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Abstract

Collaborative filtering aims to predict unknown user rat-

ings in a recommender system by collectively assessing

known user preferences. In this paper, we first draw analo-

gies between collaborative filtering and the pose estimation

problem. Specifically, we recast the hand pose estimation

problem as the cold-start problem for a new user with un-

known item ratings in a recommender system. Inspired by

fast and accurate matrix factorization techniques for col-

laborative filtering, we develop a real-time algorithm for es-

timating the hand pose from RGB-D data of a commercial

depth camera. First, we efficiently identify nearest neigh-

bors using local shape descriptors in the RGB-D domain

from a library of hand poses with known pose parameter

values. We then use this information to evaluate the un-

known pose parameters using a joint matrix factorization

and completion (JMFC) approach. Our quantitative and

qualitative results suggest that our approach is robust to

variation in hand configurations while achieving real time

performance (≈ 29 FPS) on a standard computer.

1. Introduction

The easy availability of commercial depth cameras

marked the advent of real time solutions to the human pose

estimation problem [27]. However, the hand pose estima-

tion problem has proved far more challenging. The mani-

fold challenges to robust hand skeleton tracking are that (1)

the hand is a highly articulated object, (2) has many degrees

of freedom (DOF) with self-similar parts which often oc-

clude each other, (3) all fingers are flexible, and (4) there

exists intra-finger and inter-finger motion constraints [9].

Noise in data acquired from depth sensors further con-

founds all current methods for hand tracking. Consequently,

a robust real time solution to the hand pose estimation prob-

lem remains elusive.

The success of hand tracking naturally depends on syn-

thesizing our knowledge of the hand (e.g., geometric shape,

constraints on pose configurations) and latent features of

the RGB-D data stream (e.g., region of interest, key fea-

ture points like finger tips, and temporal continuity) [2].

In this paper, we propose a novel method to achieve this

synthesis by drawing on collaborative filtering approaches

for recommender systems [12]. Our main insight is that a

recommender system (e.g., Netflix) [22] is very similar to

a pose tracking system. Both systems have some intrin-

sic and extrinsic information about its constituent objects,

the users in a recommender system and individual poses

in a tracking system. The intrinsic knowledge of the hand

in a tracking system corresponds to known user ratings in

a recommender system. Similarly, the extrinsic RGB-D

point cloud information corresponds to the metadata avail-

able about users (e.g., geographical locations, background,

and interest). Specifically, the hand pose estimation prob-

lem is analogous to the cold-start problem in recommender

systems.

The cold-start problem in recommender systems is to

suggest personalized items to a new user with unknown

preferences [23]. In analogy to a tracking system, the hand

pose estimation problem is to evaluate the unknown pose

parameters of the kinematic hand model for a new point

clouds appearing at every instant of time via a RGB-D sen-

sor. A common technique to alleviate the cold-start problem

is to suggest items to a new user based on recommendations

available for like-minded users [19]. The like-mindedness

or similarity between users is evaluated using metadata such

as age, gender, geographical location, interests, etc [24].

Following a similar approach, we efficiently find the near-

est neighbors to an arriving point cloud using local shape

descriptors from a large database of hand poses with known

parameter values. Subsequently, the unknown pose param-

eters for this point cloud are estimated by collaboratively

regressing the known parameters of all neighborhood poses.

Our contributions include:

1. Our main contribution is a joint matrix factorization

and completion (JMFC) algorithm to estimate the un-

known pose parameters from the nearest neighbors on

a per frame basis.

12336



2. Construction of a hand pose library using a synthetic

hand model which mimics real 3D hand gestures.

3. Efficient nearest neighbor retrieval from the pose li-

brary by using a combination of pose clustering, FAST

feature point detectors and BRIEF descriptors.

4. Overall, a pragmatic solution to the real-time hand

pose estimation problem devoid of training parameters

and implementable on a standard computer.

This paper is organized as follows: We review relevant

literature in section 2. We discuss the creation of a hand

pose library using a synthetic 3D hand model and tech-

niques for nearest neighbor retrieval using local shape de-

scriptors. We propose our novel JMFC algorithm for esti-

mating pose parameters and discuss the details of its imple-

mentation in Section 4. Section 5 demonstrates the quan-

titative performance and we qualitatively show the efficacy

of our approach. Conclusions and future work are presented

in section 6.

2. Related Work

A variety of approaches have been proposed over the

last decade for hand pose estimation. These include, with-

out claim of exhaustivity, wearable (e.g., camera, gloves)

and marker based approaches, techniques reliant on RGB

input from single or multiple cameras, and more recently

depth camera or RGB-D input based approaches. We re-

view some work relevant to our depth-camera based ap-

proach and readers are referred to [9] for a comprehensive

review of literature.

Approaches for hand-pose estimation can be classified

as either model-based (generative) methods, or appearance-

based (discriminative) methods. An explicit hand model

guides model-based methods to recover the hand pose,

whereas appearance-based methods establish a map be-

tween image features and a library of hand pose configura-

tions. Current model-based approaches use particle swarm

optimization (PSO) [21] or a Gauss-Seidel solver [20] to re-

solve the hand configuration. Although straight forward to

implement, these methods depend on prior motion for ini-

tializing the solvers and have high computational complex-

ity. As a result, the pose estimates from these methods are

poor for non-contiguous data and they often rely on a GPU

for real-time processing.

Following the pioneering work in human-pose estima-

tion [27], similar appearance based methods are proposed

for hand pose estimation in [15, 16, 31]. Compared to a hu-

man body, the human hand is smaller, more flexible, and

severely affected by self-occlusion. Consequently, these

methods lose track under low resolution, output kinemat-

ically invalid solutions and lack robustness against occlu-

sion. Discriminative approaches employing inverse kine-

Symbol Description

H(θ, φ) Synthetic hand model

θ 18 joint angle parameters

φ 3 global translation parameters

s Hand skeleton vertex coordinates

v Visible point cloud for a hand pose

d Euclidean distance to poses in basis

c Shape descriptor for a pose

A,B,C Latent factor matrices

D Distance matrix

P Parameter matrix

k Number of nearest neighbors

Table 1: Summary of key notations used in the paper.

matics (IK) for pose refinement are 6D Hands which per-

forms nearest neighbor search from a hand pose database

[34] and deep convolutional neural network based hand

pose recovery system [33]. Nearest neighbor methods per-

form poorly when introduced to unseen poses not in the

database, while training a deep convolutional network is no-

toriously time-consuming. Although we use nearest neigh-

bors to estimate the pose parameters, our JMFC algorithm

circumvents the errors due to unseen poses without any

training. Some approaches for hand-tracking locally regress

[8] the hand pose parameters to the input image [28, 30, 32].

However, these methods either require a large and compre-

hensive training dataset to ensure robust tracking [30, 32],

or their heuristic initialization [28] causes it to lose track for

poses with severe self-occlusion.

The methods in [35, 26] are hybrid methods similar in

spirit to ours and leverage the paradigm of ‘analysis by syn-

thesis’. These methods first create a population of hand

poses and then select the hand pose that best fits the ob-

served depth data by optimizing a scoring function. The

heavy computational burden of this optimization means that

the system either achieves low frame rates (12 FPS in [35])

or needs to be accelerated using a GPU (as in [26]). Unlike

these methods which explicitly maximize the scoring func-

tion among all individual pose candidates, our approach im-

plicitly optimizes a scoring function by collectively assess-

ing the population of possible hand poses. We use fast al-

gorithms for matrix factorization [1, 7] in our JMFC model

to do this optimization.

3. Database creation

In this section, we first describe the 3D hand model and

the procedure used to create a large library of hand poses.

The pose library is annotated with labels we use for deter-

mining the hand pose from a depth map. We cluster the

poses in the library to generate a set of pose exemplars use-
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Figure 1: An overview of algorithm pipeline. Background noise in depth map is removed ((a) – (b)). We use a local shape

descriptor to retrieve nearest neighbors from the labeled database of various hand configurations ((c) – (d)). The extracted

neighbors serve as seed postures to a JMFC model, and unknown joint parameters are estimated using a matrix factorization

and completion process ((e) – (g)).

ful for efficient nearest neighbor retrieval. Nearest neigh-

bors are retrieved at runtime by evaluating the shape de-

scriptor distance between the arriving depth data and simu-

lated depth data of the pose exemplars.

3.1. Hand model and synthetic data generation

We statistically generate hand poses using a synthetic 3D

hand model. The size of our synthetic hand model repre-

sents the median quartile of male hand sizes [11]. Our 3D

hand model consists of 1,179 vertices and 2,126 triangular

faces. This model is explicitly scaled for individual sub-

jects. We adopt a kinematic hand model with 21 degrees of

freedom (DOF), H(θ, φ), as standard in hand pose estima-

tion problems (see Figure 1d). θ denotes the set of 18 joint

angle parameters and φ is the set of 3 global translation pa-

rameters (x, y and z) of the hand.

Manually creating a library of hand poses using differ-

ent individuals is a tedious task. Instead, we (1) impose

constraints for joint configurations and finger movement

as discussed in [18] and [17]; and (2) uniformly sample

each of the 18 joint parameters in this restricted configura-

tion space, in order to automatically simulate 118K realistic

hand poses. These hand poses are effectively mesh modeled

with corresponding skeletal information. In order to syn-

thetically generate point clouds consistent with those visible

to a depth camera under occlusion, we process these mesh

models using a hidden point removal [14] strategy. Thus,

each pose instance in the database is a mesh model with

labels (θ, s,v), where s are the coordinates of the skeletal

vertices and v are coordinates of the visible vertices from

the viewpoint of a depth camera.

3.2. Pose exemplars and basis

In order to reduce redundancy of poses in the library,

we cluster the poses and extract pose exemplars. Density

based approaches can automatically detect arbitrary shaped

clusters in high dimensional data. To identify pose clusters,

we use a combination of two density-based clustering ap-

proaches, OPTICS [3] and DBSCAN [10], on the shape de-

scriptor distance described below. The OPTICS algorithm

does not explicitly generate clusters, but instead provides an

ordering of all hand poses based on their similarities. The

density parameters (minimum number of cluster members

and maximum cluster radius) are estimated by investigating

the output of OPTICS, and these parameters serve as input

to DBSCAN. We then extract clusters using DBSCAN, and

set the pose with minimum average distance to other cluster

members to be the pose exemplar. We identify 1,030 ex-

emplars among the 118K poses in the library, thus greatly

improving the efficiency of nearest neighbor retrieval while

maintaining accuracy (see Figure 3b).

Additionally, we evaluate (θ, s,v) for a set of 15 poses

from the alphabets of American Sign Language (see Fig-

ure 2). A 15 dimensional vector, d, is calculated for each

pose exemplar, wherein each element is the sum of all pair-

wise Euclidean distances between v of a pose in the basis
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Figure 2: Illustration of 15 hand models used as basis

adopted from American Sign Language.

and v of a pose exemplar. This vector serves as metadata

for pose exemplars, akin to a feature vector for users in a

recommender system.

3.3. Shape descriptor distance

We associate a local shape descriptor, c, to each pose ex-

emplar. Nearest neighbor retrieval at runtime, proceeds by

first determining the shape descriptor of the arriving point

cloud, calculating its shape descriptor distance of all pose

exemplars, and then selecting the nearest neighbors less

than a threshold. The computation of the shape descriptor

distance between two depth maps is described next.

We use the FAST feature point detectors on a depth map

to identify corner points [25]. For each detected FAST fea-

ture point, a BRIEF descriptor [6] is computed, which en-

codes information about surrounding regions. Details of

FAST and BRIEF computation are skipped for brevity. Cor-

respondences are established between FAST feature points

of two depth maps by iteratively (1) finding the pair with

minimum Hamming distance (bitwise XOR operation) be-

tween their corresponding BRIEF descriptors, and (2) re-

moving this matched pair for evaluating subsequent corre-

spondences. The shape descriptor distance is then the av-

erage Hamming distance between BRIEF descriptors of all

matched pairs of FAST feature points. Note that this dis-

tance varies with the hand’s orientation, and hence outputs

similarly oriented hand poses from the library as nearest

neighbors. This feature is desirable in our approach as the

in-plane rotation angles can then be robustly estimated us-

ing these nearest neighbors in the JMFC algorithm. Also,

the descriptors for all pose exemplars are pre-computed

to reduce computational overhead and only the descriptor

for the input depth map is evaluated at runtime for nearest

neighbor computation.

We get a set of 1,030 pose exemplars with labels r =
(θ, s,v,d, c) after the above pre-processing steps. Next we

discuss the steps of our solution at runtime.

4. Joint matrix factorization and completion

The pipeline of our approach is demonstrated in Figure 1.

The input depth is first processed to remove the background

and only contains the depth pixels of the hand. The global

parameters, φ are directly estimated from this processed

depth map. Next, the local shape descriptor of this depth

map is evaluated and the nearest neighbors are retrieved

from the labeled database using the shape descriptor dis-

tance. These neighbors serve as seed postures to the JMFC

model and the joint angle parameters, θ, are estimated, fol-

lowed by some final post-processing to output the tracked

hand skeleton.

4.1. Model initialization

Background removal and estimation of φ: We use a

simple heuristic to estimate the global translation param-

eters, φ. The depth map is pruned to exclude the back-

ground by only including points within the distance range

of (15, 50) cm to the depth camera, under the assumption

that the hand lies in this region of interest. We determine

the points corresponding to the hand in the depth map by

considering the pixels enclosed in the longest continuous

contour [29]. Extraneous noise in the detected blob is miti-

gated by using a median filter [13]. The translation param-

eters φ, are then set equal to the centroid of the remaining

points in the depth map. Our experimental results suggest

that this heuristic is fast and works well in practice. We pro-

pose to develop more sophisticated algorithms to estimate

the translation parameters in future work.

Nearest neighbor retrieval and distance matrix: The

k nearest neighbors [5] to depth map are calculated at each

instant of time using the shape descriptor distance described

in the previous section. The choice of parameter k is criti-

cal to the JMFC model. A small k compromises the robust-

ness of the θ estimation, whereas too large a k increases

computational complexity making the model infeasible for

real-time applications. Hence, we determine the k̂ nearest

neighbors below a threshold for the shape descriptor dis-

tance and set k equal to:

k = min(max(32, k̂), 64); (1)

This is because k between [32, 64] ensures fast and robust

parameter estimation (see Figure 3a). The distance thresh-

old for the shape descriptor distance is set at 15 for all our

experiments. Next, we impute two matrices P1 and D1 of

dimensions k × n and k ×m respectively, with the known

joint angles, θ (n = 18) and Euclidean distance vector, d

(m = 15) for the k indexed neighbors in the preprocessed

database. We also calculate the 15-dimensional distance

vector, d2, as the sum of all pairwise Euclidean distances
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Figure 3: (a) Choice of nearest neighbor, k. Joint angle er-

ror is minimum for 32 < k < 64. (b) Choice of number of

exemplars, N . N ≈ 1000 optimally trades off between ac-

curacy and computational time. (c) Choice of regularization

parameters, µ, λ. Joint angle error color coded with blue

denoting low error and yellow denoting high error. Best

choice is µ = 0.1, λ = 0.1 indicated by ×.

between v of each pose in the basis and points on the re-

fined depth map. Our algorithm for estimating the joint

angle parameters, p2, using P1,D1,d2 independently for

each frame is discussed next.

4.2. The JMFC Model

As discussed previously, we use a joint matrix factoriza-

tion and completion (JMFC) approach to estimate the un-

known joint angles for a given depth map. Our rationale for

using the JMFC model in analogy to a recommender system

described in parenthesis is as follows: We have a matrix P1

with joint angles (known ratings) for a set of similar poses

to the input depth (like-minded users to a new user). Ad-

ditionally, matrix D1 contains auxiliary information about

nearest neighbor poses relative to a basis (metadata about

like-minded users) and vector d2 which contains the same

auxiliary information about the new pose (metadata about

new user) whose parameters p2 (unknown personalized rat-

ings) are to be estimated. Our task is then to uncover the

latent factors, a2 governing the parameters, p2 by deter-

mining the latent factors for (1) nearest neighbor poses, A1

(2) known joint angles, C and (3) known distances to basis

models, B. Mathematically, we find a factorization of ma-

trices P1,D1 and vector d2 in terms of the latent factors

A1,a2,B,C, and use these information to impute the un-

known vector, p2. In other words, we simply find low rank

approximations of known matrices in order to estimate the

unknown pose parameters. Using the above intuition, our

JMFC model is succinctly expressed as:

argmin
A1,a2,B,C

1

2

∥

∥

∥

∥

[

D1

d2

]

−

[

A1

a2

]

B

∥

∥

∥

∥

2

F

+
µ

2
‖P1 −A1C‖

2

F .

(2)

where B and C are r-dimensional latent factors for the

distances (D) and joint angle parameters (θ), respectively;

A1 and a2 are the r-dimensional latent factors for the k-

nearest neighbors and input depth map respectively, and µ

is regularization parameter which trades off the losses due

to matrix factorization and accuracy of matrix completion.

P1 decomposes as a product of latent factors A1 and C,

(P1 ≈ A1C), D1 decomposes as a product of latent factors

A1 and B, (D1 ≈ A1B), whereas the row d2 decomposes

as a2B (see Figure 1f). To prevent overfitting, we add a

regularization term, λ to the Frobenius norms of A1,a2,B

and C which gives us the following minimization problem:

argmin
A1,a2,B,C

1

2

∥

∥

∥

∥

[

D1

d2

]

−

[

A1

a2

]

B

∥

∥

∥

∥

2

F

+
µ

2
‖P1 −A1C‖

2

F

+
λ

2

(

‖A1‖
2

F + ‖a2‖
2

F + ‖B‖
2

F + ‖C‖
2

F

)

.

(3)

We use the Alternative Least Squares (ALS) [4] to solve the

above minimization problem, and it is summarized in Algo-

rithm 1. Additional details about the objective function and

the derivation of the algorithm are discussed in the supple-

mentary material.

Algorithm 1: The JMFC algorithm

1 Input: D1, d2, P1, µ, λ

2 Initialize: A1, a2, B, C

3 while stopping criterion not met do

4 A1 ←
(

D1B
T + µP1C

T
) (

BBT + µCCT + λI
)

−1

5 a2 ←
(

d2B
T
) (

BBT + λI
)

−1

6 B ←
(

AT
1
A1 + aT

2
a2 + λI

)

−1 (

AT
1
D1 + aT

2
d2

)

7 C ←
(

µAT
1
A1 + λI

)

−1 (

µAT
1
P1

)

8 end

9 p2 ← a2C

The parameters λ and µ are empirically set to 0.1 and

0.1, respectively (see Figure 3c). The rank r of latent fac-

tors is set to 5 as it optimally trades off between accuracy

and efficiency. The ALS procedure in Algorithm 1 repeats

until the difference between output values of equation 2 for

subsequent iterations is less than 10−6 or the number of it-

erations exceed 600. As a final step, the pose parameters p2

are estimated as p2 ≈ a2C and further refined by imposing

the pose constraints mentioned in Section 3.1. This ensures

that the final solutions comply with kinematically feasible

hand configurations.

5. Experiments

In this section, we evaluate our approach for synthetic

hand poses as viewed from a depth camera and real depth

data. We perform quantitative analysis on a synthetic
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dataset of hand poses generated by uniformly sampling in

the constrained hand configuration space. This ensures ade-

quate coverage, and hence an unbiased evaluation of our ap-

proach. Further, we perform the same quantitative analysis

using realistic hand pose data captured from a commercial

depth camera. The prime difference between real and syn-

thetic data is the presence of noise in real depth streams. We

first describe the datasets and set baselines before proceed-

ing to the performance evaluation. All our experiments are

performed on Intel Xeon E3-1240 CPU with 16GBs RAM.

5.1. Datasets

We generate a synthetic dataset of 1,000 randomized

hand postures following the procedure in [26] as follows.

The 18 joint angle parameters and 3 global translation pa-

rameters are uniformly sampled in the constrained hand

configuration space to generate a synthetic hand configu-

ration, and the depth map of this pose is rendered within the

view frustum. All constraints for this configuration space

simulating realistic hand poses are listed in the supplemen-

tary material. Consequently, we get varied poses with cor-

responding ground truth. Note that we can use this ap-

proach to evaluate performance because our algorithm does

not depend on temporal information and re-initializes at ev-

ery frame.

We capture depth streams using the SoftKinetic’s Depth-

Sense DS325 and use this information for evaluating our

algorithm on real datasets. Four sequences are captured,

each from a different person, and each sequence contains

300 frames (≈ 10 seconds) of hand movement. The ground

truth is first roughly initialized using FORTH [21] with 256

particles and 75 generations, followed by manual refine-

ment. Even with the large number of particles and genera-

tions, FORTH contains subtle errors in the hand pose which

we manually remove.

Furthermore, we evaluate ours against two state-of-the-

art approaches [21, 28] on the large and challenging dataset

released with [28] in order to demonstrate that our method

is applicable in a general setting. The dataset consists of

76,500 depth images captured from 9 subjects, using a In-

tel’s Creative Senz3D camera compatible with DepthSense

camera resolution. The depth maps comprise of 17 hand

gestures under large viewpoint changes and span diverse

finger articulations and hand configurations.

5.2. Evaluation Metrics and Baselines

Metric Four standard metrics are used for our quanti-

tative evaluation: (1) individual joint angle error averaged

over all frames, (2) individual joint distance error averaged

over all frames, (3) proportion of correct frames as a func-

tion of maximum allowed joint angle error, and (4) propor-

tion of correct frames as a function of maximum allowed

joint distance error described in [26, 31]. Metrics 1 and 2

Input Depth Nearest Neighbors Result

Figure 4: Qualitative analysis on the synthetic dataset. Left:

randomly generated input poses. Middle: selected near-

est neighbors (including outliers) from our pose exemplars.

Right: the estimated hand pose.

indicate the estimation errors for individual joints whereas

metrics 3 and 4 are indicative of overall robustness of an

algorithm.

Baselines We demonstrate the efficacy of our overall al-

gorithm by comparing our method to the following base-

lines: (a) NN-only wherein we estimate pose parameters us-

ing a single nearest neighbor among the pose exemplars and

(b) JMFC-full wherein all 1,030 pose exemplars are used

for pose estimation, i.e., nearest neighbors are not retrieved.

We compare our algorithm to real-time implementation of

FORTH on the realistic datasets by setting the parameters

equal to 64 particles and 25 generations.

5.3. Experiments on Synthetic Dataset

Quantitative Analysis We evaluated our approach on

the generated synthetic poses. Figure 5 shows the quanti-

tative evaluation of our algorithm in terms of the accuracy

metrics, relative to the two baselines.

Figure 5a and 5b show the average error of estimated

joint angles and distances relative to the ground truth. Our

algorithm performs better than the two baselines with re-

spect to both metrics. In Figure 5a we see that the errors

in joint angles for JMFC-full are generally less than NN-

only, except for the palm angle, meaning that the joint an-

gles are robustly estimated by the JMFC model even in the

presence of extraneous poses not similar to the input depth

map. However, the high error in palm angle for JMFC-full

makes the estimated pose very different from the ground

truth. This error in JMFC-full propagates to other joints
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(a) (b) (c) (d)

Figure 5: Quantitative analysis on the synthetic dataset with respect to four metrics, relative to baselines (T: tip, M: mid, and

B:base). (a) The average joint angle error in degrees. (b) The average joint distance error in millimeters. (c) and (d) show the

proportion of depth maps (y-axis) with joint angle and distance error less than a threshold (x-axis).

(a) (b) (c) (d)

Figure 6: Quantitative analysis on the realistic dataset with respect to four metrics, relative to baselines (T: tip, M: mid, and

B:base). (a) The average joint angle error in degrees. (b) The average joint distance error in millimeters. (c) and (d) show the

proportion of depth maps (y-axis) with joint angle and distance error less than a threshold (x-axis).

leading to large distance errors relative to NN-only as seen

in Figure 5b. Figure 5c and 5d show that our algorithm per-

forms better than NN-only and JMFC-full at all thresholds

for maximum allowed joint angle and distance error. The

proportion of correctly identified frames is about 90 per-

cent when the threshold for the joint distance error is set to

40 mm as seen in Figure 5d. The comparative result can be

found in [26] (figure 9c). Although we do not have access to

their datasets, this qualitative comparison to their state-of-

the-art method under the same experimental settings is very

promising. Also unlike their approach, we do this without

considering temporal information and without a GPU.

Qualitative Analysis We perform a qualitative analysis

of our approach in Figure 4. The central sub-figures indi-

cate the nearest neighbors retrieved from the pose library.

We observe that even though some nearest neighbors share

very little similarity to the input depth map, the final solu-

tion is robustly estimated. This robustness against outliers

is attributed to the vector d2 (the vector of distances to basis

models) in the JMFC model, which implicitly mitigates the

effect of faulty nearest neighbors. Intuitively, the incorrect

pose parameter values of these faulty neighbors are weighed

less in the collaborative assignment of pose parameters to

the unknown pose.

5.4. Experiments on Realistic Dataset

Quantitative Analysis We evaluate our approach on the

generated realistic dataset affected by noise with respect to

three baselines, NN-only, JMFC-full and FORTH1.

Figure 6a and 6b show the average error of estimated

joint angles and distances relative to the manually refined

ground truth over all four sequences. We observe that over-

all our method is superior to all baselines with respect to all

four error metrics. Unlike FORTH, our model does not need

any temporal information, and hence, avoids errors accumu-

lating over time. It is also interesting to note that noise in

real datasets confounds nearest neighbor estimation leading

to poorer performance than synthetic datasets. One solution

to reduce the effect of noise is to use training for accurately

generating pose hypothesis as done in [26] instead of using

nearest neighbors, a possible direction for future work.

We observe that the performance of our algorithm to es-

timate joint angles on realistic dataset (Figure 6c) is very

similar to the synthetic dataset. However, the performance

as measured by error metric (d) deteriorates relative to syn-

thetic dataset (Figure 6d). This hints at a compounded effect

of poor nearest neighbor estimation and incorrect estima-

1The algorithm in [21] is reimplemented using our depth camera.
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Ours

Figure 7: Qualitative comparison of our method with 3

baselines: FORTH, NN-only, JMFC-full in that order.

Figure 8: Quantitative comparison of our method with [21,

28] on a public dataset released with [28] with respect to

proportion of depth maps (y-axis) with joint distance error

less than a threshold (x-axis).

tion of global translation parameters. The latter problem,

however, is easily solvable by replacing our heuristic based

method by methods implemented in [33, 26] for accurate re-

gion of interest detection. However, the thrust of our contri-

bution is the JMFC model for joint angle estimation which

is effectively validated.

Qualitative Analysis Figure 7 qualitatively evaluates

our approach against the baselines. All depth maps are

centered for effective visualization. The top column shows

the input depth map and each row corresponds a baseline

method. We observe that our approach is robust to the vari-

ous types of hand configurations under occlusion.

The average frame rate of our complete algorithm for

hand pose estimation on the realistic datasets is ≈ 29Hz,

and hence applicable in a real-time environment. In com-

parison, our implementation of FORTH with NVIDIA

Quadro K4000 GPU resulted in an average frame rate of

16Hz. Additionally, we do not require temporal informa-

tion as our algorithm proceeds on a per frame basis.

Quantitative Analysis on Public Dataset We compare

our algorithm on the dataset of [28] with FORTH and the

Holistic, Hierarchical and HPR-2D+Rot regression meth-

ods proposed in [28]. We indirectly compare our method

with [30] as Hierarchical pose regression [28] has been

shown to be better than [30] in [28] and with [35] which

is similar in spirit to HPR-2D+Rot [28]. Figure 8 displays

the proportion of depth maps (y-axis) with joint distance er-

ror less than a threshold (x-axis) for the 5 methods2. We

see that our approach achieves better accuracy than FORTH

and comparable performance to Hierarchical pose regres-

sion method of [28]. Our method has the highest fraction of

frames with maximum allowed distance to ground truth in

the [0, 15] mm and [40, 80] mm domain, validating that our

approach is overall more robust to finger articulations and

applicable to hand pose estimation in a general setting.

6. Conclusion

In this paper we present a novel approach for the hand

pose estimation problem based on a joint matrix factoriza-

tion and completion model. We present strong evidence of

the applicability of our approach for hand tracking in a real-

time environment. Although we demonstrate the efficacy

of our approach for estimating joint angle parameters of

the human hand, the overall idea is also applicable to the

human pose estimation problem. More generally, our ap-

proach conclusively validates that advances in collaborative

filtering approaches for recommender systems can be effec-

tively synergized with pose estimation and tracking prob-

lems. This opens up several avenues for future work. One

promising direction is the use of nuclear norm regulariza-

tion instead of the Frobenius norm in the JMFC objective

function to get low rank factors. We also wish to explore

techniques for determining the best basis and effectively in-

tegrating RGB information in our future work. Overall, we

believe our JMFC model based approach for hand pose es-

timation opens up new avenues for real-time solutions in

computer vision.
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