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Abstract

This paper presents a framework for rigid point-set regi-

stration and merging using a robust continuous data rep-

resentation. Our point-set representation is constructed by

training a one-class support vector machine with a Gaus-

sian radial basis function kernel and subsequently approxi-

mating the output function with a Gaussian mixture model.

We leverage the representation’s sparse parametrisation

and robustness to noise, outliers and occlusions in an effi-

cient registration algorithm that minimises the L2 distance

between our support vector–parametrised Gaussian mix-

tures. In contrast, existing techniques, such as Iterative

Closest Point and Gaussian mixture approaches, manifest

a narrower region of convergence and are less robust to oc-

clusions and missing data, as demonstrated in the evalua-

tion on a range of 2D and 3D datasets. Finally, we present

a novel algorithm, GMMerge, that parsimoniously and eq-

uitably merges aligned mixture models, allowing the frame-

work to be used for reconstruction and mapping.

1. Introduction

Point-set registration, the problem of finding the trans-

formation that best aligns one point-set with another, is fun-

damental in computer vision, robotics, computer graphics

and medical imaging. A general-purpose point-set registra-

tion algorithm operates on unstructured point-sets and may

not assume other information is available, such as labels or

mesh structure. Applications include merging multiple par-

tial scans into a complete model [16]; using registration re-

sults as fitness scores for object recognition [2]; registering

a view into a global coordinate system for sensor localisa-

tion [22]; and finding relative poses between sensors [36].

The dominant solution is the Iterative Closest Point

(ICP) algorithm [3] and variants due to its conceptual sim-

plicity, usability and good performance in practice. How-

ever, these are local techniques that are very susceptible to

local minima and outliers and require a significant amount

of overlap between point-sets. To mitigate the problem of
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local minima, other solutions have widened the region of

convergence [14], performed heuristic global search [25],

used feature-based coarse alignment [24] or used branch-

and-bound techniques to find the global minimum [37].

Our method widens the region of convergence and is ro-

bust to occlusions and missing data, such as those arising

when an object is viewed from different locations. The

central idea is that the robustness of registration is de-

pendent on the data representation used. We present a

framework for robust point-set registration and merging us-

ing a continuous data representation, a Support Vector–

parametrised Gaussian Mixture (SVGM). A discrete point-

set is mapped to the continuous domain by training a Sup-

port Vector Machine (SVM) and mapping it to a Gaus-

sian Mixture Model (GMM). Since an SVM is parametrised

by a sparse intelligently-selected subset of data points, an

SVGM is compact and robust to noise, fragmentation and

occlusions [33], crucial qualities for efficient and robust

registration. The motivation for a continuous representation

is that a typical scene comprises a single, seldom-disjoint

continuous surface, which cannot be fully modelled by a

discrete point-set sampled from the scene.

Our Support Vector Registration (SVR) algorithm min-

imises an objective function based on the L2 distance be-

tween SVGMs. Unlike the benchmark GMM registration

algorithm GMMReg [17], SVR uses an adaptive and sparse

representation with non-uniform and data-driven mixture

weights, enabling faster performance and improving the ro-

bustness to outliers, occlusions and partial overlap.

Finally, we propose a novel merging algorithm, GM-

Merge, that parsimoniously and equitably merges aligned

mixtures. Merging SVGM representations is useful for ap-

plications where each point-set may contain unique infor-

mation, such as reconstruction and mapping. Our registra-

tion and merging framework is visualised in Figure 1.

2. Related Work

The large volume of work published on ICP, its variants

and other registration techniques precludes a comprehen-

sive list, however the reader is directed to recent surveys

on ICP variants [23] and 3D point-set and mesh registration
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Figure 1. Robust point-set registration and merging framework. An nD point-set is represented as an SVGM by training a one-class SVM

(a) and then mapping it to a GMM (b). The SVR algorithm is used to minimise the L2 distance between two SVGMs in order to align the

densities (c). Finally, the GMMerge algorithm is used to parsimoniously fuse the two mixtures. The SVMs are visualised as support vector

points scaled by mixture weight and the SVGMs are coloured by probability value. Best viewed in colour.

techniques [31] for additional background. Of relevance to

our work are extensions that improve its occlusion robust-

ness, such as trimming [6]. Local methods that seek to im-

prove upon ICP’s basin of convergence and sensitivity to

outliers include LM-ICP [14], which uses a distance trans-

form to optimise the ICP error without establishing explicit

point correspondences.

Another family of approaches, to which ours belongs, is

based on the Gaussian Mixture Model (GMM) and show

an improved robustness to poor initialisations, noise and

outliers. Notable GMM algorithms for rigid and non-rigid

registration include Robust Point Matching [7], using soft

assignment and deterministic annealing, Coherent Point

Drift [21], Kernel Correlation [32] and GMMReg [17]. The

latter two do not establish explicit point correspondences

and both minimise a distance measure between mixtures.

GMMReg [17] defines an equally-weighted Gaussian at ev-

ery point in the set with identical and isotropic covariances

and minimises the L2 distance between mixtures. The Nor-

mal Distributions Transform (NDT) algorithm [19] is a sim-

ilar method, defining Gaussians for every cell in a grid

discretisation and estimating full data-driven covariances,

like [34]. Unlike our method, however, it imposes external

structure on the scene and uses uniform mixture weights.

In contrast, globally-optimal techniques avoid local min-

ima by searching the entire transformation space. Existing

3D methods [18, 37] are often very slow or make restrictive

assumptions about the point-sets or transformations. There

are also many heuristic or stochastic methods for global

alignment that are not guaranteed to converge, such as parti-

cle filtering [25], genetic algorithms [29] and feature-based

alignment [24]. A recent example is SUPER 4PCS, a four-

points congruent sets method that exploits a clever data

structure to achieve linear-time performance [20].

The rest of the paper is organised as follows: we present

the SVGM representation, its properties and implementa-

tion in Section 3, we develop a robust framework for SVGM

registration in Section 4, we propose an algorithm for merg-

ing SVGMs in Section 5, we experimentally demonstrate

the framework’s effectiveness in Section 6 and we discuss

the results and conclude in Sections 7 and 8.

3. Adaptive Point-Set Representation

A central idea of our work is that the robustness of point-

set registration is dependent on the data representation used.

Robustness to occlusions or missing data, more so than

noise, is of primary concern, because point-sets rarely over-

lap completely, such as when an object is sampled from a

different sensor location. Another consideration is the class

of optimisation problem a particular representation admits.

Framing registration as a continuous optimisation problem

involving continuous density functions may make it more

tractable than the equivalent discrete problem [17]. Con-

sequently, we represent discrete point-sets with Gaussian

Mixture Models (GMMs). Crucially, we first train a Sup-

port Vector Machine (SVM) and then transform this into a

GMM. Since the output function of the SVM only involves

a sparse subset of the data points, the representation is com-

pact and robust to noise, fragmentation and occlusions [33],

attributes that persist through the GMM transformation.

3.1. One­Class Support Vector Machine

The output function of an SVM can be used to approxi-

mate the surface described by noisy and incomplete point-

set data, providing a continuous implicit surface represen-

tation. Nguyen and Porikli [33] demonstrated that this rep-

resentation is robust to noise, fragmentation, missing data

and other artefacts for 2D shapes, with the same behaviour
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expected in 3D. An SVM classifies data by constructing

a hyperplane that separates data of two different classes,

maximising the margin between the classes while allowing

for some mislabelling [10]. Since point-set data contains

only positive examples, one-class SVM [26] can be used to

find the hyperplane that maximally separates the data points

from the origin or viewpoint in feature space. The train-

ing data is mapped to a higher-dimensional feature space,

where it may be linearly separable from the origin, with a

non-linear kernel function.

The output function f(x) of one-class SVM is given by

f(x) =
ℓ
∑

i=1

αiK(xi,x)− ρ (1)

where xi are the point vectors, αi are the weights, x is the

input vector, ρ is the bias, ℓ is the number of training sam-

ples and K is the kernel function that evaluates the inner

product of data vectors mapped to a feature space. We use

a Gaussian Radial Basis Function (RBF) kernel

K(xi,x) = exp
(

−γ ‖xi − x‖2
2

)

(2)

where γ is the Gaussian kernel width.

The optimisation formulation in [26] has a parameter

ν ∈ (0, 1] that controls the trade-off between training error

and model complexity. It is a lower bound on the fraction of

support vectors and an upper bound on the misclassification

rate [26]. The data points with non-zero weights αSV
i are

the support vectors xSV
i ∈ {xi : αi > 0, i = 1, . . . , ℓ}.

We estimate the kernel width γ automatically for each

point-set by noting that it is inversely proportional to the

square of the scale σ. For an ℓ ×D point-set X with mean

x̄, the estimated scale σ̂ is proportional to the 2Dth root of

the generalised variance

σ̂ ∝

∣

∣

∣

∣

1

ℓ− 1
(X− 1x̄⊺)⊺(X− 1x̄⊺)

∣

∣

∣

∣

1/2D

. (3)

If a training set is available, better performance can be

achieved by finding γ using cross-validation, imposing a

constraint on the registration accuracy and searching in the

neighbourhood of 1/2σ̂2.

3.2. Gaussian Mixture Model Transformation

In order to make use of the trained SVM for point-set

registration, it must first be approximated as a GMM. We

use the transformation identified by Deselaers et al. [12] to

represent the SVM in the framework of a GMM, without

altering the decision boundary. A GMM converted from an

SVM will necessarily optimise classification performance

instead of data representation, since SVMs are discrimina-

tive models, unlike standard generative GMMs. This allows

it to discard redundant data and reduces its susceptibility to

varying point densities, which are prevalent in real datasets.

The decision function of an SVM with a Gaussian RBF

kernel can be written as

r(x) = argmax
k∈{−1,1}







ℓSV
∑

i=1

kαSV

i e−γ‖xSV

i
−x‖2

2 − kρ







(4)

where ℓSV is the number of support vectors and k is the

class, positive for inliers and negative otherwise for one-

class SVM. The GMM decision function can be written as

r′(x) = argmax
k∈{−1,1}

{

Ik
∑

i=1

p(k)p(i|k)N
(

x
∣

∣µki, σ
2

k

)

}

(5)

where Ik is the number of clusters for class k, p(k) is the

prior probability of class k, p(i|k) is the cluster weight of

the ith cluster of class k andN
(

x
∣

∣µki, σ
2

k

)

is the Gaussian

representing the ith cluster of class k with mean µki and

variance σ2

k, given by

N
(

x
∣

∣µki, σ
2

k

)

=
1

(2πσ2

k)
D/2

exp

(

−
‖x− µki‖

2

2

2σ2

k

)

. (6)

Noting the similarity of (4) and (5), the mapping

µki =

{

xSV
i if k = +1

0 else
(7)

σ2

k =

{

1/2γ if k = +1

N∞ else
(8)

φi = p(k)p(i|k) =

{

αSV
i (2πσ2

k)
D/2 if k = +1

ρ(2πσ2

k)
D/2 else

(9)

can be applied, where φi is the mixture weight, that is, the

prior probability of the ith component. The bias term ρ is

approximated by an additional density given to the nega-

tive class with arbitrary mean, very high variance N∞ and

a cluster weight proportional to ρ. We omit this term from

the registration framework because it does not affect the op-

timisation. The resulting GMM is parametrised by

G =
{

µi, σ
2, φi

}ℓSV

i=1
. (10)

While we transform an SVM into a GMM, there are

many other ways to construct a GMM from point-set

data. Kernel Density Estimation (KDE) with identically-

weighted Gaussian densities has frequently been used for

this purpose, including fixed-bandwidth KDE with isotropic

covariances [17, 13], variable-bandwidth KDE with non-

identical covariances [9] and non-isotropic covariance KDE

[34]. The primary disadvantage of these methods is that the

number of Gaussian components is equal to the point-set

size, which can be very large for real-world datasets. In

contrast, our work intelligently selects a sparse subset of
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(a) Point-Set A (b) KDE-GMM A (c) SVGM A

(d) Point-Set B (e) KDE-GMM B (f) SVGM B

Figure 2. The effect of significant occlusion on two point-set repre-

sentations, using the same parameters for both. Our SVGM repre-

sentation is, qualitatively, almost identical when occluded (f) and

unoccluded (c), whereas the fixed-bandwidth KDE representation

is much less robust to occlusion (e). Best viewed in colour.

the data points to locate the Gaussian densities and weights

them non-identically, making it more robust to occlusions

and missing data, as demonstrated in Figure 2.

Expectation Maximisation (EM) [11] can also be used to

construct a GMM with fewer components than KDE. EM

finds the maximum likelihood estimates of the GMM pa-

rameters, where the number of densities is specified a priori,

unlike our method. To initialise the algorithm, the means

can be chosen at random or using the k-means algorithm; or,

an initial Gaussian can be iteratively split and re-estimated

until the number of densities is reached [12]. However, de-

liberately inflating the number of components can be slow

and sensitive to initialisation [28, p. 326].

4. Support Vector Registration

Once the point-sets are in mixture model form, the regi-

stration problem can be posed as minimising the distance

between mixtures. Like Jian and Vemuri [17], we use the

L2 distance, which can be expressed in closed-form. The

L2E estimator minimises the L2 distance between densities

and is known, counter-intuitively, to be inherently robust to

outliers [27], unlike the maximum likelihood estimator that

minimises the Kullback-Leibler divergence.

Let X be the moving model point-set, Y be the fixed

scene point-set, GX and GY be GMMs converted from

SVMs trained on X and Y respectively, and T (G,θ) be the

transformation model parametrised by θ. The L2 distance

between transformed GX and GY is given by

DL2
(GX ,GY ,θ) =

∫

RD

(p (x|T (GX ,θ))− p (x|GY))
2
dx

(11)

where p (x|G) is the probability of observing a point x given

a mixture model G with ℓ components, that is

p (x|G) =
ℓ
∑

i=1

φiN
(

x
∣

∣µi, σ
2
)

. (12)

Expanding (11), the last term is independent of θ and the

first term is invariant under rigid transformations. Both are

therefore removed from the objective function. The middle

term is the inner product of two Gaussian mixtures and has

a closed form that can be derived by applying the identity

∫

RD

N
(

x
∣

∣µ1, σ
2

1

)

N
(

x
∣

∣µ2, σ
2

2

)

dx

= N
(

0
∣

∣µ1 − µ2, σ
2

1 + σ2

2

)

. (13)

Therefore, noting that σ2

X = σ2

Y in our formulation, the

objective function for rigid registration is defined as

f (θ) = −
m
∑

i=1

n
∑

j=1

φi,Xφj,YN
(

0
∣

∣µ′
i,X − µj,Y , 2σ

2
)

(14)

where m and n are the number of components in GX and GY
respectively and µ′

i,X = T (µi,X ,θ). This can be expressed

in the form of a discrete Gauss transform, which has a com-

putational complexity of O(mn), or the fast Gauss trans-

form [15], which scales as O(m+ n).
The gradient vector is derived as in [17]. Let M0 =

[

µ1,X , . . . ,µm,X

]⊺

be the m × D matrix of the means

from GX and M = T (M0,θ) be the transformed matrix,

parametrised by θ. Using the chain rule, the gradient is
∂f
∂θ = ∂f

∂M
∂M
∂θ . Let G = ∂f

∂M be an m × D matrix, which

can be found while evaluating the objective function by

Gi = −
1

2σ2

m
∑

j=1

fij
(

µ′
i,X − µj,Y

)

(15)

where Gi is the ith row of G and fij is a summand of f .

For rigid motion, M = M0R
⊺ + t where R is the rotation

matrix and t is the translation vector. The gradients with

respect to each motion parameter are given by

∂f

∂t
= G⊺1m (16)

∂f

∂ri
= 1

⊺

D

(

(G⊺M0) ◦
∂R

∂ri

)

1D (17)

where 1i is the i-dimensional column vector of ones, ◦ is the

Hadamard product and ri are the elements parametrising R:

rotation angle α for 2D and a unit quaternion for 3D. For the

latter, the quaternion is projected back to the space of valid

rotations after each update by normalisation.

Since the objective function is smooth, differentiable and

convex in the neighbourhood of the optimal motion parame-

ters, gradient-based numerical optimisation methods can be
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used, such as nonlinear conjugate gradient or quasi-Newton

methods. We use an interior-reflective Newton method [8]

since it is time and memory efficient and scales well. How-

ever, since the objective function is non-convex over the

search space, this approach is susceptible to local minima,

particularly for large motions and point-sets with symme-

tries. A multi-resolution approach can be adopted, increas-

ing γ at each iteration and initialising with the currently op-

timal transformation. SVR is outlined in Algorithm 1.

Algorithm 1 Support Vector Registration (SVR): A robust

algorithm for point-set registration using one-class SVM

Input: model point-set X = {xi}
ℓX
i=1

, scene point-set Y =

{yi}
ℓY
i=1

, transformation model T parametrised by θ,

initial parameter θ0 such as the identity transformation

Output: locally optimal transformation parameter θ∗ such

that T (X ,θ∗) is best aligned with Y
1: Select ν and γ by estimation or cross-validation

2: Initialise transformation parameter: θ ← θ0

3: repeat

4: Train SVMs:

SX =
{

xSV
i , αSV

i,X

}m

i=1
← trainSVM(X , ν, γ)

SY =
{

ySV
i , αSV

i,Y

}n

i=1
← trainSVM(Y, ν, γ)

5: Convert SVMs to GMMs using (7), (8) and (9):

GX =
{

µi,X , σ2, φi,X

}m

i=1
← toGMM(SX , γ)

GY =
{

µi,Y , σ
2, φi,Y

}n

i=1
← toGMM(SY , γ)

6: Optimise the objective function f (14) using the

gradient (16), (17) with a trust region algorithm

7: Update the parameter θ ← argminθ f (θ)
8: Anneal: γ ← δγ
9: until change in f or iteration number meets a condition

5. Merging Gaussian Mixtures

For an SVGM to be useful for applications where each

point-set may contain unique information, such as map-

ping, an efficient method of merging two aligned mixtures

is desirable. A naı̈ve approach is to use a weighted sum

of the Gaussian mixtures [12], however, this would result

in an unnecessarily high number of components with sub-

stantial redundancy. Importantly, the probability of regions

not observed in both point-sets would decrease, meaning

that regions that are often occluded would disappear from

the model as more mixtures were merged. While the time-

consuming process of sampling the combined mixture and

re-estimating it with EM would eliminate redundancy, it

would not alleviate the missing data problem. The same

applies to faster sample-free variational-Bayes approaches

[4]. Sampling (or merging the point-sets) and re-estimating

an SVGM would circumvent this problem, since the dis-

criminative framework of the SVM is insensitive to higher-

density overlapping regions, but this is not time efficient.

Algorithm 2 outlines GMMerge, our efficient algo-

rithm for parsimoniously approximating the merged mix-

ture without weighting the intersection regions dispropor-

tionately. Each density of GX is re-weighted using a

sparsity-inducing piecewise linear function. The parame-

ter t ∈ [0,∞) controls how many densities are added. For

t = 0, GXY contains only GY . As t→∞, GXY additionally

contains every non-redundant density from GX . Figure 3

shows the SVGM representations of two 2D point-sets, the

naı̈vely merged mixture and the GMMerge mixture.

Algorithm 2 GMMerge: An algorithm for parsimonious

Gaussian mixture merging

Input: aligned mixture models with unknown overlap GX
and GY , parametrised by means µ, variances σ2 and

mixture weights φ, and merging parameter t
Output: merged model GXY

1: Initialise merged model: GXY ← GY
2: for i = 1 . . .m do

3: For the ith density of GX , calculate:

∆ = p
(

µi,X

∣

∣Gi,X
)

− p
(

µi,X

∣

∣GY
)

4: Update weight using sparsity-inducing function:

φi,X ← φi,X max (0,min (1, t∆))
5: if φi,X > 0 then

6: Add to merged mixture: GXY ← Gi,X · GXY

7: end if

8: end for

9: Renormalise GXY

6. Experimental Results

SVR was tested using many different point-sets, includ-

ing synthetic and real datasets in 2D and 3D, at a range

of motion scales and outlier, noise and occlusion fractions.

In all experiments, the initial transformation parameter θ

was the identity, ν was 0.01 and γ was selected by cross-

validation, except where otherwise noted. For all bench-

mark methods, parameters were chosen using a grid search.

6.1. 2D Registration

To test the efficacy of SVR for 2D registration, the

four point-sets in Figure 4 were used: ROAD
1, CONTOUR,

FISH and GLYPH
2. Three benchmark algorithms were cho-

sen: Gaussian Mixture Model Registration (abbreviated to

GMR) [17], Coherent Point Drift (CPD) [21] and Iterative

Closest Point (ICP) [3]. Annealing was applied for both

SVR (δ = 10) and GMR. Note that the advantages of SVR

manifest themselves more clearly on denser point-sets.

1Point-set from Tsin and Kanade [32], available at http://www.

cs.cmu.edu/˜ytsin/KCReg/KCReg.zip
2Point-sets from Chui and Rangarajan [7], available at http://

cise.ufl.edu/˜anand/students/chui/rpm/TPS-RPM.zip
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(a) Aligned mixture GX (b) Aligned mixture GY (c) Naı̈ve merge (d) GMMerge (e) Ground truth merge

Figure 3. Merging Gaussian mixtures (a) and (b) with a naı̈ve weighted sum (c) and GMMerge (d). The mixture produced by GMMerge is

almost identical to the ground truth (e), while the naı̈ve approach over-emphasises overlapping regions. Best viewed in colour.

(a) ROAD with rotation (b) CONTOUR with outliers

(c) FISH with noise (d) GLYPH with occlusion

Figure 4. Sample scene (left) and model (right) point-sets from

each 2D dataset, undergoing a range of perturbations.

Table 1. Convergence range (in radians). All rotation initialisa-

tions within these ranges converged (rotation error ≤ 1
◦).

Point-Set SVR GMR CPD ICP

ROAD -3.1–3.1 -3.0–3.0 -1.6–1.6 -0.8–0.8

CONTOUR -1.6–1.6 -1.5–1.5 -1.5–1.5 -0.1–0.1

FISH -1.6–1.6 -1.5–1.5 -1.2–1.3 -0.4–0.5

GLYPH -1.6–1.6 -1.6–1.6 -1.6–1.5 -0.4–0.4

The range of motions for which a correct registration re-

sult was attained was tested by rotating the model point-set

by α ∈ [−3.14, 3.14] radians with a step size of 0.01. In Ta-

ble 1, we report the range of contiguous initial rotations for

which the algorithm converged, chosen as a rotation error

≤ 1◦. They show that SVR has a wider basin of conver-

gence than the other methods, even for sparse point-sets.

To test the algorithm’s robustness to outliers, additional

points were randomly drawn from the uniform distribution

and were concatenated with the model and scene point-sets

separately. To avoid bias, the outliers were sampled from

the minimum covering circle of the point-set. The motion

was fixed to a rotation of 1 radian (57◦) and the experiment

was repeated 50 times with different outliers each time. The

mean rotation error for a range of outlier fractions is shown

in Figure 5a and indicates that the proposed method is more

robust to outliers than the others for large outlier fractions.

0 0.4 0.8
0

1

Outlier Fraction
R

o
ta

ti
o
n
 E

rr
o
r

(a) Rotation error vs outlier fraction

0 0.5 1
0

1

Noise Fraction

R
o
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o
n
 E
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o
r

(b) Rotation error vs noise fraction

0 0.25 0.5
0

1

Occluded Fraction

R
o
ta

ti
o
n
 E

rr
o
r

(c) Rotation error vs occluded fraction

 

SVR

GMR

CPD

ICP

Figure 5. Outlier, noise and occlusion results for the 2D point-sets.

The mean rotation error (in radians) of 50 repetitions is reported

for each and the results show that SVR is relatively robust to a

large range of perturbations commonly found in real data.

To test for robustness to noise, a noise model was applied

to the model point-set by adding Gaussian noise to each

point sampled from the distribution N (0, (λσ̂)2) , where λ
is the noise fraction and σ̂ is the estimated generalised stan-

dard deviation across the entire point-set (3). A fixed rota-

tion of 1 radian was used and the experiment was repeated

50 times, resampling each time. The average rotation er-

ror for a range of noise fractions is shown in Figure 5b and

indicates that SVR is comparable to the other methods.

To test for robustness to occlusions, we selected a ran-

dom seed point and removed a fraction of the model point-

set using k-nearest neighbours. A fixed rotation of 1 radian

was used and the experiment was repeated 50 times with

different seed points. The mean rotation error for a range of

occlusion fractions is shown in Figure 5c and indicates that

the algorithm is more robust to occlusion than the others.
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Table 2. Number of point-set pairs that converged for a range of

relative poses. Mean computation time in seconds is also reported.

Local Global

Pose SVR GMR CPD ICP GOI S4P

±24◦ 30 29 26 28 30 29

±48◦ 29 20 18 19 27 24

±72◦ 16 13 14 13 18 17

±96◦ 4 2 3 1 10 13

Runtime 0.2 19.2 5.7 0.04 1407 399

6.2. 3D Registration

The advantages of SVR are particularly apparent with

dense 3D point-sets. For evaluation, we used DRAGON-

STAND
3, AASS-LOOP

4 and HANNOVER25 and seven bench-

mark algorithms: GMMReg (abbreviated to GMR) [17],

CPD [21], ICP [3], NDT Point-to-Distribution (NDP)

[19] and NDT Distribution-to-Distribution (NDD) [30],

Globally-Optimal ICP (GOI) [37] and SUPER 4PCS (S4P)

[20]. Annealing was used only where indicated.

To evaluate the performance of the algorithm with re-

spect to motion scale, we replicated the experiment in [17]

using the DRAGON-STAND dataset. This contains 15 self-

occluding scans of the dragon model acquired from differ-

ent directions. We registered all 30 point-set pairs with a

relative rotation of ±24◦ and repeated this for ±48◦, ±72◦

and ±96◦. As per [17], the criterion for convergence was

q̂ · q > 0.99, where q̂ and q are the estimated and ground

truth quaternions respectively. While γ was selected by

cross-validation, using the estimate σ̂ yielded a very sim-

ilar result. The number of correctly converged registrations

is reported in Table 2, showing that SVR has a significantly

larger basin of convergence than the other local methods

and is competitive with the slower global methods.

A representative sensitivity analysis is shown in Figure 6

for the DRAGON-STAND dataset. It indicates that rotation

error is quite insensitive to perturbations in γ and is very in-

sensitive to ν, justifying the choice of fixing this parameter.

To evaluate occlusion robustness, the same procedure

was followed as for 2D, using the DRAGON-STAND dataset.

The mean rotation error (in radians) and the fraction of cor-

rectly converged point-set pairs with respect to the fraction

of occluded points is shown in Figure 7, for relative poses of

±24◦ and ±48◦. The results show that SVR is significantly

more robust to occlusion than the other methods.

Finally, we report registration results on two large real-

world 3D datasets shown in Figure 8: AASS-LOOP (60 in-

door point-sets with ∼13 500 points on average) and HAN-

3Point-set from Brian Curless and Marc Levoy, Stanford University, at

http://graphics.stanford.edu/data/3Dscanrep/
4Point-set from Martin Magnusson, Örebro University, at http://

kos.informatik.uni-osnabrueck.de/3Dscans/
5Point-set from Oliver Wulf, Leibniz University, at http://kos.

informatik.uni-osnabrueck.de/3Dscans/
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Figure 6. Sensitivity analysis for γ and ν. The median rotation er-

ror (in radians) of all DRAGON-STAND point-sets with ±24
◦ pose

differences are plotted with respect to multiples of γ̂ = 1/2σ̂2.
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Figure 7. Mean rotation error (in radians) and convergence rate of

all DRAGON-STAND point-sets with ±24
◦ and ±48

◦ pose differ-

ences, with respect to the fraction of occluded points.

NOVER2 (923 outdoor point-sets with ∼10 000 points on

average), after downsampling using a 0.1 m grid. Both

were captured using a laser scanner and ground truth was

provided. These are challenging datasets because sequen-

tial point-sets overlap incompletely and occluded regions

are present. The results for registering adjacent point-sets

are shown in Table 3 for AASS-LOOP and Table 4 for HAN-

NOVER2. The ICP and annealed NDT results are reported

directly from Stoyanov et al. [30] and we use their criteria

for a successful registration (inlier): a translation error less

than 0.5 m and a rotation error less than 0.2 radians. SVR

outperforms the other methods by a significant margin, even

more so when annealing (δ = 2) is applied (SVR+).

The mean computation speeds of the experiments, re-

gardless of convergence, are reported in Tables 2, 3 and 4.

All experiments were run on a PC with a 3.4 GHz Quad

Core CPU and 8 GB of RAM. The SVR code is written

in unoptimised MATLAB, except for a cost function in

C++, and uses the LIBSVM [5] library. The benchmark-
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(a) AASS-LOOP (b) HANNOVER2

Figure 8. Two large-scale 3D datasets.

Table 3. Registration results for AASS-LOOP. While mean transla-

tion error (in metres) and rotation error (in radians) are commonly

reported, the percentage of inliers (successful registrations) is a

more useful metric for comparison. The mean computation time

(in seconds) is also reported. SVR+ is SVR with annealing.

Metric SVR SVR+ GMR ICP NDP NDD S4P

Transl. 0.95 0.67 1.61 0.99 1.10 0.85 0.71

Rotation 0.08 0.06 0.12 0.04 0.02 0.06 0.32

Inlier % 81.4 86.4 18.6 55.2 50.0 63.8 78.0

Runtime 3.43 29.7 599 10.8 9.12 1.02 60.7

Table 4. Registration results for HANNOVER2. The mean transla-

tion error (in metres), rotation error (in radians), inlier percentage

and mean runtime (in seconds) are reported. SVR+ uses annealing.

Metric SVR SVR+ GMR ICP NDP NDD S4P

Transl. 0.10 0.09 1.32 0.43 0.79 0.40 0.40

Rotation 0.01 0.01 0.05 0.05 0.05 0.05 0.03

Inlier % 99.8 99.8 8.88 74.4 54.2 76.4 75.0

Runtime 14.0 32.6 179 5.68 4.03 0.51 39.7

ing code was provided by the respective authors, except

for ICP, for which a standard MATLAB implementation

with k-d tree nearest-neighbour queries was used. For the

DRAGON-STAND speed comparison, all point-sets were ran-

domly downsampled to 2 000 points, because GMR, CPD,

GOI and S4P were prohibitively slow for larger point-sets.

7. Discussion

The results show that SVR has a larger region of con-

vergence than the other methods and is more robust to oc-

clusions. This is an expected consequence of the SVGM

representation, since it is demonstrably robust to missing

data. In addition, the computation time results show that

it scales well with point-set size, unlike GMR and CPD,

largely due to the data compression property of the one-

class SVM. There is a trade-off, controlled by the parameter

γ, between registration accuracy and computation time.

For the application of accurate reconstruction using our

framework, the one-class SVM may be replaced with a two-

class SVM to better model the fine details of a scene. To

generate negative class (free space) training points, surface

points were displaced along their approximated normal vec-

tors by a fixed distance d and then those points that were

closer than 0.9d to their nearest surface point were dis-

carded. The SVGMs constructed using this approach may

be fused using GMMerge. However, for the purposes of

registration, capturing fine detail in this way is unnecessary,

counter-productive and much less efficient.

While SVR is a local algorithm, it can still outper-

form global algorithms on a number of measures, partic-

ularly speed, for certain tasks. In Section 6.2, we com-

pared SVR with the guaranteed-optimal method Globally-

Optimal ICP (GOI) [37] and the faster but not optimal

method SUPER 4PCS (S4P) [20]. The motion scale re-

sults of GOI were comparable to our method, while the av-

erage runtime was four orders of magnitude longer. Note

that, for point-sets with missing data or partial overlap, a

globally-optimal alignment is not necessarily correct. S4P

had a more favourable runtime–accuracy trade-off but was

nonetheless outperformed by SVR.

8. Conclusion

In this paper, we have presented a framework for robust

point-set registration and merging using a continuous data

representation. Our point-set representation is constructed

by training a one-class SVM and then approximating the

output function with a GMM. This representation is sparse

and robust to occlusions and missing data, which are crucial

attributes for efficient and robust registration.

The central algorithm, SVR, outperforms state-of-the-

art approaches in 2D and 3D rigid registration, exhibiting

a larger basin of convergence. In particular, we have shown

that it is robust to occlusion and missing data and is compu-

tationally efficient. The GMMerge algorithm complements

the registration algorithm by providing a parsimonious and

equitable method of merging aligned mixtures, which can

subsequently be used as an input to SVR.

There are several areas that warrant further investigation.

Firstly, there is significant scope for optimising the algo-

rithm using, for example, approximations like the improved

fast Gauss Transform [35] or faster optimisation algorithms

that require an analytic Hessian. Secondly, non-rigid regist-

ration is a natural extension to this work and should benefit

from the robustness of SVR to missing data. It may also be

useful to train the SVM with full data-driven covariance ma-

trices [1] and use the full covariances for registration [30].

Finally, methods of constructing tight bounds for an effi-

cient branch-and-bound framework based on SVR could be

investigated in order to implement a globally-optimal regi-

stration algorithm.
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