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Abstract

A limitation in color constancy research is the inabil-

ity to establish ground truth colors for evaluating corrected

images. Many existing datasets contain images of scenes

with a color chart included; however, only the chart’s

neutral colors (grayscale patches) are used to provide the

ground truth for illumination estimation and correction.

This is because the corrected neutral colors are known to

lie along the achromatic line in the camera’s color space

(i.e. R=G=B) ; the correct RGB values of the other color

patches are not known. As a result, most methods estimate

a 3×3 diagonal matrix that ensures only the neutral colors

are correct. In this paper, we describe how to overcome

this limitation. Specifically, we show that under certain il-

luminations, a diagonal 3×3 matrix is capable of correct-

ing not only neutral colors, but all the colors in a scene.

This finding allows us to find the ground truth RGB values

for the color chart in the camera’s color space. We show

how to use this information to correct all the images in ex-

isting datasets to have correct colors. Working from these

new color corrected datasets, we describe how to modify

existing color constancy algorithms to perform better im-

age correction.

1. Introduction

The goal of computational color constancy is to mimic

the human visual system’s ability to perceive scene objects

as the same color when they are viewed under different il-

luminations. Cameras do not intrinsically have this ability

and color changes due to scene illumination must be cor-

rected. This is a fundamental pre-processing step applied to

virtually every image.

Color constancy is typically a two-step procedure: 1) es-

timate the color of the illumination; 2) apply a transform

to remove the effects of the illumination. The majority of

published literature addresses step 1. Several datasets have

been created to assist in evaluating illumination estimation

(e.g. [1, 9, 12, 24, 32]). The basic idea is to place a neu-
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Figure 1. (A) input image before illumination correction. (B)

corrected image using a conventional diagonal 3×3 matrix (i.e.

white-balancing). (C) corrected image using a full 3×3 matrix es-

timated from the ground truth colors obtained by our approach.

The reproduction angular errors for each 24 color patches are

shown below each image as a heat map (red=high error, blue=low

error).

tral (white) calibration object in the imaged scene. Under

ideal white light, the neutral object should remain achro-

matic in the camera’s color space. A chromatic color cast

on the neutral object is considered to be the color of the illu-

mination in the camera’s color space. While most methods

do not elaborate on image correction, the de facto approach

is to compute a 3×3 diagonal matrix to map the estimated

illumination RGB values to lie along R=G=B. This is ef-

fectively known as white-balancing and ensures the neutral

colors appear “white” in the corrected image. However, the

ability of this diagonal matrix to correct non-neutral colors

is ignored (Fig. 1).

This is a significant limitation, because the goal of color

constancy is to make all colors correct, not just neutral col-

ors. Early color constancy datasets are suitable only for

illumination estimation as they only contain a neutral cal-

ibration pattern. Newer datasets, such as the widely used

Gelher-Shi [24, 32] and the recent NUS dataset [9] include

a color rendition chart in every image. However, only the

neutral patches on these color charts are used for perfor-

mance evaluation. The problem is that unlike a neutral ma-

terial, the ground truth RGB values of the color patches are

not known in the camera’s color space. While color ren-
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dition charts have known mapping values in the CIE XYZ

color space, color constancy correction is performed in the

camera’s color space [8, 29]. Currently, the only way to esti-

mate these colors is with spectral information, including the

camera sensor sensitivity functions, spectral reflectances of

the patches, and spectra of the illumination. Such spectral

data is challenging to obtain, and as a result, most existing

color constancy datasets cannot be used to evaluate the per-

formance of color correction.

Contributions This paper makes four contributions to-

wards better image correction for color constancy.

1. We show that a diagonal matrix is able to correct scene

colors for certain illuminations (including daylight) well

enough to define the ground truth colors for the other illu-

minations.

2. Based on the findings in 1, we describe a robust method

to select the images in the existing color constancy datasets

to provide the ground truth colors for the imaged rendition

chart. This allows us to re-purpose datasets used for illu-

mination estimation, to also be used for color correction by

estimating a full 3×3 color correction matrices for all the

images in the dataset.

3. Using the re-purposed datasets from 2, we demonstrate

how these full matrices can be immediately used to modify

existing color constancy algorithms to produce better color

correction results.

4. Finally, we found that existing datasets have a strong

bias of images captured in daylight scenes. To create a

more uniformly sampled dataset for studying color con-

stancy correction, we have captured an additional 944 im-

ages under indoor illuminations to expand the NUS multi-

camera dataset.

We believe this work will have significant implications for

improving color constancy by allowing the evaluation of

color correction algorithms beyond white correction.

2. Related Work

There is a large body of work targeting color constancy,

with the vast majority focused on illumination estimation.

Representative examples include statistical methods that

directly estimate the illumination from an input image’s

RGB values (e.g. [5, 6, 18, 26, 34, 35]) and learning-

based methods that use various features extracted from

datasets with ground truth illumination to learn an estima-

tor (e.g. [7, 10, 14, 17, 20, 24, 31, 33]). A full discussion of

these methods is outside the scope of this paper, however,

more details can be found in the comprehensive survey by

Gijsenij et al. [25].

There is significantly less work focused on correcting

images. It is generally assumed that the three RGB channels

from the camera sensor act as independent gain controls to

scene illumination. This is similar to the von Kries hypoth-

esis [36] on human retinal cones. Working from the von

Kries assumption, a diagonal 3×3 matrix can be used to cor-

rect the three RGB channels by normalizing their individual

channel bias. This has long been known to be incorrect [13],

but remains the de facto method for image correction.

Early work by Finlayson et al. [15, 16] proposed a

method to address this problem with what was termed the

generalized diagonal model. In their work, a 3×3 spec-

tral sharpening matrix transform, M, was computed to map

the sensor’s RGB values to an intermediate color space,

for which the diagonal correction model works well. Fin-

layson et al. [16] showed that a two-dimensional linear

space of illuminants and a three-dimensional linear space

of reflectances (or vice versa) were sufficient to guarantee

the generalized diagonal model. Estimating M, however,

requires accurate camera responses of known materials un-

der controlled illumination. To achieve this, the camera

responses are simulated from spectral data of illumination

and reflectance using camera sensitivity functions. Chong et

al. [11] later revealed that the generalized diagonal compat-

ibility conditions are impositions only on the sensor mea-

surements, not the physical spectra. They formulated the

problem as a rank constraint on an order three measurement

tensor to compute the matrix M. Once again, Chong et

al. [11] require that the spectral sensitivity of the camera’s

sensor to be known. The use of this spectral sharpening ma-

trix M effectively meant the color correction transform was

a full 3×3 matrix.

Work in [23, 27] examined the dimensionality of the 9-

parameter space of the full 3×3 color correction matrices.

Using PCA decomposition, they found that only 3 bases

were required to recover the 9 parameters in the full ma-

trix model. The full matrices used in their PCA decompo-

sition were synthetically generated using a known camera

sensitivity function and a large database of material spectral

reflectances and illumination spectra.

While these methods helped to lay the foundation on

how to estimate full 3×3 color correction matrices, the

reliance on spectral information makes them impractical.

Bianco and Schettini [3] proposed a method to estimate the

sharpening matrix without spectral data in an optimization

framework that simultaneously estimated the color mapping

matrix to a device independent color space. The accuracy

of this approach with respect to the camera sensor’s color

space, however, is unclear.

In the following section, we describe how to estimate the

ground truth colors in the camera sensor space directly from

camera images.

3. Diagonal Model For Ground Truth Colors

This section performs an analysis which reveals that for

certain illuminations, the 3×3 diagonal correction model is
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Figure 2. (A) Illustration of the difference between the diagonal white-balancing correction and the full matrix image correction transform.

White-balancing only requires the observations of the neutral colors. To estimate the full matrix, the observed color chart and its ideal

colors are needed. (B) Shows the residual error comparison of the two different correction models. While the full matrix has consistently

lower error, for certain illuminations the error from the diagonal model is close to that from the full matrix. A heatmap visualization of the

diagonal matrix errors for each color patch is shown for three illuminates. The chromaticity position of the illuminations with respect to

the Plankian color temperature curve and their corresponding correlated color temperature (CCT) are also shown.

useful for full color correction of the scene, and not just

neutral colors. This analysis is performed empirically in

Sec. 3.1 working from spectral data. Sec. 3.2 shows our

mathematical model of the color constancy problem that

lends corroborative evidence to our empirical observation.

3.1. Empirical Analysis

Here we show empirically that 3×3 diagonal correction

matrices are sufficient to correct the scene’s colors for cer-

tain illuminations as well as full matrix correction can. Our

analysis starts by examining how RGB camera values are

formed in the spectral domain. Let C represent the cam-

era’s sensitivity functions that is written as a 3×N matrix,

where N is the number of spectral samples and the rows

of C = [cR; cG; cB] correspond to the R, G, B channels.

The camera response for a particular scene material, r un-

der illumination l can be obtained by the Lambertian model

where the specular reflection is ignored:

ρ = C · diag(l) · r = C · L · r, (1)

where l and r are N × 1 vectors representing the illumina-

tion spectra and material spectral reflectance respectively,

and diag(·) indicates the operator that creates a diagonal

matrix from a vector, i.e. L is an N × N illumination

matrix with diagonal elements l.

The goal of color constancy is to map an RGB value

taken under an unknown illumination, ρI = C · LI · r,

to its corresponding color under a canonical illumination,

ρ
C = C · LC · r. Although the canonical illumination can

be any specific spectra, ideal white light that has equal en-

ergy for every wavelength (i.e., the CIE standard illuminant

E) is generally chosen. In such a case, LC becomes the

identity matrix, I, and gives us ρC = C · r. This mapping

can be written as:

ρ
C = T · ρI ,

C · r = T ·C · LI · r,
(2)
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Figure 3. Spectra (400-720nm) for illuminations on which diago-

nal white-balancing correction works well. The bottom blue curve

corresponds to the blue curve of the diagonal correction error in

Fig. 2 (B) for illuminations index around 20-60. The correlated

color temperate (CCT) is also shown. These spectra are indicative

of broadband sunlight/daylight illumination.

where T is a 3 × 3 linear matrix that maps ρ
I to ρ

C . In

general, we have a scene composed of many different ma-

terials, and not just one. In this case, if we assume that the

scene is illuminated by a single illumination, we have:

C ·R = T ·C · LI ·R, (3)

where R is a matrix of many material reflectances (see

Fig. 2 (A)). Due to the metameric nature of Eq.3 an ex-

act solution for T is not possible [21, 30, 37]. We therefore

seek a transform T+ that minimizes the Frobenius norm:

T+ = argmin
T

||C ·R− T ·C · LI ·R||2F , (4)

where || · ||2F indicates the matrix Frobenius norm. A so-

lution to this optimization problem can be obtained using

the Moore-Penrose pseudoinverse. Note that, to solve this

problem, we need observations of the ideal (ground truth)

colors, C · R, and the input image under the scene illumi-

nation, C · LI ·R.
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Figure 4. The trend of off-diagonal-to-diagonal ratio of T ∗ and T
+ for all the illuminations and their correlation. Plots from two specifc

cameras are shown here, but all the other cameras share this similar trend: for certain illuminations, the off-diagonal-to-diagonal ratio is

low and high correlation can be found from the ratios of two different matrices (correlation coefficients are shown under the camera name).

Let’s now consider computing a diagonal, 3×3 correc-

tion matrix, Dw, as done by most white-balancing meth-

ods. We assume our camera has observed a special neutral

r that reflects spectral energy at every wavelength equally.

This means our camera response is the direct response of

the illumination lI , thus giving us:

Dw = diag(C · lI)−1, (5)

where lI is the input illumination (i.e., LI = diag(lI)).
This only requires the observation of the neutral patches.

Fig. 2 (A) illustrates the difference between these methods.

The residual errors for the two solutions over all ob-

served scene materials R can be expressed as the Frobenius

norms:

ErrT+ = ||C ·R− T+ ·C · LI ·R||2F

ErrDw = ||C ·R−Dw ·C · LI ·R||2F .
(6)

The question we are interested in is: When does Dw pro-

vides a good approximation to T+? To determine this, we

compute the residual errors in Eq. 6 for 28 different cam-

eras using the camera sensitivity functions from [28]. We

examined these errors for 101 different real world illumina-

tions captured by [1]. The reflectance materials used were

those estimated from the 24 color patches on the Macbeth

ColorChecker.

Fig. 2 (B) shows a plot of the residual errors for both T+

and Dw from two specific cameras (different C in Equa-

tion 6). The horizontal axis is the index of the 101 illumi-

nants. We sort the illuminations by their correlated color

temperature in the CIE-xy chromaticity space. We can see

that for many illuminations, the errors of these two methods

are similar. In particular, for illuminations close to range

6000K, the diagonal Dw is very close to the full matrix

T+. Fig. 3 shows several of the illumination spectra in this

range. We note that these spectra resemble those caused by

sunlight, including direct daylight and shadows. For other

illuminations, especially indoor artificial ones, the correc-

tion error from Dw is much larger than that from T+.

Another useful interpretation of this observation is to ex-

amine under what illuminations T+ becomes more like a

diagonal matrix. For this, we can define the off-diagonal-

to-diagonal ratio κ of matrix T+ as:

κ =

∑3

i=1

∑3

j=1,j 6=i |ti,j |
∑3

i=1
|ti,i|

, (7)

where ti,j is the (i, j) element of matrix T and | · | indicates

the absolute value. On careful inspection of Eq. 7, we see

that κ decreases in value as the diagonal entries in the T

matrix become more dominant than the off-diagonal entries

of T . When κ = 0 the matrix T is a diagonal matrix. Fig. 4

plots κ+ for T+ against the 101 illuminations for two dif-

ferent cameras, Canon 1D Mark III and Nikon D700. The

trend of κ+ closely follows the observation of the residual

errors from diagonal white-balancing correction, ErrDw .

3.2. Mathematical Support for Our Observation

To have further support for this finding, we performed

another analysis that does not rely on the scene reflectance

R. This can be considered as estimating a full matrix that

is optimal over all possible reflectance values. In this case,

we drop R from Eq. 3 to obtain:

C = T ·C · LI . (8)

Similar to Eq. 4, the optimal linear transform T ∗ is the one

that minimizes the Frobenius norm of the difference:

T ∗ = argmin
T

||C− T ·C · LI ||2F , (9)

and it can also be computed directly from the Moore-

Penrose pseudoinverse:

T ∗ = C · LI ·Ct · (C · LI · LI ·Ct)−1. (10)

Using this T ∗ that does not rely on any reflectance ma-

terials, we plot its corresponding κ∗ against the plot for the

κ+ in Fig. 4. We can see that the two plots are highly cor-

related, providing corroborative evidence to our empirical

observation. The overall relationship of T ∗ to the illumina-

tion, L, and camera sensitivities, C, is complex given the

number of parameters involved. For the purpose of estab-

lishing ground truth colors in existing datasets, we will rely

on the use of images captured in daylight illumination as

indicated by the experiments in this Section.
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Figure 5. Procedure to calculate the “ground truth” RGB colors for the color chart patches. First, an outdoor image captured under

sunlight is manually selected. A kernel density estimation (KDE) method is applied on nearby ground truth illuminations to refine the

illumination chromaticity as the peak location of the local illumination chromaticity distribution. Images with illuminations close to this

refined reference illumination are selected automatically. Each image in this reference image set is corrected using the diagonal model and

each color patch is extracted. KDE is applied to each color patch’s corrected colors over the entire set and the KDE peak is selected as the

ground truth color.

4. Re-purposing Datasets

Existing color constancy datasets with full color ren-

dition charts in the scene are currently only used for the

purpose of illuminant estimation evaluation with the achro-

matic patches. This is because the ground truth colors of

the color patches in the camera’s color space are not known.

The findings in Sec. 3, however, tell use that under certain

illumination the standard diagonal correction matrix is able

to correct the scene colors, thus providing a very good ap-

proximation of the ground truth colors of the color chart. In

this section, we describe how to use the color chart RGB

values to re-purpose existing datasets, namely the Gelher-

Shi and the NUS datasets, so that they can also be used for

the purpose of color correction estimation. We also discuss

an appropriate error metric for evaluating color correction

as well as our need to augment datasets to have a better bal-

ance of indoor and outdoor images.

4.1. Robust Estimation of Patch Colors

The Gelher-Shi and NUS datasets have color rendition

charts in every scene. This means there are 24 common

materials present in all the images. Here, we describe how

to compute the ground truth values of these 24 color patches

in the camera sensor’s color space.

While we could use a single image captured under day-

light to provide the reference colors of the rendition chart,

this naive approach risks selecting an image that may pos-

sibly be corrupt by factors such as nonuniform illumination

and camera noise. Instead, we have devised a robust proce-

dure for selecting the colors. An overview of this procedure

is provided in Fig.5. We start with the entire dataset of the

images captured from the same camera under different illu-

minations. The ground truth illuminations for these images

are available from the chart’s neutral patches. We manu-

ally select an image that is clearly captured in daytime. We

then look for a set of images that have similar ground truth

illuminations. This is done by performing a 2D kernel den-

sity estimation (KDE) [4] on the chromaticity distribution

of the ground truth illuminations. We find the peak of the

KDE closest to our manually selected image. We then take

dataset images whose ground truth illumination chromatic-

ity distance to this KDE peak are smaller than a threshold to

form our reference image set. For each image in this refer-

ence image set, we correct the image using the diagonal cor-

rection matrix based on its ground truth illumination. Note

from Fig. 5 that this reference image set may contain a few

images which are not outdoor sunlight images. To prevent

our ground truth colors from being contaminated by these

outliers, we again apply KDE on the corrected chromaticity

for each patch and select the peak of the distribution as the

ground truth color for each patch. This procedure provides

a robust mechanism for finding the ground truth colors for

all the patches. When we applied this on the Gehler-Shi

dataset (Canon 5D subset), any manually-chosen reference

image that was captured in direct sunlight resulted in nearly

identical ground truth estimations.

After obtaining the ground truth checker chart colors, we

can now compute full matrices to transform all the images

in the dataset based on the color checker colors. This can

be done using the Moore-Penrose pseudo-inverse similar to

Eq. 4. However, as noted by Funt et al. [22], the illumi-

nation across the color rendition chart is generally not uni-

form. As a result, we follow the approach in [22] to mini-

mize the sum of angular error:

T = argmin
T

24
∑

i=1

cos−1

(

TρI
i · ρ

C
i

∥

∥TρI
i

∥

∥

∥

∥ρ
C
i

∥

∥

)

, (11)
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