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Abstract

In this paper, we address the problem of estimating noise

level from a single image contaminated by additive zero-

mean Gaussian noise. We first provide rigorous analysis on

the statistical relationship between the noise variance and

the eigenvalues of the covariance matrix of patches within

an image, which shows that many state-of-the-art noise es-

timation methods underestimate the noise level of an image.

To this end, we derive a new nonparametric algorithm for

efficient noise level estimation based on the observation that

patches decomposed from a clean image often lie around a

low-dimensional subspace. The performance of our method

has been guaranteed both theoretically and empirically.

Specifically, our method outperforms existing state-of-the-

art algorithms on estimating noise level with the least exe-

cuting time in our experiments. We further demonstrate that

the denoising algorithm BM3D algorithm achieves optimal

performance using noise variance estimated by our algo-

rithm.

1. Introduction

Noise level is an important parameter to many algo-

rithms in different areas of computer vision, including im-

age denoising [3, 5, 6, 7, 16], optical flow [12, 26], image

segmentation [1, 4] and super resolution [9]. However, in

real world situations the noise level of particular images

can be unavailable and is required to be estimated. So far,

it still remains to be a challenge to accurately estimate the

noise level for different noisy images, especially for those

with rich textures. Therefore, a robust noise level estimation

method is highly demanded.

One important noise model widely used in different com-

puter vision problems, including image denoising, is the

additive, independent and homogeneous Gaussian noise

model, where “homogeneous” means that the noise vari-

ance is a constant for all pixels within an image and does

not change over the position or color intensity of a pixel.

The goal of noise level estimation is to estimate the un-

known standard deviation σ of the Gaussian noise with a

single observed noisy image.

The problem of estimating noise level from a single im-

age is fundamentally ill-posed. During last decades, numer-

ous noise estimating methods [2, 17, 13, 20, 24] have been

proposed. However, all of these methods are based on the

assumption that the processed image contains a sufficient

amount of flat areas, which is not always the case for natu-

ral image processing. Recently, new algorithms have been

proposed in [19, 23] with state-of-the-art performance. The

authors of [19, 23] claim that these methods can accurately

estimate the noise level of images without homogeneous ar-

eas. However, these methods suffer from the following two

weaknesses. Firstly, as concluded in [19], the convergence

and performance of selecting low-rank patches is not the-

oretically guaranteed and does not have high accuracy em-

pirically. Secondly, as theoretically explained in Sec. 2.2 of

this paper, both [19] and [23] underestimate the noise level

for processed images, since they take the smallest eigen-

value of the covariance of selected low-rank patches as their

noise estimation result.

To tackle these problems, we propose a new algorithm

for noise level estimation. Our work is based on the obser-

vation that patches taken from the noiseless image often lie

in a low-dimensional subspace, instead of being uniformly

distributed across the ambient space. This property has been

widely used in subspace clustering methods [8, 29]. The

low-dimensional subspace can be learned by the method of

Principal Component Analysis (PCA) [14]. As analyzed in

2.1, the noise variance can be estimated from the eigenval-

ues of redundant dimensions. In this way, the problem of

noise level estimation is reformulated to the issue of select-

ing redundant dimensions for PCA. This problem has been

investigated as a model selection problem in the fields of

statistics and signal processing, including [10, 15, 21, 28].

However, these methods focus on using less latent compo-

nents to represent observed signals. As a result, their meth-
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Figure 1. An example to illustrate that patches of a clean image lie in a low-dimension subspace. (a) The clean image. (b) The noisy image

with noise � = 50 . (c) The eigenvalues of clean image and noisy image, where the red curve represents the eigenvalues of clean image

and the blue curve represents the eigenvalues of noisy image.

ods always consider signals components as noises resulting

in the overestimation of image noise. In this paper, we pro-

pose an effective method to solve this issue with the statis-

tical property that the eigenvalues of redundant dimensions

are random variables following a same distribution, which

is demonstrated in Sec. 2.2. As proved in Sec. 2.3, the pro-

posed method is expected to achieve the accurate noise esti-

mation when the number of principal dimensions is smaller

than a threshold.

Thus, the contributions of this paper can be summarized

as below:

� The statistical relationship between the noise level σ2

and the eigenvalues of covariance matrix of patches is

firstly estimated in this paper.

� A nonparametric algorithm is proposed to estimate

the noise level σ2 from the eigenvalues in polynomial

time, whose performance is theoretically guaranteed.

As demonstrated empirically, our method is the most

robust and can achieve best performance for noise level

estimation in most cases. Moreover, our method con-

sumes least executing time and is nearly 8 times faster

than [19, 23].

The rest of the article is organized as following. Based

on the patch-based model, we propose our method in Sec.

2. In Sec. 3, we present the comparison of the experimental

results with discussions. Finally, the conclusion and some

future works are presented in Sec. 4.

2. Our Method: Theory and Implementation

An observable image I can be decomposed into a num-

ber of patches Xs = f xt gs
t =1 2 Rr � s . Given a multi-

channel image I with size M � N � c, Xs contains s =
(M � d + 1)( N � d + 1) patches of size d � d � c, whose

left-top corner positions are taken from set f 1, . . . ,M � d+
1g � f 1, . . . , N � d + 1g. To simplify the following calcu-

lations, all patches are further rearranged into vectors with

r = cd2 elements in this paper. For any arbitrary vector xt

in the observable set Xs , it can be decomposed as:

xt = x̂t + et , (1)

where x̂t 2 Rr � 1 is the corresponding noise-free image

patch lying in the low-dimensional subspace, et 2 Rr � 1

denotes the additive noise and E(x̂T
t et ) = 0 . As I is con-

taminated by Gaussian noise N (0, σ2) with zero-mean and

variance σ2, et follows a multivariate Gaussian distribution

Nr (0, σ2I) with mean 0 and covariance matrix σ2I. With

such setting, estimating noise level of an image with the set

of patches Xs is equivalent to estimating the noise level σ2

of the dataset Xs .

2.1. Eigenvalues

As illustrated in Fig.1 (c), most eigenvalues of the

clean image are 0, which confirms our previous discussion:

"patches taken from clean image often lie in a single low-

dimensional subspace". However, it can be observed that

most eigenvalues of the noisy image surround the true noise

variance 50 instead of being 50exactly. Thus, it is still diffi-

cult to obtain an accurate noise estimation from eigenvalues

directly. To investigate the relationship between eigenval-

ues and noise level comprehensively, we first formulate the

calculation of eigenvalues from another perspective.

Assume that clean patches lie in m-dimensional linear

subspace, where m is a predefined positive integer with

m � r, we can formulate equation (1) as follows:

xt = Ayt + et . (2)

A 2 Rr � m denotes the dictionary matrix spanning the m-

dimension subspace with constraint AT A = I and yt 2
Rm � 1 denotes the projection point of xt on the subspace

spanned by A. PCA has been widely used to infer the lin-

ear model described in equation (2), where A consists of

the m eigenvectors with the m largest eigenvalues of the

covariance matrix � x = 1
s

P s
t =1 (xt � µ)(xt � µ)T with

µ = 1
s

P s
t =1 xt .
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