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Abstract

We propose a novel two-step method for estimating the

intrinsic and extrinsic calibration of any radially symmetric

camera, including non-central systems. The first step con-

sists of estimating the camera pose, given a Structure from

Motion (SfM) model, up to the translation along the optical

axis. As a second step, we obtain the calibration by find-

ing the translation of the camera center using an ordering

constraint. The method makes use of the 1D radial cam-

era model, which allows us to effectively handle any radi-

ally symmetric camera, including non-central ones. Using

this ordering constraint, we show that the we are able to

calibrate several different (central and non-central) Wide

Field of View (WFOV) cameras, including fisheye, hyper-

catadioptric and spherical catadioptric cameras, as well as

pinhole cameras, using a single image or jointly solving for

several views.

1. Introduction

Recently, cameras with a wide field of view (WFOV)

such as fisheye and omnidirectional cameras are starting to

become more and more popular. Due to their ability to ob-

serve a large portion of the scene, using WFOV cameras

is advantageous for 3D computer vision tasks such as the

precise camera tracking that is done as part of visual nav-

igation for robots and autonomous vehicles. At the same

time, action cameras with WFOV such as the GoPro Hero

are widely used. Similarly, camera mounts for mobile de-

vices that enable them to take panoramic images, e.g., using

a catadioptric lens, are becoming more frequent. As a re-

sult, more and more WFOV images are becoming available

on photo sharing websites such as Flickr and Picasa. In the

case of Structure-from-Motion (SfM) from photo commu-

nity collections, these photos could be particularly helpful

to strengthen the overall reconstruction as they provide con-

straints to many other cameras. However, they are typically

discarded in practice due to the challenge of automatically

calibrating these cameras.

In this paper, we present a novel method to automatically

calibrate WFOV cameras from 2D-3D matches established

between features extracted in their images and 3D points in

a SfM reconstruction using image-based localization meth-

ods. Given a partial reconstruction obtained from regular

images, our method can thus be used to calibrate and then

insert WFOV into a SfM model to strongly link together dif-

ferent parts of the scene which are all visible in these photos

and thus improve the quality of the reconstruction.

Our method is based on the 1D radial camera model [15–

17], which can be used to describe any type of camera with

radial distortion, including pinhole, fisheye, and non-central

cameras such as catadioptric lenses, as long as the center of

distortion is known. We combine this model with a non-

parametric intrinsic calibration to obtain an extremely pow-

erful calibration method that is capable of calibrating a wide

range of camera types. Our method consists of two steps.

In the first step, the extrinsic calibration is computed from

the 2D-3D matches up to the position of the camera center

(or camera centers in the case of non-central cameras) along

the optical axis. This can be done efficiently using a linear

7-point solver inside a RANSAC loop [5]. Given the partial

extrinsic calibration, we employ a novel ordering constraint

on the opening angle of the viewing rays corresponding to

the 2D features to estimate the remaining extrinsic param-

eter in the case of a central camera. Since we are consid-

ering radially symmetric cameras, fixing the camera center

directly provides the intrinsic calibration as it provides a

mapping from image positions to viewing rays. A slightly

generalized version of this constraint enables us to obtain a

more accurate calibration from multiple photos taken with

the same camera. The constraint can be further generalized

to also handle non-central cameras, both when only a single

or multiple photos are available. In addition to its general-

ity, our novel ordering constraint enables us to formulate the

second part of the calibration process as a convex optimiza-

tion program. We experimentally demonstrate the accuracy

of our calibration pipeline for a wide range of cameras. Ad-

ditionally, we make the source code of our method avail-

able [1].

The remainder of the paper is structured as follows.

Sec. 2 discusses related work. Sec. 3 reviews the 1D ra-

dial camera model. Sec. 4 introduces our novel ordering

constraint and derives our calibration method for the case

of central cameras. The extension to non-central cameras
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is then provided in Sec. 5. Finally, Sec. 6 experimentally

evaluates our approach on both synthetic and real data.

2. Related Work

Recently, there has been some interest in non-parametric

calibration of radially symmetric cameras. For instance,

in [8, 11] a non-iterative, non-parametric method for cali-

bration of fisheye cameras is proposed. While they claim

that they can do without, the method is only tested using a

calibration pattern since their auto-calibration needs several

correspondences and is very sensitive to noise.

Similar to this, and much more related to our work,

in [15–17] Thirthala and Pollefeys developed the 1D Ra-

dial Camera model. They propose a multi-focal tensor able

to auto-calibrate any radially symmetric set of cameras (in-

cluding non-central), and also produce a non-parametric

calibration. In this work we use this same model, however,

in contrast to their approach, we develop a more general and

robust geometric ordering constraint to calibrate with.

Several other methods make use of either a specific scene

structure (enough straight lines) or use calibration objects

to compute their calibration, e.g. [7, 13]. In [14] an ap-

proach for self-calibration of radially symmetric cameras is

presented. They develop a plumb-line (using the fact that

straight lines in space must project into straight lines in the

image) and plane-based methods. In [6], they rely on the

observation of at least three lines to compute the parame-

ters of a para-catadioptric system. In contrast to these, we

remain flexible by enforcing no requirements on the scene

or a calibration object.

For our method we first estimate the (partial) extrinsics

(i.e. the pose) w.r.t. a SfM model. There have been nu-

merous advances geared toward pose estimation in the ab-

sence of calibration. For example, Kukelova et al. propose

a 5-point pose estimator with unknown radial distortion and

focal length [10]. They employ an idea similar to the 1D

Radial Camera Model in order to efficiently obtain a pose

and 3-parameter calibration. Also, minimal 4-point solvers

for this same case are presented in [3, 9] in which they too

make use of a parametric model to obtain a solution. In con-

trast to these methods, we do not restrict the camera to be

able to be represented by a specific mode. Furthermore, we

extend our method to seamlessly aggregate data from sev-

eral views of the same camera to increase the accuracy of

the calibration and to better handle non-central systems.

3. The 1D Radial Camera Model

In order to calibrate any type of radially symmetric cam-

era, this paper builds on the 1D radial camera model. For a

more in-depth analysis the reader is referred do [17], how-

ever we briefly review it in this section for completeness.

Let Cd be the center of distortion for a camera exhibiting

radial distortion. Let xu denote the undistorted projection

of a 3D point X onto the camera’s image. As illustrated

Figure 1: Radial 1D Camera. Image plane (left) and top

view (right) of the projection of point X.

in Fig. 1, applying radial distortion maps xu to a point on

the radial line l = xu ×Cd through the center of distortion

and the undistorted image coordinates. Similarly, xu lies on

the line l = xd ×Cd defined by the distorted measurement

xd. Instead of explicitly modeling the radial distortion, the

1D radial camera model defines a projection up to radial

distortion. This is expressed as a mapping P
3 → P

1 that

associates each 3D point to a line λl = PrX. The projection

matrix Pr ∈ R
2×4 relates to the first two rows of the camera

pose (R|t) by

Pr =

[

0 −1
1 0

] [

R1 tx
R2 ty

]

, (1)

where Ri is the i-th row of the rotation matrix R. Notice

that the 1D radial camera model, other than unit aspect ra-

tio, makes no assumption on the internal calibration of the

camera. In fact, it describes both central and non-central

cameras as long as there is a single center of distortion, in-

cluding pinhole, fisheye, and catadioptric cameras.

As in [17], we assume that Cd is known, enabling us to

center the image around Cd. For most cameras, the center

of the image is a reasonable approximation for Cd. Alterna-

tively, it can be estimated using the visible rim of the cata-

dioptric mirror or the edge of the fisheye lens (c.f . Fig. 8).

4. Calibrating Central Radially Symmetric

Cameras

Given a 3D model of the scene, our goal is to estimate

both the extrinsic and intrinsic calibration from 2D-3D cor-

respondences (xi,Xi) between positions in an image taken

with a radially symmetric camera and the model. Since the

projection matrix Pr does not depend on the intrinsic cali-

bration, we use a two-stage approach. In the first stage, we

use RANSAC [5] to estimate the extrinsic calibration up to

an unknown translation along the optical axis. The inliers

to the pose are then used to non-parametrically estimate the

intrinsic calibration. Sec. 4.1 details the computation of the

partial extrinsic calibration. In Sec. 4.2, we then derive a

novel ordering constraint that allows us to compute the in-

trinsic calibration by solving a convex optimization prob-

lem. Sec. 4.3 shows that the same constraint can be used to

calibrate a camera from multiple images. We show in Sec. 5

2193



how to extend our approach to handle non-central radially

symmetric cameras.

4.1. Partial Extrinsic Calibration

Let xd = (xd, yd)
⊤ be the position of a distorted mea-

surement in a coordinate system centered at the center

of distortion. The radial line of the i-th correspondence

(xd
i,Xi) can then be expressed as

li =

[

−yid/x
i
d

1

]

=

[

li

1

]

= Pr X
i . (2)

By multiplying li by its perpendicular vector (1,−li)⊤, we

obtain

Pr1 ·X
i − li

(

Pr2 ·X
i
)

= 0 , (3)

where Prn represents the n-th row of the matrix Pr. Thus,

each 2D-3D correspondence gives us one constraint. Since

Pr is only defined up to scale, it can be estimated linearly

from seven matches by rearranging (3). Once we have an

estimate for Pr, we can recover the full rotation matrix R

by exploiting the fact that rotation matrices are orthonormal

matrices with determinant one (c.f . (1)).

Given a set of 2D-3D correspondences, we estimate Pr

by using the 7-point solver inside a RANSAC loop. In or-

der to distinguish between inliers and outliers, we measure

the subtended angle between the predicted and the observed

radial lines l̂i = PrX
i and li. A match is considered to be

an inlier if the angle is below a given threshold σ (set to 1◦

in our experiments).

Notice that Pr has only five degrees of freedom in total:

Three degrees of freedom for the rotation and two degrees

of freedom for the partial translation tx, ty . Thus, the lin-

ear 7-point solver is non-minimal. If a minimal solver is

required due to a high outlier ratio, the 5-point approach

from [10] can be used, which requires solving a fourth de-

gree polynomial in a single variable.

4.2. Non­Parametric Intrinsic Calibration

The intrinsic calibration of a camera defines a mapping

r(x) from image coordinates to viewing rays. In the case

of radial symmetry, the angle θ between the ray r(x) and

the optical axis for all positions x with the same distance to

the center of distortion, i.e., ‖x‖2 = r, is constant. Con-

sequently, the point X projecting to x has to lie on a cone

along the optical axis with opening angle θ (c.f . Fig. 1). For

two points xr1 , xr2 with radii r1 < r2, we have θr1 < θr2 .

In the following, we derive a geometric constraint from this

observation from which we explicitly compute the mapping

from radii to opening angles.

Given Pr (c.f . Sec. 4.1), the transformation of the 3D

points from the global into the local coordinate system of

the camera is defined up to a translation along the optical

axis. Using R, t′ = (tx, ty, 0)
⊤, we obtain an intermediate

(a) Single image central case. (b) Multi-image central case.

(c) Single image non-central. (d) Multi-image non-central.

Figure 2: Ordering constraints for different systems. The

abscissa for each figure, labeled z, are aligned with the op-

tical axis of the camera. For Figures a, b and c, rid > rjd.

coordinate system in which the unknown translation corre-

sponds to the position of the camera center c on the optical

axis. We notice that fixing c defines the opening angle θi
for a given 3D point RX+ t

′ in the intermediate coordinate

system. Thus, fixing c fully defines the intrinsic calibration

of the camera.

A geometric ordering constraint on the camera cen-

ter. We express each point (xi, yi, ẑi)
⊤ = (xi, yi, zi − c)⊤

as (ϕi, ρi, ẑi)
⊤ in a cylindrical coordinate system (c.f .

Fig. 2). Since we consider radially symmetric cameras, we

can drop the angle ϕ of the point around the optical axis

from the notation and only consider the distance of the 3D

point to the optical axis ρ and its depth z. Consider two

3D points pi = (ρi, ẑi), pj = (ρj , ẑj) in the intermediate

frame (c.f . Fig. 2a), corresponding to radii rid and rjd of the

distorted image measurements xd
i, xd

j . Without loss of

generality, let ρi 6= ρj and let

Iij = (ẑjρi − ẑiρj) / (ρi − ρj) (4)

be the intersection of the 2D line containing the point pair

with the optical axis z. In the case where rid = rjd, Iij cor-

responds to the camera center c. Unfortunately, it is rather

unlikely to find two features with exactly the same radius.

In [15], the authors propose to fit a line through 3D points

corresponding to similar radii to obtain a camera center per

radius. In contrast, we use an ordering constraint to directly

obtain a c as explained below.

Without loss of generality, assume that rid > rjd and thus

θi > θj . In the case that ρi > ρj , it follows that c < Iij (c.f .

Fig. 2a). Similarly, ρi < ρj yields the constraint c > Iij .
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Thus, for each point pair we get a one-sided constraint that

restricts the value of c to lie either to the left or to the right of

Iij . For each constraint we then build a cost function which

penalizes a given c that violates a one-sided constraint by

using a piecewise cost function. For rid > rjd and ρi > ρj

El
ij (c; pi, pj) =

{

0 c < Iij

f (Iij − c) otherwise
, (5)

which penalizes c if it is to the right of Iij (c.f . Fig 2a).

Here, f is a function depending on the distance between

the intersection point and the center c. For the opposite

configuration, either rid < rjd or ρi < ρj , we may build a

similar cost function which penalizes c to be to the left of

Iij .

Calibration through convex optimization. Using (5) we

can then take the sum over all the cost functions

E (c) =
∑

{i,j}∈L

El
ij +

∑

{i,j}∈R

Er
ij , (6)

where L = {{i, j} | ρi > ρj and rid > rjd} and R =

{{i, j} | ρi > ρj and rid < rjd}. If f is chosen to be a

convex function, E (c) will be convex. We can then obtain

the camera center, and thus the intrinsic calibration, by op-

timizing (6) using, e.g., Gradient-Descent.

We choose f to be an L1 norm to be robust to outliers,

while allowing E to remain convex. Furthermore, we pro-

pose a very simple algorithm for computing (6) when f is a

linear function. Since the slope of E(c) changes only wher-

ever there is an intersection, we may efficiently compute it

in two passes. We start by sorting the intersections, such

that Ik < Ik+1. On the first pass, from left to right, we deal

only with the intersections that constrain c to be to their

left (shown in green in Fig. 3a) and iteratively compute the

cost for each intersection. Starting with E (I0)
l
= 0 we can

express the cost of the kth intersection as the cost of the pre-

vious intersection plus the cost increase of the k violating

constraints from Ik−1 to Ik. Since f is a linear function, the

latter costs only depend on the distance between the current

intersection and the last, i.e.

E (Ik)
l
= E (Ik−1)

l
+ kf (Ik − Ik−1) . (7)

On the second pass we sweep in the opposite direction tak-

ing into account the intersections that constrain c to be to

their right. The cost of a given ck is obtained by check-

ing its nearest left- and right-constraining intersections and

summing their costs E(ck) = E
r (Ik) +E

l (Ik).

Selecting point pairs. Given N points in an image, it is im-

practical to exhaustively take all point pairs since the num-

ber of pairs is N(N − 1)/2. Instead, for a given image we

want to only operate on a fixed number of pairs. To do so,

we to sort the point pairs by their quality, i.e. pairs which

yield stable intersections close to c. For each pair pij we

(a) (b)

Figure 3: In a we show the single image linear cost function

proposed. In the multi-image case, each point pair defines a

2D constraint, depicted in b.

get ∆rij = ‖rid − rjd‖ and ∆ρij = ‖ρi − ρj‖. First, we

discard pairs with ∆ρij less than a given threshold, which

takes care of unstable intersections. Then we sort the pairs

using ∆rij in ascending order and take only the first Ns (set

to 120 in our experiments) pairs of the sorted list.

4.3. Joint Calibration from Multiple Images

The approach presented in Sec. 4.2 essentially deter-

mines an interval in which the camera center can lie in.

Using more points adds more constraints on this inter-

val, which should lead to more accurate estimates. Syn-

thetic experiments have shown that approximately 250 im-

aged points are enough to obtain a calibration that achieves

less than 1 pixels of RMSE on the reprojected points (c.f .

Fig. 5), while using less than 100 points leaves c very un-

derconstrained and the resulting calibration will be unreli-

able1. Naturally, additional points can be obtained by using

multiple images for the calibration. Thus, in this section we

show that our geometric ordering constraint can easily be

extended to allow calibrating a camera from M > 1 im-

ages.

By expressing 3D points in the ρz-plane we can trans-

form all cameras to a common frame of reference by finding

a one-dimensional relative translation between them (c.f .

Fig. 2b). This allows us to employ our one-sided constraint

to find this relative translation and a joint calibration.

Joint constraint for central cameras. Given two cameras

s(i) and s(j) we can express the intersection of any point

pair pij between them as

Is(i),s(j) =
(

zj − cs(j)

)

ρi −
(

zi − cs(i)

)

ρj , (8)

where s(i) indicates to which camera the point i corre-

sponds. Notice that this is almost the same as (4), however

(8) provides a constraint that now depends on two variables

(c.f . Fig. 3b), making the position of one camera depen-

dent on the other. The cost function E : RM 7→ R can be

also designed as a piecewise function. For the configuration

1Notice, that toolboxes as the one described in [13] suggest using 6 to

10 images. Assuming a calibration pattern with 48 corners, such methods

use up to 480 points.
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rid > rjd and ρi > ρj we define

El
ij

(

cs(i), cs(j)
)

=

{

0 Is(i),s(j) < 0

g
(

cs(i), cs(j)
)

otherwise,
(9)

where g is a cost function on the distance from the given

center pair to the intersection (c.f . Fig. 2b). As with (5),

we decide to use the L1 norm as a cost function to remain

robust to outliers.

Calibration through convex optimization . Similarly to

(6), we take the sum of all relevant point pairs and to get

E, which can be minimized using a convex optimization

method. Notice that the selection criteria for point pairs

described in Sec. 4.1 applies here as well, since we may ag-

gregate image radii from all cameras into one single sorted

list to choose Ns relevant pairs. Finally, we get a cali-

bration by translating the Z coordinate of the points by

the camera center that obtained the observation θi
(

rid
)

=

arctan
(

ρi/(zi − cs(i))
)

.

5. Calibrating Non-Central Cameras

Since we are only dealing with radially symmetric cam-

eras, the centers of the camera can be expressed as a func-

tion of the distorted image radius c = c(rd). So, any point

pi = (ρi, ẑi) has ẑi = zi − ci, where ci = c(rid).

Non-central constraint. Any point pair pij will constrain

both centers ci and cj (see Fig. 2c). Given N image points,

we have N − 1 constraints for each center we need to es-

timate. We treat each of the N camera centers as a differ-

ent view of the scene (i.e. s(i) = i) and apply the method

described in Sec. 4.3. However, in practice the N − 1
constraints might not limit the location of a given center

enough, yielding inaccurate results for centers with weak or

too few constraints (e.g. for centers that correspond to radii

near the edge or center of the image, since these are mostly

same-side constraints).

To solve this we propose to impose an ordering con-

straint to the centers. We first sort all the points pi by their

radii such that ri−1
d < rid < ri+1

d , which restricts their cor-

responding centers

c
(

ri−1
d

)

< c
(

rid
)

< c
(

ri+1
d

)

. (10)

This is sensible given that all radially symmetric non-central

systems known to the authors follow this ordering (e.g.

spherical catadioptric, para-catadioptric). This constraint

can seamlessly be translated into the one-sided constraints

(c.f . Fig. 4). We define

E
r
k(c) =

N
∑

k=0

(

Er
ik (c) + El

ik (c)
)

, (11)

i.e. the cost of the k-th point against the rest. Then for a

Figure 4: Illustration of the ordering constraint from simu-

lated data. In red, each center is constrained to lie above a

certain value, and vice versa for blue. Notice that we may

use any of the blue constraints lying to the left of any given

pixel radius and vice versa.

center ci the cost becomes

E (ci) =

i
∑

k=0

E
r
k (c) +

N
∑

k=i

E
l
k (c) , (12)

in other words, we use the one-sided left constraints of the

centers that should be larger than ci and the one-sided right

constraints of those centers that should be smaller than ci

(see Fig. 2c). Minimizing (12) we get a set of centers which

can be used to get the final calibration mapping θi
(

rid
)

=
arctan (ρi/(zi − ci)).

Joint solution for non-central cameras. To get a joint

non-central calibration we use a two step procedure. First,

we treat each camera as a central system and solve for their

joint calibration, which provides us with an estimate of their

displacements dk (see Fig. 2d). We use this to translate

all the data points across different views to be on the same

frame of reference, i.e. to have a mutually consistent depth.

Second, we solve for a single non-central system by treating

all the translated points as if they came from a single view.

This allows us to keep the number of points needed for a

successful calibration relatively low (around 350 points per

image, c.f . Fig. 5).

5.1. Refinement and Final Calibration

One of the primary benefits of our method is that we pro-

vide a calibration that does not rely on a given parametriza-

tion, thus we can accommodate a very wide range of cam-

eras; from planar to catadioptric, central and non-central.

However, we wish to refine our obtained solution by remov-

ing views and points based on their reprojection errors, and

to do so we must find a way to use the obtained mapping.

For this we opt to use a sliding median [8] of the calibration
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Figure 5: RMSE error when varying the number of matches

used to obtain the calibration (pixel σ set to 1.2). The red

asterisk indicates that prior to that number of matches, the

calibration failed.

data obtained2. For all views we compute corresponding

reprojection errors and remove those points whose errors

rise beyond a certain threshold (set to 5 pixels in our experi-

ments). After this, we get a final set of inliers and recompute

the calibration by repeating the corresponding procedure.

6. Experimental Evaluation

To evaluate the proposed method we perform exper-

iments with real and synthetic data. Since one of the

strengths of the method is that it can handle a very wide

array of cameras, we make a point of trying as many cam-

eras as possible (c.f . Fig. 8).

6.1. Synthetic Data

We first carried out experiments on synthetic data to eval-

uate the performance of our methods. We populate the

scene with 320 data points distributed randomly. To sim-

ulate the central case, we project the data points into the

camera using a pinhole model as well as two well-known

fisheye models, the Field of View (FOV) model [4] and the

equiangular model. For the non-central case, we chose a

spherical catadioptric camera. To compute the reflections

we use [2]. Fig. 7 shows the calibration output of the cen-

tral as well as the non-central simulations, Fig. 6 compares

the accuracy of the generated calibrations against those ob-

tained using the toolbox in [13], and Fig. 5 shows the error

w.r.t the number of matches used.

As it can be seen from Fig. 7, the results for the cen-

tral systems perfectly match the ground truth. In Fig. 7c

we show the benefit of relaxing the method to handle non-

central systems. At the beginning of the curve both or-

ange (central assumption) and blue (non-central) scatter

plots match. However, as the non-centrality of the spher-

ical model becomes more significant at higher radii of the

simulated image, the deviation is more apparent. In Fig. 7d

we show how the accuracy of c(rd) is affected when we do

not enforce the ordering constraint (10). We show the re-

2However, having a calibration that is agnostic to the particular optics

of the setup, one is free to use a more sophisticated method to approximate

the distortion function.

(a) Equiangular. (b) FOV.

(c) Spherical Catadioptric.

Figure 6: Comparison of the reprojection error and its stan-

dard deviation against [13]. To obtain the calibrations,

our method used 320 points while the method we compare

against used 21 images of a 48-point synthetic calibration

pattern. Notice that for Fig. 6c the error is always lower us-

ing our calibration since we explicitly support non-central

systems.

sulting calibration mappings compared against the ground

truth of the simulated data. This is of particular importance

for the simulated spherical catadioptric system since with

real data we don’t have reliable ground truth for c(rd).

6.2. Real Data

In order to test the flexibility of the method, we tried

several different cameras and lenses (c.f . Fig. 8): A Nikon

D300 coupled with a fisheye lens, a 360One VR catadiop-

tric lens and a spherical catadioptric lens (using a 3-inch

steel ball). To assess the performance for the mentioned mo-

bile phone attachments, we run tests using an iPhone 4 with

a GoPano catadioptric attachment. Results from other cam-

eras and lenses are provided as supplemental material [1].

Due to the high distortion observed with most of the

lenses, we don’t obtain a very high number of matches and

thus we must use the multi-camera methods. To get more

complete calibrations in the catadioptric cases we need to

increase the number of matches near the edges of the re-

flection. To do so, we first use an equiangular calibration:

θ = k rd where we find k by having θ = π/2 map to the

largest radii in the image. We use this to warp the image

into a cylindrical map which we use to get matches against

the SfM model3. Note that this places no restrictions on the

3The toolbox used for comparison had to be manually assisted to get

the corners of the calibration pattern for this particularly difficult data.
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(a) Nikon D300 with fisheye lens. (b) iPhone 4 with GoPano catadioptric lens.

(c) Spherical reflection with Nikon D300. (d) 360One VR catadioptric lens with Nikon D300.

Figure 9: Real calibrations for central and non-central cases. All results shown are compared against the calibration obtained

using [13], shown in gray. As it can be seen from all four cameras, our solution accurately match the one from this state-

of-the-art calibration toolbox. Calibration points are colored according to the image index used to emphasize the number of

images used per camera. To highlight the comparison with the reference calibration, we also plot the distortion function F
(the plot on the right for each case) as detailed in [13].

images we are able to handle, since the only assumption, as

before, is that the images are radially symmetric.

The SfM model used consists of a large-scale reconstruc-

tion, obtained in an outdoor location, c.f . Fig. 10. We took

several images with each camera type at the same location

and obtained putative 3D-2D matches (around 120 for each

image). In order to maximize the number of matches ob-

tained, we employed the method proposed in [12], modified

to return as many matches as possible. Because of the dras-

tically large distortion, we observed inlier ratios as low as

20%, and thus several images were needed for each cam-

era type (between 20 and 25) from which we were left with

approximately 500 points.

In Fig. 9 we show the calibration obtained for a selec-

tion of the tested systems. For each case, we obtained cal-

ibrations that closely match the calibration computed with

the toolbox in [13]. To emphasize the correctness of the

obtained calibration, we compare the previously discussed

mapping (θ(rd)) and the function F . This function is de-

scribed in [13] as the focal length as a function of the image

radius, where a point with image coordinates (u, v) can be

expressed in the camera frame as (u, v, F (rd))
⊤

. For the

fisheye images (c.f . Fig. 9a), we got a very high number of

matches, since the query images resembled the most to the

images used to construct the SfM model. For this particu-

lar model, we have enough data to see that the calibration

near the center of the image suffers more than the rest due to

weak constraints. However, for the case of the non-central

system (c.f . Fig. 9c) there is a larger mismatch throughout

between our obtained calibration and that of [13] since our

method fully supports non-central systems. For the GoPano

attachment, as shown in Fig. 9b, we have very few matches

near the border and this is reflected in the scattered data

points at the end of the curve. Nevertheless, we are overall

able to calibrate even such a low-quality lens system.

The reference calibration method additionally computes

the refined centers of distortion. However, the fact that our

calibration closely matches the reference calibration shows

that using the center of the image as the center of distortion

is a valid assumption in practice.

7. Conclusion

In this work we presented a novel, flexible, structure-

based calibration method for radially symmetric cameras.

Indeed, such subset of cameras encompasses most of the

systems used nowadays, such as planar, fisheye, catadiop-

tric, WFOV, and so on. We are thus able to handle the cali-
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