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Abstract

Defocus blur usually causes performance degradation in

establishing the visual correspondence between stereo im-

ages. We propose a blur-aware disparity estimation method

that is robust to the mismatch of focus in stereo images.

The relative blur resulting from the mismatch of focus be-

tween stereo images is approximated as the difference of

the square diameters of the blur kernels. Based on the de-

focus and stereo model, we propose the relative blur versus

disparity (RBD) model that characterizes the relative blur

as a second-order polynomial function of disparity. Our

method alternates between RBD model update and dispar-

ity update in each iteration. The RBD model in return re-

fines the disparity estimation by updating the matching cost

and aggregation weight to compensate the mismatch of fo-

cus. Experiments using both synthesized and real datasets

demonstrate the effectiveness of our proposed algorithm.

1. Introduction

Recovery of the depth information from binocular vision

is an essential task since the depth information is useful in

the reconstruction of 3D shape [12], matting [24, 14], and

generating variable focus images/videos [13, 22]. However,

the performance of stereo correspondence degrades in re-

gions without prominent textures. Even with the support

of the local neighborhood and regularization [2, 27], stereo

matching remains a challenging problem.

Most of the stereo matching techniques [19] assume

stereo images are all-in-focus. Nevertheless, such assump-

tion is not always satisfied since cameras with real aperture

cannot provide infinite depth of field. For instance, mo-

bile devices usually equip a camera of small f-number (wide

aperture relative to focal length) that is capable of gathering

much light but limits the depth of field. Hence, the visual

correspondence becomes weak when two corresponding re-

gions experience unequal amount of defocus blur. While es-

tablishing the visual correspondence between stereo images

captured with inconsistent focus settings, we cannot simply

ignore the effect of defocus blur. Although the mismatch of

focus is usually adverse in stereo matching, the relative blur

between stereo images provides additional cue to resolve

the intrinsic ambiguity of regular stereo matching, such as

establishing correspondence in region of repetitive texture.

Our objective is to improve disparity estimation for defocus

stereo images via compensating the mismatch of focus and

integrating the cue of relative blur as a whole.

Defocus can be complementary cue to resolve the in-

herent ambiguity of stereo matching [10, 20]. Several ap-

proaches have fused the information from disparity and de-

focus blur for stereo matching. Rajagopalan et al. [18]

propose a Markov random field (MRF) based approach to

utilize depth from defocus [6] and stereo matching for ro-

bust depth estimation. Their proposed approach operates

on two pairs of stereo images, where each view possesses

a focal stack of two images. Assuming that the camera pa-

rameters and baseline are known, the depth estimation is

modeled as an energy minimization framework, where the

mismatch of stereo correspondence and deviation from the

defocus model will be penalized. Therefore, it is more ro-

bust than using either regular stereo matching or depth from

defocus alone. However, this method requires two focal

stacks from each view, and the camera parameters should

be known in advance. This method is generalized in [1] to

couple the blur, motion, and depth using a calibrated setup.

Several techniques estimate the point spread function with-

out calibrating the camera parameters for depth inference

[15, 21].

Takeda et al. [25] use a pair of defocus stereo images to

combine the depth from defocus and stereo matching. This

approach requires each lens equipped with a coded aperture

mask, and the relation between disparity and the diameter of

the blur kernel should be calibrated in advance. Although

their proposed method is advantageous in recovering the

all-in-focus image, it is not general for defocus stereo im-

ages captured by regular cameras with unrestricted focus
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settings. Devernay et al. [3] propose an approach for de-

tecting focus mismatch between views in stereoscopic con-

tent via seeking for a focus mismatch pattern among a set of

legit patterns. This enables the real-time detection of mis-

match of focus to provide feedback to the camera operator.

Since the camera parameters are not usually available

when the stereo images are captured by point-and-shoot

cameras, Li et al. [13] propose a disparity estimation

method using a single pair of defocus stereo images. They

present an iterative MRF-based method that refines the dis-

parity by modeling the matching cost corresponding to de-

focus blur. Their method relies on estimating the camera

parameters from the pixels with prominent textures in the

in-focus plane of each view.

Our work is closely related to Li et al.’s method [13]. We

propose the relative blur versus disparity (RBD) model,

which characterizes relative blur as a second-order polyno-

mial function of disparity. Note that the relative blur is ap-

proximated as the difference of the square diameters of the

blur kernels, resulting from the mismatch of focus between

stereo images. Most of the pixels with prominent textures

are utilized to construct RBD model via curve fitting across

all the disparity levels. This is more robust than only us-

ing the in-focus pixels to recover the camera parameters in

prior art [13], where erroneous detection of in-focus pixels

in the complex scenes can lead to unreliable estimation of

camera parameters. Furthermore, Li et al.’s method relies

on the assumption that the apertures of the two cameras are

identical and the existence of in-focus plane in each view.

While such assumption is valid under some circumstances,

it may limit its applicability in the disparity estimation for

defocus stereo images.

In contrast to prior works that require either the calibra-

tion of the focus related parameters or multiple images to

form a focal stack in each view [25, 18], our method han-

dles the general scenario of estimating the disparity from a

pair of defocus stereo images. Camera parameters that af-

fect defocus blur, including focus setting, the diameter of

the aperture, are succinctly represented by the coefficients

of RBD model to characterize the relative blur as a func-

tion of disparity. We adopt the non-local cost aggregation

method for stereo matching [26] to illustrate the integration

with our RBD model. Since the effect of mismatch of fo-

cus is compensated via updating the volume cost and the

weight for cost aggregation, our proposed framework pro-

vides reliable estimation of disparity. Experiments using

both synthesized and real data confirm the improvement of

the accuracy and robustness of the proposed algorithm.

2. Model of Depth from Defocus Stereo

In the scenario of depth from defocus stereo, both

spatially-variant blur and disparity provide the inference for

depth information. To utilize all the cues, establishing the

visual correspondence across two images should take dis-

parity and blur into account.

In regular stereo matching, two all-in-focus stereo im-

ages are processed to determine disparity. The left image I1
and right image I2 are related with the spatially-variant dis-

parity δ(p), and thus the correspondence between the two

images can be modeled as

I1(p) = I2(p+ δ(p)), (1)

where p is the spatial index of a pixel.

Considering the effect of defocus blur, we model the ef-

fect of spatially-variant blur as the convolution of the all-in-

focus image and the blur kernel. Hence, the defocus stereo

images, Ĩ1 and Ĩ2, are modeled by convolving the all-in-

focus image pair I1 and I2 with spatially-variant blur kernel

b1 and b2, respectively. We can model Ĩ1 and Ĩ2 as

Ĩ1(p) = b1(p)⌦ I1(p) and Ĩ2(p) = b2(p)⌦ I2(p), (2)

respectively. Note that the diameter of the blur kernel bk(p)
is represented as σk(p). Empirically, modeling the defo-

cus blur with disk kernel is comparable to that with Gaus-

sian kernel in our implementation. Similar to [5], we adopt

the disk kernel as the blur kernel since it has finite support

weight as compared to Gaussian kernel. Since each pair of

pixels associated by the disparity can bear different amount

of defocus blur in each view, associating the defocus stereo

images by trivially using the original pixel can lead to se-

vere performance degradation. Alternatively, we associate

the defocus stereo images with their equally-defocused im-

ages by applying additional blur to the relatively in-focus

regions. Hence, the correspondence can be modeled as

⇢
br(p)⌦ Ĩ1(p) w Ĩ2(p+ δ(p)), if σ2(p+ δ(p)) ≥ σ1(p).

Ĩ1(p) w br(p)⌦ Ĩ2(p+ δ(p)), if σ2(p+ δ(p)) < σ1(p).

(3)

For the ease of notation, the spatial indices for br(p), δ(p)
and σk(p) are omitted henceforth. Note that br is the rela-

tive blur kernel applied to either one of the views such that

both views are equally-defocused. The diameter of the rel-

ative blur kernel br can be approximated as

σr '
q

|σ2
2 − σ2

1 |. (4)

Since the diameter of the relative blur kernel cannot in-

dicate whether the left or right view is more in-focus than

the other, we define the relative blur as

∆σ2 ,σ2
2 − σ2

1 , (5)

where ∆σ2 > 0 (∆σ2 < 0) indicates a pixel in the left

(right) view is more in-focus than its corresponding pixel in

the right (left) view.
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Figure 1: Block diagram of the proposed approach.

Figure 2: Optical geometry of defocus stereo based on thin

lens model.

3. Disparity Estimation from Defocus Stereo

3.1. Overview of the Proposed Method

The block diagram of our proposed approach is shown

in Figure 1. A pair of rectified defocus stereo images is the

input for computing the initial matching cost, and we adopt

the non-local cost aggregation method [26] to estimate the

disparity. The defocus stereo pair is also used to generate

the texture map, where pixels with prominent textures will

be used to estimate the relative blur. The RBD model is

estimated by fitting those samples carrying the information

of relative blur and disparity. The estimated RBD model is

then used to update the volume cost and aggregation weight.

The entire process is repeated until the estimation of dis-

parity converges or the maximum number of iterations is

attained.

3.2. Relative Blur versus Disparity (RBD) Model

The depth from defocus and depth from stereo have been

investigated in the literature to exploit the depth cues from

focal stack and stereo images, respectively. In this paper,

we assume the optical system of the camera obeys thin lens

model [23, 9]. Given the focal length, diameter of the aper-

ture, and focus setting, the defocus blur only depends on

the depth of the scenes. The diameter of the blur kernel at

distance d can be computed from the geometry of optical

system [16, 8], as shown in Figure 2. It is represented as

σk = Dk

|d− dk|

d

vk
dk

, (6)

where k indicates the parameter belonging to left view (k =
1) or right view (k = 2). Dk is the diameter of the aperture,

and vk is the focus setting defined as the distance between

sensor plane and lens. dk is the distance between in-focus

plane and lens. From the thin lens model, we can interpret

the focus setting as

vk =
dkfk

dk − fk
, (7)

where fk represents the focal length.

Substituting (7) into (6), we reformulate (6) as

σk = Dk

|d− dk|

d

fk
dk − fk

. (8)

On the other hand, the depth can be computed from dispar-

ity. The depth corresponding to the disparity of in-focus

plane δk and that of out-of-focus plane δ can be represented

as

dk =
fkB

δk
and d =

fkB

δ
, (9)

respectively. Note that B is the baseline. We can replace dk
and d in (8) by (9), and (8) can be reformulated as

σk = Dk

|δ − δk|

B − δk
. (10)

Assuming the defocus stereo pair has been rectified and nor-

malized to the same scale [7], both views have an equivalent

focal length. Therefore, the measuring units for δ, δ1, and

δ2 are identical.
According to (5) and (10), the RBD model can be for-

mulated as

∆σ2(δ) = σ2

2(δ)− σ2

1(δ)

=

✓

D2

|δ − δ2|

B − δ2

◆

2

−

✓

D1

|δ − δ1|

B − δ1

◆

2

=

✓

D2

2

(B − δ2)2
+

−D2

1

(B − δ1)2

◆

δ2

+

✓

−2D2

2δ2
(B − δ2)2

+
2D2

1δ1
(B − δ1)2

◆

δ +

✓

D2

2δ
2

2

(B − δ2)2
+

−D2

1δ
2

1

(B − δ1)2

◆

= Xδ2 + Y δ + Z. (11)

It is clear that the focus settings, diameters of the aper-

tures, and baseline, are constant parameters. Hence, the rel-

ative blur can be characterized by a second-order polyno-

mial function of disparity without knowing the exact value

of each parameter. Note that we directly model the relative

blur versus disparity regardless of different aperture diame-

ters and focal settings.
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3.3. Estimating the Coefficients of RBD Model

In order to estimate the coefficients of RBD model, we

assume that pixels belonging to the same disparity value

possess identical diameter of the blur kernel. As a result,

pairs of pixels with disparity value δ will have identical

relative blur ∆σ2(δ). The coefficients of RBD model can

be obtained by curve fitting using samples (δ,∆σ2(δ)) col-

lected from each disparity level.

Given the disparity map from the initial estimation or

previous iteration, we can compute the relative blur by

searching for the diameter of the relative blur kernel br
using (3). The estimation of relative blur becomes unsta-

ble in smooth region since homogeneous region undergo-

ing different amount of defocus blur typically looks similar.

Hence, we use edge detection methods (e.g., difference of

Gaussians) to detect regions with prominent texture for es-

timating the relative blur. Since the texture region can be

blurred by defocus in one view but well preserved in an-

other view, we merge the textures of both views to utilize

all the prominent textures. Given the disparity map of the

right view, we map the edges detected from the right view to

the left view to create the merged texture map. With the left

and right disparity maps computed in the previous iteration,

we can further refine the merged texture map by removing

those edges that do not have consistent disparity between

the left and right disparity maps. This step is similar to re-

tain non-occluded pixels using cross-consistency check [4],

but we tailor it to select the reliable textured pixels for the

estimation of relative blur. Figure 3 shows the merged result

of texture regions using the noisy initial disparity.

The disparity estimation in early iterations can be unsta-

ble due to mismatch of focus. In addition, pixel-wise rel-

ative blur estimation is prone to error in the boundaries of

discontinuous depth. Hence, we propose an ensemble fu-

sion scheme to reliably utilize the information of defocus

stereo images. We estimate the relative blur from pixels

belonging to the same disparity level to make a group de-

cision. The estimated relative blur d∆σ2(δ) minimizes the

mean square error of pixels belonging to the disparity level

δ, which can be formulated as

d∆σ2(δ) = arg min
∆σ2∈K

MSE(δ,∆σ2), (12)

where K is the set consisting of possible values of relative

blur. MSE(δ,∆σ2) is the mean square error for stable pixels

lying in disparity δ assuming relative blur ∆σ2 is applied,

which is formulated as

MSE(δ,∆σ2) =
(

1
|L(δ)|

P
p∈L(δ) |br ⌦ Ĩ1(p)− Ĩ2(p+ δ)|2, if ∆σ2 ≥ 0,

1
|L(δ)|

P
p∈L(δ) |Ĩ1(p)− br ⌦ Ĩ2(p+ δ)|2, if ∆σ2 < 0,

(13)

(a) Left view (b) Right view

(c) Noisy disparity (d) Left texture

(e) Right texture (f) Merged texture

Figure 3: Textures from both views are merged using the

initial disparity. The defocus stereo images in this illustra-

tion are rendered images from a 3D scene.

where L(δ) is the set containing the spatial indices of sta-

ble pixels belonging to disparity δ, and |L(δ)| returns the

cardinality of L(δ).
For each disparity level, we can obtain a sample

(δ, d∆σ2(δ)) consisting of the relative blur and disparity

value. Because the disparity map in early iterations is prone

to error, and some of the disparity levels may have inade-

quate number of stable corresponding pairs, we propose to

estimate the coefficients of (11) by weighted least squares

fitting. That is, each sample (δ, d∆σ2(δ)) is weighted by

W(δ) =
|L(δ)|

MSE(δ, d∆σ2(δ))
. (14)

This implies that the disparity level that owns large num-

ber of stable pixels and is well modeled by (3) will receive

a large weight when computing the coefficients of RBD

model.

3.4. Blur-aware Non-local Cost Aggregation

We incorporate our RBD model with the non-local cost

aggregation method proposed in [26] to handle the defocus
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stereo images. Specifically, we formulate the blur-aware

aggregation cost as

C̃A
δ (p) =

X

q

exp(−
D̃(p, q)

α
)C̃δ(q), (15)

where D̃(p, q) is the distance between pixel p and pixel q
in the minimum spanning tree (MST), and C̃δ(q) is the cost

of pixel q at disparity δ. Note that α is the constant that

controls the similarity between two nodes in the MST. Both

the volume cost and aggregation weight are updated using

our estimated RBD model. The procedure of blur-aware

cost aggregation can be explained in two folds. First, we

formulate the blur-aware volume cost C̃δ(q) as

C̃δ(q) =

⇢
C(br(δ)⌦ Ĩ1(q), Ĩ2(q + δ)), if ∆σ2(δ) ≥ 0,

C(Ĩ1(q), br(δ)⌦ Ĩ2(q + δ)), if ∆σ2(δ) < 0,

(16)

where the diameter of the relative blur kernel br(δ) is com-

puted by σr(δ) =
p

|∆σ2(δ)|, and C(i, j) returns the data

cost representing the dissimilarity between pixel i and j.

Similar to [26], we use color and gradient as the features

for computing data cost. The updated volume cost com-

pensates the asymmetric defocus between stereo images by

blur-aware disparity matching. Second, we update the ag-

gregation weight by utilizing two views simultaneously. Al-

though existing works have utilized both views for guid-

ance, they typically assume information across two images

are symmetric [11]. Nevertheless, this is not the case for the

defocus stereo pairs, where both images can experience dif-

ferent defocus blur. Hence, we tailor the existing schemes to

automatically select the guidance based on the hypothesized

disparity with our RBD model. We compute the D̃(p, q)
only from the much in-focus region in either left or right

view, and thus the information in both images are utilized

simultaneously.

4. Experimental Results

Since the dataset of defocus stereo images is not publicly

available, we synthetically generate defocus stereo pairs

from a 3D scene and its groundtruth for evaluation. In order

to verify the effectiveness of our methods in real world, we

collect defocus stereo images from cameras of real aperture

for comparison.

4.1. Synthetic Datasets

We use the average office 3D scene provided by Jaime

Vives Piqueres (http://www.ignorancia.org) to synthesize

the defocus stereo images. In order to obtain the full con-

trol of camera parameters and settings, we synthesize the

defocus stereo images of the scene from a ray-tracing tool

[17] and generate its groundtruth disparity (Figure 4a) and

(a) Groundtruth disparity (b) Non-occlusion mask

Figure 4: The groundtruth of the left view.

non-occlusion mask (Figure 4b) as benchmark [3]. The dis-

parity of synthetic stereo images varies from 0 to 24 pixels,

and the disparity estimation is treated as a bad pixel if the

estimation error is larger than one pixel. The technique of

camera parameter estimation proposed by Li et al. [13] for

defocus stereo matching is implemented for comparison.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Yang [26] 36.36 / 35.92 57.14 / 56.49 17.56 / 17.33 9.74 / 9.05

Li et al. [13] 14.09 / 13.49 58.44 / 57.88 *17.56 / 17.33 *9.74 / 9.05

Ours 11.39 / 10.73 23.30 / 22.24 7.10 / 6.40 11.32 / 10.52

Table 1: Percentage of the bad pixels in the left view evalu-

ated on synthetic data (all pixels / non-occlusion pixels).
∗ The results of Li et al. [13] for Dataset 3 and 4 are identi-

cal to that of Yang [26] since their model degenerates in the

initial iteration.

We generate four sets of defocus stereo images of various

camera settings for evaluation. Each set of stereo images

and their disparity estimation results are demonstrated in

each column of Figure 5. The left and right views are shown

in the first and second rows, respectively. Both views are

with resolution 576 ⇥ 432 and f-number f/2.2. Through-

out all the experiments in the synthetic dataset, we provide

the result evaluated on the left view. The percentage of bad

pixels for those erroneous disparity estimation are demon-

strated in Table 1, and the disparity estimation results with

annotated bad pixels are presented in the supplementary

material.

In the first synthetic dataset, the left and right views fo-

cus on the near and far sites, respectively. Due to the asym-

metric focus, the performance of disparity estimation based

on [26] degrades since conventional stereo matching algo-

rithm is not eligible to perceive the focal blur. Both of our

method and Li et al. [13] successfully improve the dispar-

ity estimation. In terms of the quantitative performance on

the percentage of bad pixels, our proposed method outper-

forms Li et al. since we can accurately estimate the coef-

ficients of RBD model, which in return helps the disparity

matching of defocus images by updating the volume cost.

The estimation of RBD model is demonstrated in the last

row of Figure 5, where the estimated RBD model mostly
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Figure 5: Performance evaluation on the synthetic dataset: Left views (the first row), right views (the second row), initial

disparity estimation from [26] (the third row), disparity estimation of [13] (the fourth row), our proposed method (the fifth

row), and the curve fitting of RBD samples (the last row). The disparity estimation results with annotated bad pixels are

presented in the supplementary material.
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 5

Figure 6: The weighted least square fitting of RBD model at Iteration 1, 3, and 5, and the weight of the sample is proportional

to the radius of the circle (the first row). The intermediate disparity map of the corresponding iteration, and the erroneous

disparity values are marked in red (the second row).

(a) Experiment setup (b) Left view (f/4.5) (c) Right view (f/22)

(d) Yang [26] (e) Li et al. [13] (f) Our proposed method

Figure 7: Experiment on repetitive texture in real world with asymmetric diameters of apertures.

coincides with the groundtruth computed from the actual

camera parameters. Figure 6 demonstrates the intermediate

results of the weighted least square fitting of RBD model

using the first synthetic dataset. The estimated RBD model

becomes closer to the groundtruth as the number of iter-

ations increases. Also some of the outlier samples in the

early iterations have been corrected in later process. Note

that samples that deviate from the actual RBD model re-

ceive small weights (circles of small radius) as denoted by

(14), and thus the impact of outlier is suppressed. Besides,

we can observe the amount of bad pixels is reduced while

the estimation of the RBD model is incrementally refined.

In the second synthetic dataset, the left camera focuses

at the near site before the nearest object. Since the in-focus

plane is not in the scene, the left view becomes fully defo-

cused. The right view focuses on the far site, which is iden-

tical to the right view of the first synthetic dataset. It is clear

that our proposed method outperforms Li et al. qualitatively

and quantitatively since the method proposed by Li et al. as-

sumes both views cover the in-focus planes. Our proposed

method however do not rely on such assumption, so it can

be applied to different types of defocus stereo images. In

the third dataset, both views focus at the same depth. The

depth of field is different since the left and right cameras
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(a) Left view (Near focus) (b) Right view (Far focus)

(c) Yang [26] (d) Li et al. [13]

(e) Our proposed method

Figure 8: Experiment on a scene in real world with

asymmetric focus settings and equal diameter of apertures

(f/2.2).

have f-number f/2.2 and f/8, respectively. Our method

correctly estimates the RBD model and improves the qual-

ity of disparity estimation. The method from Li et al. does

not operate since their model becomes degenerated when

both camera focus at the same depth.

In order to investigate the performance of our algorithm

on nearly all-in-focus stereo images, we generate the fourth

synthetic dataset with small f-number. Both cameras have

f-number f/22 and focus at the same depth. Our method is

slightly worse than Yang [26] as we intend to handle general

defocus stereo images. It is interesting to notice that the per-

centage of bad pixels in the fourth dataset is slightly larger

than that in the third dataset when we apply our method.

Note that the disparity estimation in repetitive texture re-

gions (e.g., the keyboard and the books on the bookshelves)

is more erroneous in the nearly all-in-focus stereo images

than in the third dataset using our method. This illustrates

that our method can help resolve ambiguity of repetitive tex-

ture by jointly estimating the relative blur and disparity.

4.2. Real Datasets

We conduct a set of experiments on the repetitive pattern

in real world to demonstrate that the ambiguity resulting

from repetitive texture can be mitigated by integrating our

RBD model. We use a Nikon D50 with Nikon AF-S DX

Nikkor 18-70 mm lens to capture our test images. As our

main objective is to verify the effectiveness of our proposed

method, we assume the defocus stereo images are rectified

or readily aligned while taken. The camera is mounted on

a sliding bar, and it captures a scene with a checkerboard

lying on the carpet (Figure 7a). The left and right views fo-

cus at the middle region of the scene. The focal length of

lens is set to 70 mm. Images of both views are resized to

resolution of 602 ⇥ 400. In this experiment, we use differ-

ent apertures to create the asymmetric defocus effect. The

left view (Figure 7b) and right view (Figure 7c) are cap-

tured with f-number f/4.5 and f/22, respectively. Note

that these camera parameters remain unknown for all the

methods.

In Figure 7d, the disparity computed by regular stereo

matching algorithm is vulnerable to the ambiguity of defo-

cus, especially in the region of carpet. The method from

Li et al. [13] (Figure 7e) gives better result but with many

wrong estimations since it can only handle equal apertures

of both views. Our method (Figure 7f) delivers the best re-

sult and resolves the ambiguity much better. It is interesting

to note that the ambiguity remains unsolved for regions ap-

pear in-focus in both views, i.e., the relative blur is close to

zero in those regions.

Moreover, we evaluate our method on another real data

set captured by the camera equipped in Nokia Lumia 1020

cell phone with f-number f/2.2. Images of both views are

resized to 446⇥ 335. In Figure 8a and 8b, the left and right

views focus at near and far sites, respectively. In Figure

8c, the disparity computed by regular stereo matching algo-

rithm is vulnerable to the ambiguity of defocus. Our pro-

posed method (Figure 8e) significantly improves the qual-

ity of disparity estimation over Li et al. [13] (Figure 8d) by

taking advantage of the relation between relative blur and

disparity.

5. Conclusions

We propose a blur-aware disparity estimation approach

that can handle the mismatch of focus in stereo images. Un-

like conventional depth from defocus techniques that model

the relative blur within the focal stack, we exploit relative

blur between stereo images to improve the disparity estima-

tion. Our proposed method uses RBD model to character-

ize relative blur and disparity, which is more reliable than

directly estimating the camera parameters. We have shown

that the RBD model can be integrated into non-local cost

aggregation framework for robust disparity estimation via

compensating the data cost and aggregation weight. Exper-

iments on both synthetic and real data confirm the effective-

ness of our proposed approach.
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