We connect models right to left which allows to choose

only between a 0◦ and a 90◦ rotation angle.

In this manner, the total number of connections between

two sub-models mi and mj , with i 6= j, is 2 ·ni ·nj , where

ni is the number of connection points for mi (and nj , mj

respectively). Note that we attach sub-models on one side,

therefore the set of connecting hypotheses between mi and

mj is not the same as between mj and mi. In order to min-

imize the number of possible alignments, we want to select

a few connections for each of the two rotation values. In

order to do so, we evaluate the quality of each alignment:

we extract semantic labels for each image in the two re-

constructions using the classifier from [10], labeling each

pixel as either ¨building¨, ¨vegetation¨, ¨ground¨, or ¨sky¨.

I

J

I J

Figure 5. Example of consistent vs. inconsistent pairwise connec-

tions.

Next, we select for each model the images containing pix-

els labeled as ¨sky¨ and use the rigid transformation defined

by a connection point pair and a rotation angle to project

the dense point cloud from one model into the images from

the other model and vice versa. Points that are projected

to pixels labeled ¨sky¨ constitute a conflicting observation

as a good connection should preserve the silhouettes of the

two sides of the building. We thus evaluate an alignment

by counting the number of points projected onto the sky for

each selected image. For each of the two rotation values, we

then select the connection point pair with the lowest number

of conflicting projections.

Fig. 4 shows an example for this procedure. Our incon-

sistency measure consists on counting the number of white

pixels in these images. As can be seen, correct alignments

produce a much lower inconsistency measure than wrong

ones. Notice how our definition of the quality of an align-

ment naturally extends the definition of conflicting observa-

tions from [6]. While [6] uses superpixels to detect conflict-

ing geometry, we use semantic information to detect mis-

alignments of the underlying geometry since we do not have

visual overlap between the images.

Obviously, not all splits occur at a corner, i.e., there are

sub-models for which the building outlines cannot be seen

in their images. In this case, most alignments will have

a low inconsistency measure. Consequently, we retain all

possible connections. This case is detected when the dif-

ference between the lowest inconsistency measure and the

second lowest inconsistency measure is not big enough (less

than 10 times).

In order to be robust against imprecision in the align-

ment and noise in the dense point clouds, we first perform a

dilation by 10 pixels (for this verification step we use sub-

sampled images at a resolution of around 800x500) on the

images containing the semantic labels and an opening using

a 3x3 kernel on the projected points before counting con-

flicting observations.

3.4. Model Merging

After selecting the possible connections for each pair of

sub-models, we proceed by connecting the models to a sin-

gle reconstruction of the building. We fix the first model

and iteratively add other models to the right. After the last
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Correct Alignment

Figure 6. Loop-closure constraint for evaluating a reconstruction.

model is added, we measure the shortest distance between

the left connection points of the first model and the right

connection points of the last added model. Since we assume

that we have only small gaps and should be able to recon-

struct the building nearly completely, we prefer alignments

where this distance is as small as possible. Consequently,

we sort the generated models in ascending order of the Eu-

clidean distance between their endpoints. This loop-closure

criterion is illustrated in figure 6. Similar to [18], we cur-

rently generate all possible combinations exhaustively. We

do this by setting all sub-models as the initial one.

Naturally, the model that best closes the building out-

lines is not necessarily the best approximation to the true

geometry of the scene. However, we can again exploit sym-

metries to check whether we can identify amongst the top

candidates the most likely ones based on consistent sym-

metry planes. If a sub-model has a symmetry plane, i.e., if

the corresponding part of the building contains mirror sym-

metries, detecting another symmetry plane for the opposite

side of the building offers a strong cue that the two planes

should actually be aligned. We use this cue to re-rank the

top-10 reconstructions sorted based on the distance between

their two free corners. For each such model, we search for

pairs of parallel symmetry planes on opposite sides of the

building and measure their distance in 3D. The final score

for the reconstruction is then computed as the average dis-

tance between the closest opposite pairs of symmetry planes

per x and y direction.

In the next section, we show that this second criterion

helps us obtain better reconstructions. Notice that we do not

perform a final optimization that tries to enforce an align-

ment of the symmetry planes. Such an optimization would

need to respect free-space constraints, which are hard to

optimize. We purposely do not want to enforce this as a

hard constraint in order to allow for plausible solutions of a

model that may not fully close. We also show that all top-

ranked solutions are plausible in general, thanks to the geo-

metrically consistent reasoning that inspired our method.

Algorithm 2 gives a summary of the pipeline described

in the previous steps.

Algorithm 2 Complete pipeline

1: Input: M = {m0, . . . ,mN} set of non-overlapping

sub-models of a repetitive/symmetric building

2: for all m ∈ M do

3: Align m with x-y-z axes as in [4].

4: end for

5: for all mi,mj ∈ M , i 6= j do

6: Estimate scale and z-translation from SIFT matches

if possible.

7: end for

8: for all mi,mj ,mk ∈ M , i 6= j, j 6= k, i 6= k do

9: Check consistency of scales and translations and

propagate them for unmatched pairs.

10: end for

11: for all m ∈ M do

12: Estimate planes and compute connecting points.

13: end for

14: for all mi,mj ∈ M , i 6= j do

15: Measure conflicts between all consistent pairwise

hypotheses.

16: Filter out implausible hypotheses.

17: end for

18: Exhaustively generate the set R of all possible recon-

structions.

19: ∀r ∈ R : Rank by the distance of their closest end-

points.

20: Take the best 10 reconstructions and re-rank them by

the distance between their parallel symmetry planes.

21: Output the best reconstruction.

4. Experiments

We evaluate our approach on three challenging datasets

showcasing different properties. The University model dis-

connects into 6 sub-models, reconstructed from a total of

338 photos, while the Museum and Capitol datasets con-

tain 3 disconnected sub-models each. The Museum dataset

has been reconstructed from 84 images while 469 photos

were used for Capitol. This last dataset was taken from [5]

where only the main façade was used. Fig. 9 illustrates,

for each of the three datasets, the different components as

well as the photos at the boundary of each sub-model. As

can be seen, occluding objects such as trees and large dif-

ferences in viewpoint make feature matching impossible.

To further demonstrate that reconstructing each building is

hard, in Fig. 8 we compare to the models obtained using Vi-

sualSfM [24]. For the University as well as the Museum

datasets, the models get disconnected due to the lack of

good matches on different corners. Furthermore, for Uni-

versity, one of the sides gets collapsed on to the other and is

attached to the front of the main façade. For Capitol, sym-

metric and repetitive structures found on different façades
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cause the model to collapse on itself. In addition, we use

a fourth dataset, Southbuilding taken from [5], for which a

full reconstruction is available. By removing images from

all four corners of the building, we obtain separate submod-

els that we then stitch back together using our method in

order to provide quantitative results.

4.1. Experimental setup

Out method requires the use of a threshold t in order to

estimate planes as mentioned in section 3.2. This threshold

is computed automatically per dataset by taking 10% of the

average building height, which proves to be accurate and

restrictive enough. The classifiers used for the semantic la-

bels are the ones presented in [10] and were trained on the

eTrims dataset [9]. The importance of using the semantic

labels to filter pairwise connections is key for models with

many components, as is the case for the University dataset,

where the number of candidate full reconstructions was re-

duced from 79.6M to 46.7K.

4.2. Results

Fig. 7 depicts the top-3 models generated by our method

that have been obtained by re-ranking the 10 top-ranked

models whose outlines are as closed as possible. At first

glance, all three models look geometrically plausible for

each dataset. A closer look at the second and third model

generated for the University dataset reveals the importance

of considering the alignment of symmetry planes. In both

models, the left and right sides of the building have been

exchanged, causing the left side of the building to move in-

wards and intersect the pink model. Our scoring function

based on aligning symmetry axes enforces the correct place-

ment of the red sub-model to the upper left corner while cor-

rectly placing the pink model at the right side. At the same

time, the front and back sides of the building are properly

aligned along the symmetry plane.

The alignment of symmetry planes becomes crucial

when dealing with incomplete buildings, as is the case for

the Museum dataset. Due to a lack of matches and good

view-angle, a part of the back façade is missing. Using only

the loop-closing criterion, the reconstruction shown in the

third column of Fig. 7 is chosen. However, the correct so-

lution is ranked in first place when checking for symmetry

plane alignment (first column).

Notice that for the Capitol model, the first scoring func-

tion that minimizes the distance between connection points

is already sufficient to generate the correct model.

Fig. 10 compares the top-ranked model generated for

each dataset with an aerial view from Google Maps. Even

though we can output a set of plausible reconstructions,

the top-ranked one consistently matches the best to the real

building outline for all three of our datasets.

Fig. 11 shows the original reconstruction for Southbuild-

(a) University

(b) Museum

(c) Capitol

Figure 7. The three top-ranked models generated by our method

for each dataset. Black lines denote symmetry planes detected by

our approach.

Figure 8. Reconstructions achieved by visualSfM. Left: Univer-

sity. Middle: Museum. Right: Capitol.

ing as well as the results obtained after removing images

from all corners. This example shows both the robustness

of our method as well as a failure case. One of the sides

of the buildings is mostly occluded by trees, therefore we

cannot find a natural frame for the corresponding submodel

nor an appropriate scale and z-translation. This submodel

is thus ignored and not used in the stitching. However, our

method still works very well even though there is a big gap,

showing the robustness in presence of incomplete loops. We

aligned the stitched model with the original reconstruction

using ICP and found that the average position error between

the original cameras and our result is about 50cm, with only

23cm corresponding to height differences. The average er-

ror for 3D points is about 40cm.

5. Conclusion

In this paper, we have tackled the challenging problem of

creating a single 3D model from multiple SfM reconstruc-

tions of different parts of a building that do not share enough

visual overlap. We have presented a method that is able to

generate models that closely resemble the true structure of

the scene without requiring any GPS measurements or other

2135



(a) University (b) Museum (c) Capitol

Figure 9. Aligned sub-models for each dataset. We show the photos corresponding to the connection points of each sub-model. The change

of view-angle and occlusions make these pictures impossible to match.

Figure 10. Overlaying the merged University, Museum, and Capitol models onto aerial views obtained from Google Maps. Small errors

are present when there are gaps in the reconstruction. All reconstructions look plausible and similar to the actual scene.

Figure 11. Southbuilding dataset: original complete reconstruc-

tion, stitched model, and overlap.

geographic information such as building outlines or geo-

registered 3D models. Our method exploits symmetries to

simplify the alignment problem and uses semantic reason-

ing, both on an image level and on the level of the geometry,

to rate possible alignments. We have shown experimentally

that our method succeeds in reconstructing buildings under

challenging conditions.

In order to be able to solve the problem of aligning

3D models with no overlap, we had to make some as-

sumptions about the nature of the problem, e.g., that we

have reconstructions covering all sides of the building and

that there are symmetric structures that repeat across sub-

models. While our assumptions hold for the largest part of

urban scenes, in future work we would like to relax these

assumptions. This implies finding additional sources of in-

formation, e.g., from time stamps and illumination changes,

that can be used to disambiguate the alignment problem.

We would also like to explore the use of semantic labels

to determine relative scale and vertical alignment instead of

relying on symmetric structures.

Besides model merging, the proposed approach can also

be used to simplify the image acquisition process. Instead

of carefully taking pictures all around a building, it is suffi-

cient to take a few images of each façade and combining the

resulting components using our method. This can signifi-

cantly accelerate the manual acquisition process, especially

in more complicated scenes.

To our knowledge, we are the first to tackle the chal-

lenging problem of merging visually disconnected models.

In order to inspire further research, we make all datasets

and results available at http://www.cvg.ethz.ch/

research/model-merging/.
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PhotoCity: Training Experts at Large-scale Image Acquisi-

tion Through a Competitive Game. In CHI, 2011.

[17] O. Untzelmann, T. Sattler, S. Middelberg, and L. Kobbelt. A

Scalable Collaborative Online System for City Reconstruc-

tion. In ICCV Workshops, 2013.

[18] G. Wan, N. Snavely, D. Cohen-Or, Q. Zheng, B. Chen, and

S. Li. Sorting unorganized photo sets for urban reconstruc-

tion. Graphical Models, 74(1):14–28, 12012.

[19] C.-P. Wang, K. Wilson, and N. Snavely. Accurate Georeg-

istration of Point Clouds using Geographic Data. In 3DV,

2013.

[20] A. Wendel, C. Hoppe, H. Bischof, and F. Leberl. Automatic

Fusion of Partial Reconstructions. ISPRS, I-3:81–86, 2012.

[21] A. Wendel, A. Irschara, and H. Bischof. Automatic Align-

ment of 3D Reconstructions using a Digital Surface Model.

In CVPR, 2011.

[22] T. Weyand and B. Leibe. Discovering Favorite Views of Pop-

ular Places with Iconoid Shift. In ICCV, 2011.

[23] K. Wilson and N. Snavely. Network Principles for SfM:

Disambiguating Repeated Structures with Local Context. In

ICCV, 2013.

[24] C. Wu. Towards Linear-Time Incremental Structure from

Motion. In 3DV, 2013.

[25] C. Zach, A. Irschara, and H. Bischof. What Can Missing

Correspondences tell Us About 3D Structure and Motion?

In CVPR, 2008.

[26] C. Zach, M. Klopschitz, and M. Pollefeys. Disambiguating

Visual Relations using Loop Constraints. In CVPR, 2010.

[27] C. Zach and M. Pollefeys. Practical Methods For Convex

Multi-View Reconstructions. In ECCV, 2010.
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