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Abstract

Recently several generalizations of the popular latent

structural SVM framework have been proposed in the lit-

erature. Broadly speaking, the generalizations can be di-

vided into two categories: (i) those that predict the output

variables while either marginalizing the latent variables or

estimating their most likely values; and (ii) those that pre-

dict the output variables by minimizing an entropy-based

uncertainty measure over the latent space. In order to aid

their application in computer vision, we study these gen-

eralizations with the aim of identifying their strengths and

weaknesses. To this end, we propose a novel prediction cri-

terion that includes as special cases all previous prediction

criteria that have been used in the literature. Specifically,

our framework’s prediction criterion minimizes the Aczél

and Daròczy entropy of the output. This in turn allows us

to design a learning objective that provides a unified frame-

work (UF) for latent structured prediction. We develop a

single optimization algorithm and empirically show that it

is as effective as the more complex approaches that have

been previously employed for latent structured prediction.

Using this algorithm, we provide empirical evidence that

lends support to prediction via the minimization of the la-

tent space uncertainty.

1. Introduction

Structured output prediction methods [2, 19] have

gained popularity in computer vision due to their ability to

provide an elegant formulation for systems that perform

various important visual tasks such as object detection [4]

or semantic segmentation [13]. In the supervised setting

these methods assume that training data is fully labeled.

However in many computer vision tasks it can be very ex-

pensive, or even impossible, to gather such fully supervised

datasets. For example when performing action recognition,

we may know that a person is performing an action in the

image. However, the exact location of the person may not

be known as it is more expensive to obtain bounding box

annotations compared to image-level annotations.

In order to learn from weakly supervised datasets

(that is, datasets whose samples contain missing infor-

mation in the annotation), a popular approach is to use

the latent structural support vector machine (LSSVM)

framework [10, 28]. The LSSVM framework models

the missing information of weakly supervised datasets

with latent/hidden variables. Its prediction criterion is the

maximization of the joint posterior probability over the

output and hidden variables. Its learning objective is an

upper bound on a user-specified loss function that provides

a measure of the prediction risk. Recently, several gener-

alizations of the LSSVM framework have been proposed.

While the generalized frameworks share the common

characteristic that their parameters are estimated by min-

imizing the prediction risk, they differ from each other in

the prediction criterion. Specifically, the methods can be

separated into two categories. The first category predicts

the output while marginalizing over the latent variable or

setting it to its most likely value, and the second performs

prediction while minimizing the uncertainty over the latent

space with the use of an entropy-based uncertainty measure.

In this paper, our goal is to study the LSSVM frame-

work and its generalizations in order to aid their application

in computer vision. We propose a natural unified frame-

work that contains all previous loss-based latent structured

prediction frameworks as special cases. The UF performs

inference of the output variable by minimizing the uncer-

tainty over the hidden variable as measured by the Aczél

and Daròczy (AD) entropy. We derive an optimization

algorithm based on the concave convex procedure (CCCP)

presented in [29] for learning the parameters of the UF.

This allows us to compare the prediction criterion of

all frameworks presented in Section 2 by discounting

any variability that may arise due to differences in the

optimization algorithm. We tested the UF, LSSVM, and
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LSSVM’s generalizations on the task of multiple gesture

recognition from video sequences and action recognition in

images. Our experiments convincingly demonstrate that,

for large and ambiguous latent spaces, the entropy-based

prediction criterion provides more accurate results.

2. Related Work

Two types of methods have been proposed to perform

structured output prediction in the presence of latent

variables. With probabilistic methods the parameters

are estimated by maximizing the (incomplete) data

log-likelihood. One famous example is the Expectation-

Maximization (EM) algorithm [6, 24]. EM and its variants

[12, 18, 22] have been widely used to learn the parameters

of a model with latent variables.

In this paper, we are primarily interested in the sec-

ond type of methods where the parameters are learned

by minimizing the regularized empirical risk. The risk

is measured by a user-specified loss function. The most

commonly used example of a loss-based framework is the

latent structural support vector machine (LSSVM) [10, 28].

LSSVM extends structural support vector machines

(SSVM) for structured output prediction [25, 26] to latent

variable models. The LSSVM model performs prediction

by maximizing the joint posterior probability over the out-

put and hidden variables. The parameters of the model are

learned by minimizing an upper bound on the user-defined

loss. Due to its simplicity and computational efficiency,

the LSSVM formulation has gained popularity among the

computer vision community with several applications such

as object detection [10, 32], image segmentation [13], in-

door scene interpretation [27] and action classification [3].

Indeed, its formulation enables LSSVM to be optimized

with energy minimization techniques such as graph

cuts [5]. However, this advantage is not reflected in our

experiments as we choose application problems where all

output configurations are computable in a computationally

feasible manner, in order to remove from our comparison

the possible effects of the use of approximation methods.

Recent years have witnessed the development of several

generalizations of LSSVM. While all these frameworks

estimate the parameters by minimizing an upper bound on

the empirical risk, they differ greatly in their prediction

criterion and can be divided into two categories. The

first category uses marginalization of the latent variables.

Schwing et al. [23] introduce a temperature parameter ǫ

and propose a family of models, which we will refer to

as the ǫ-framework. The prediction criterion of the ǫ-

framework can range from the maximization over the

output and hidden variables (by setting ǫ to the limit value

of 0, noted ǫ ց 0, recovering the LSSVM model) to the

marginalization over these variables (by setting ǫ = 1).

Ping et al. [21] introduce marginal structured support

vector machines (MSSVM). The MSSVM prediction

criterion involves marginalizing the latent variables to

estimate the probability of output variables. They also

describe a more general framework with temperature

parameters that includes LSSVM [10, 28], MSSVM [21]

and the ǫ-framework [23] as special cases. The second

category uses entropy as an uncertainty measure on the

value of the hidden variable. Specifically, Miller et al. [17]

proposed the max-margin min-entropy (M3E) family of

models. M3E models account for uncertainty over the

hidden variable by predicting the output with minimal

Rényi entropy.

Unlike LSSVM, its generalizations mentioned above

have not been widely used by the computer vision com-

munity. We believe that the reason for this is three-fold.

First, there have been limited experimental results reported

in the literature that compare the merits of each of these

methods. Second, even in the limited experiments, it is

difficult to assess whether the reported improvements of

one method over the other are due to a better learning

objective or a better optimization algorithm. Third, each

method has in the best case a completely different software

to the other, and in the worst case no publicly available

implementation. This prevents a user, who is primarily

interested in exploiting the advances made in machine

learning to improve the state of the art in computer vision,

to use the more sophisticated learning formulations.

Our goal is to study these generalizations and to de-

fine a simple prediction criterion that allows us to construct

a Unified Framework (UF) for loss-based latent structured

prediction. Our UF recovers all the aforementioned

frameworks, that is, LSSVM [10, 28], MSSVM [21],

the ǫ-framework [23] and M3E [17] as special cases.

Furthermore, it also exposes an extra-degree of freedom

that has not yet been explored. We develop an optimiza-

tion procedure and propose a single simple and efficient

algorithm for learning the parameters of the UF. With this

setting we are able to compare the prediction criteria of

the cited models by discounting the differences that could

come from using different optimization algorithms. We

built a software implementing the UF and the loss-based

models we cited. Our software, as well as all the data

required to replicate our experiments, will be made publicly

available at the authors homepage.

Our UF generalizes formulations that obtain a point

estimate of the model parameters. However a notable

framework that is not covered in our generalization is

the partially observed Maximum Entropy Discrimination
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Markov Network (PoMEN) [31]. The PoMEN model

builds on the maximum entropy discrimination Markov

Networks (MaxEnDNet) [30], which subsumes SSVM. It

combines Bayesian techniques and max-margin learning

and its prediction criterion is based on model averaging

which results in an advantageous smoothing effect. The

conclusions drawn from the current paper lend support

to the investigation of entropy-based generalizations of

PoMEN.

3. Preliminaries

In this section we provide notations and definitions used

in the rest of the paper.

Notations. For simplicity, we assume a discrete setting.

We denote the input by x ∈ X , the output by y ∈ Y and

the hidden variables by h ∈ H. The value of x is known

during both training and testing, the value of y is known

only during training and the value of h is unknown during

both training and testing. For example when performing

multi-class gesture recognition in video sequences, the

input x consists of joint coordinates of a person performing

a gesture in the sequence. The output y is the gesture class

label of the video. In a video sequence, only a small propor-

tion of frames effectively represent the human performing

the gesture. It is easy to collect a large number of such

video sequences. However it would be time consuming to

annotate each frame as containing the gesture or not. Thus

we will only consider the label of the gesture performed in

a video sequence but not the annotation at the frames level.

In other words, we are in the setting of weakly supervised

learning. The latent variable h is introduced to take into

account this lack of information.

We assume (x,y,h) follows a conditional model:

P (y,h|x;w) ∝ exp
( 1

ǫh
wTφ(x,y,h)

)

, (1)

where φ : (X ,Y ,H) → R
D refers to the joint feature

vector of the input, the output and the hidden variables,

and w ∈ R
D are the model parameters.

We introduce the temperature parameter ǫh ∈ [0, 1]
in the expression of the joint probability of the output and

the hidden variables. The use of ǫh allows our prediction

criterion to range from assigning the latent variable to its

most likely value when ǫh ց 0 to the marginalization over

the hidden variables when ǫh = 1. It follows that

P (y|x;w) ∝
∑

h

exp
( 1

ǫh
wTφ(x,y,h)

)

. (2)

To describe the joint conditional probability distribution of

the output and hidden variables (y,h) ∈ Y×H given an in-

put x ∈ X and model parameters w ∈ R
D, P (y,h|x;w),

we use the shorthand notation Px. For a fixed output y ∈
Y , Px is a probability distribution of the hidden vari-

able h ∈ H which we denote as Qy
x. Note that Qy

x is a gen-

eralized distribution that need not sum to one. Finally, we

denote the conditional probability distribution of the hidden

variables given the input, the output and the model parame-

ters, P (h|y,x;w), as Py
x .

Aczél and Daròczy entropy. To measure uncertainty we

will use the Aczél and Daròczy (AD) entropy (AD) [1],

parametrized by the scalars α and β. Formally, the AD en-

tropy of the generalized distribution is

Hα,β(Q
y
x;w) =

1

1− α
log

(

∑

h P (y,h|x;w)α+β−1

∑

h P (y,h|x;w)β

)

,

(3)

with α ≥ 0, α 6= 1, β ≥ 0, α+ β − 1 ≥ 0.

The AD entropy has been studied by Aczél and Daròczy [1]

as a natural generalization of the Rényi entropy with an

extra scalar parameter β. The AD entropy has since been

shown to create a natural family of uncertainty measures,

also recovering other existing entropy functions as special

cases [7, 16].

Let us take a closer look at some interesting special

cases of the AD entropy. Specifically when β = 1, the AD

entropy is equivalent to the Rényi entropy used in the M3E

models [17],

Hα,1(Q
y
x;w) =

1

1− α
log

(

∑

h P (y,h|x;w)α
∑

h P (y,h|x;w)

)

. (4)

When β = 1 and α → ∞, the AD entropy is equivalent to

the minimum entropy

H∞,1(Q
y
x;w) = − logmax

h
P (y,h|x;w). (5)

In other words, the AD entropy for a generalized distri-

bution corresponding to y is obtained by maximizing the

joint probability of y and h over the latent variables h.

When β = 1 and α → 1, the AD entropy is equivalent

to the commonly used Shannon entropy

H1,1(Q
y
x;w) = −

∑

h P (y,h|x;w) logP (y,h|x;w)
∑

h P (y,h|x;w)
.

(6)

When β = 0 and α = 2 , the AD entropy is equivalent to

the marginalization over the latent variable:

H2,0(Q
y
x;w) = − log

∑

h

P (y,h|x;w) +K, (7)

where K is a constant. In other words, the AD entropy for

a generalized distribution corresponding to y is obtained by

marginalizing the joint probability of y and h over the latent

variables h.
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4. The Unified Framework

In order to facilitate our exploration of the performance

of the various generalizations of LSSVM, we would like

to obtain a unified criterion for prediction that captures the

previously used criteria. In other words, our criterion should

include as special cases, (i) the maximization over the out-

put y and the latent variable h; (ii) the maximization over

the output y after marginalizing the joint probability over h;

and (iii) the maximization over the output y while minimiz-

ing the uncertainty over the distribution of h. Furthermore,

we would also like to design a learning objective that min-

imizes an upper bound on the empirical risk based on the

prediction criterion, where the risk is measured by a user-

defined loss function. We begin by showing that the AD

entropy provides a suitable prediction criterion that meets

the aforementioned requirements. The identification of the

AD entropy as our prediction criterion will allow us to de-

velop a suitable learning objective.

4.1. Prediction

We propose to perform prediction for an input xi by min-

imizing the AD entropy of the generalized distribution over

all possible outputs, that is

yi(w) = argmin
y

Hα,β(Q
y
xi
;w). (8)

Again, let’s look at special cases of this prediction proce-

dure. When β = 1, the prediction recovers the prediction

task of M3E models [17],

yi(w) = argmin
y

Hα,1(Q
y
xi
;w). (9)

Since M3E itself generalizes LSSVM, it follows that our

prediction criterion also includes it as a special case. Specif-

ically, β = 1 and α → ∞ , the prediction recovers the pre-

diction task of LSSVM [10, 28] by performing maximum a

posteriori prediction,

yi(w) = argmax
y

max
h

logP (y,h|xi;w). (10)

Similarly when β = 0 and α = 2 , the prediction task

is equivalent to the maximization of the marginalized joint

probability over the output and hidden variable. This is the

prediction setting of MSSVM [21] and ǫ-framework [23],

yi(w) = argmax
y

log
∑

h

P (y,h|xi;w). (11)

The following proposition sheds further light on our predic-

tion criterion.

Proposition 1. The AD entropy of the generalized distri-

bution of y can be written as the sum of the negative log-

likelihood of y and the AD entropy of the conditional distri-

bution of the hidden variable given the output,

Hα,β(Q
y
x;w) = − logP (y|x,w) +Hα,β(P

y
x ;w). (12)

Proof. In the supplementary material.

Proposition 1 shows that performing prediction by min-

imizing the AD entropy is equivalent to predicting the out-

put y which (i) has a high probability, and (ii) minimizes

the uncertainty over the hidden variable h. Specifically

when β = 0 and α = 2, the term Hα,β(P
y
x ;w) in (12)

disappears. That means that we do not minimize the uncer-

tainty over the distribution of h and (8) and (11) are equiva-

lent. This is another way to see how we recover the predic-

tion procedure of the MSSVM and ǫ-framework models.

4.2. Learning

Given a training dataset of input-output pairs D =
{(xi,yi), i = 1...N}, we wish to learn the parameters of

the model, described by the weight vector w, to be able to

predict the output for any input x. We introduce the loss

function ∆(y,yi) with ∆(y,y) = 0 that compares the risk

of making the prediction y for the input xi with ground

truth output yi.

The parameters of the model are learned by minimiz-

ing the following objective function (13).

min
w

1

2
||w||2 +

C

n

∑

i

[

ǫy log
∑

y

exp
1

ǫy

(

∆(yi,y)

− ǫhHα,β(Q
y
xi
;w)

)

+ ǫhHα,β(Q
yi
xi
;w)

]

.

(13)

We introduce regularization over the parameters of the

model w to avoid overfitting the parameters to the training

data. Furthermore, we introduce the temperature parame-

ter ǫy ∈ [0, 1]. When ǫy ց 0 minimizing objective (13)

results in maximizing the margin between the AD entropy

of the ground truth value of the output and all other values

of the output. For other values of ǫy , the objective function

replaces the maximization by a soft max (log-sum-exp)

function.

Proposition 2 shows that the optimization procedure

of (13) minimizes an upper bound on the user-defined loss.

Proposition 2. Objective (13) minimizes an upper bound

on the loss ∆(yi,yi(w)) where yi is the ground truth out-

put of training example i and yi(w) is the predicted output.

This upper-bound is tightest when ǫy ց 0.

Proof. In the supplementary material.

Our objective function (13) naturally derives from our
prediction procedure and allow us to upper bound the user-
defined loss. Furthermore we show by looking at special
cases that it recovers the objective functions of the models
we want to unify. Specifically when β = 1, ǫy ց 0, ǫh = 1
we retrieve the objective function used in training of the
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M3E models [17], which maximizes the margin between
the entropy of the ground truth output value and all other
outputs:

min
w

1

2
||w||2 +

C

n

∑

i

max
y

(

∆(yi,y)

−Hα,1(Q
y
xi
;w) +Hα,1(Q

yi
xi
;w)

)

. (14)

From the M3E models, taking α → ∞ recovers
LSSVM [10, 28]. Thus when β = 1, ǫy,ց 0, ǫh = 1, α →
∞ the learning objective is equivalent to the learning prob-
lem of the LSSVM:

min
w

1

2
||w||2 +

C

n

∑

i

max
y×h

(

∆(yi,y) +w
T
φ(xi,y,h)

)

−
C

n

∑

i

max
h

w
T
φ(xi,yi,h). (15)

When β = 0, α = 2, ǫy,ց 0, ǫh = 1, the log-sum-exp
function over y approximates the max function and we end
up maximizing the output y while marginalizing the hidden
variable h. Thus (13) becomes equivalent to the optimiza-
tion problem of the MSSVM [21]:

min
w

1

2
||w||2

+
C

n

∑

i

max
y

(

∆(yi,y) + log
∑

h

exp(wT
φ(xi,y,h))

)

−
C

n

∑

i

log
∑

h

exp
(

w
T
φ(xi,yi,h)

)

. (16)

Similarly when β = 0, α = 2, ǫy = ǫh we recover the same
objective to minimize as in the ǫ-framework [23], that is,

min
w

1

2
||w||2

+
C

n

∑

i

ǫ log
∑

y

exp
(∆(yi,y) +wTφ(xi,y,h)

ǫ

)

−
C

n

∑

i

ǫ log
∑

h

exp
(

wTφ(xi,yi,h)

ǫ

)

. (17)

Figure 1 shows that our framework gathers all models pre-

sented in Section 2 with specific parameters values. We re-

fer the reader to the supplementary material for more de-

tails.

5. Optimization method

We propose to use a common algorithm for all methods

covered by the UF, which is computationally efficient. This

allows us to compare the prediction criterion of all these

models independently of their specific methods for solving

their optimization problem. We derive an optimization pro-

cedure for learning the parameters of the UF. This procedure

works for every setting of parameters of the UF. In other

words it works for every model presented in Section 2.

UF

α, β,

ǫy, ǫh

M3E [17]

α ≥ 0, β = 1,
ǫy ց 0, ǫh = 1 LSSVM [10, 28]

α→∞, β = 1,
ǫy ց 0, ǫh = 1

or

α = 2, β = 0,
ǫy = ǫh ց 0

MSSVM [21]

α = 2, β = 0,
ǫy ց 0, ǫh = 1

ǫ-framework [23]

α = 2, β = 0,
ǫy = ǫh ∈ (0, 1)

α→∞

ǫy = ǫh ց 0

Figure 1: Equivalence of UF with existing models.

The optimization function of problem (13) is not convex.

In order to obtain an approximate solution, we write the

objective function of (13) as a difference of convex (DC)

functions [29]. To this end, it would be helpful to introduce

the following shorthand notations in the case α > 1:

• F+

α,β(y,w) = −ǫh
1

1− α
log

∑

h
P (y,h|xi;w)α+β−1,

• F−

α,β(y,w) = −ǫh
1

1− α
log

∑

h
P (y,h|xi;w)β ,

• G+

α,β(yi,w) = −ǫh
1

1− α
log

∑

h
P (yi,h|xi,w)β ,

• G−

α,β(yi,w) = −ǫh
1

1− α
log

∑

h
P (yi,h|xi,w)α+β−1.

The functions F+

α,β(y,w), F−

α,β(y,w), G+

α,β(yi,w),

G−

α,β(yi,w) are convex with respect to w. Their definitions

are trivially inferred in the case α < 1:

Proposition 3. The optimization problem (13) can be
equivalently written as a difference of convex (DC) func-
tions for any values of α ≥ 0, β ≥ 0 using the following
formulation:

min
w

1

2
||w||2 +

C

n
ǫy

∑

i

[

log
∑

y

exp
1

ǫy

(

∆(yi,y)

+ F
+

α,β(y,w)− F
−

α,β(y,w)
)

+G
+

α,β(yi,w)−G
−

α,β(yi,w)
]

, (18)

where F+

α,β(y,w), F−

α,β(y,w), G+

α,β(yi,w), and

G−

α,β(yi,w) are convex.

Proof. In the supplementary material.

This results in Algorithm 1 for training the UF. Algo-
rithm 1 is similar to standard concave convex procedure
(CCCP) [29]. During step 1 of Algorithm 1, we solve the
convex optimization problem (19):

wt+1 = argmin
w

1

2
||w||2 +

C

n
ǫy

∑

i

[

log
∑

y

exp
1

ǫy

(

∆(yi,y)

+ F
+

α,β(y,w)− T
F

−

α,β
y,wt (w)

)

+G
+

α,β(yi,w)− T
G

−

α,β
yi,wt(w)

]

. (19)
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During step 1, F−

α,β(y,w) and G−

α,β(yi,w) are replaced

by their first order Taylor expansion:

T
F

−

α,β
y,wt (w) = Fα,β(y,wt)

− + (w −wt)
T∇wF

−

α,β(y,w)|wt ,

T
G

−

α,β
yi,wt(w) = Gα,β(yi,wt)

− + (w −wt)
T∇wG

−

α,β(yi,w)|wt .

(20)

We denote by ∇wF−

α,β(y,w)|wt
the gradient

of F−

α,β(y,w) with respect to w estimated at wt and

similarly ∇wG−

α,β(yi,w)|wt
.

Algorithm 1: Algorithm for trainin UF

Data: D = {(xi,yi), i = 1...N}
Result: Model parameter w

initialize w = w0, t = 0;

obj(w,wt) =
1

2
||w||2

+
C

n
ǫy

∑

i

[

log
∑

y

exp
1

ǫy

(

∆(yi,y)

+ F
+

α,β(y,w)− T
F

−

α,β
y,wt (w)

)

+G
+

α,β(yi,w)− T
G

−

α,β
yi,wt(w)

]

(21)

while t ≤ T and δobj ≥ Cλ do

1 wt+1 ← argmin
w

obj(w,wt) by gradient descent.

2 δobj ← obj(wt,wt−1)− obj(wt+1,wt)
3 t← t+ 1

4 end

5 return w

We solve the optimization problem (19) of step 1 in

Algorithm 1 by performing gradient descent with a step

size found by line search. We refer the reader to the

supplementary material for details on our gradient descent

procedure.

6. Experiments

We performed experiments to compare the UF,

LSSVM [10, 28], MSSVM [21], the ǫ-framework [23],

M3E models [17] and replications of these models by the

UF. Our goal with these experiments is to assess which is

the most accurate of prediction criteria between the two

types of models generalizing LSSVM (described in Sec-

tion 2), regardless of their specific optimization algorithm.

To this end, we compare them and their replications using

the UF on two different tasks. In all figures the sign ∼
means that the UF’s parameters were set to replicate an ex-

isting model.

6.1. Binary action classification

We start our empirical comparison on an example where

the latent space size is small and the uncertainty over the

hidden variable is low. Specifically, we perform the follow-

ing experiment of binary action classification over the 10

classes of the PASCAL VOC 2011 dataset.

Pascal VOC dataset. We use the “trainval” dataset of the

PASCAL VOC 2011 [8] action classification dataset, con-

sisting of 2424 images depicting 10 action classes. We used

the 10 classes of the dataset. For each image we are pro-

vided the bounding boxes of the persons in the image and

its action class. However, in our experiments, we discard

the bounding box information and instead model it using a

latent variable.

Modelling and features. The score of a bounding box in

the image x is wTφ(x,y,h) = wT
y φ(x,h) where wy are

the parameters that correspond to the label y and φ(x,h) is

the feature vector extracted from the bounding box h. Simi-

lar to [3], we consider the bounding boxes of the image with

the top 20 scores found by a standard person detector [9].

Thus we reduce the uncertainty on the latent space since

we take only the top scoring bounding boxes and we work

with a small latent space size. The feature vector φ(x,h)
consists of the standard poselet-based feature vector [15],

that is a 2404 dimensional vector consisting of 2400 activa-

tion scores of action specific poselets and 4 object activa-

tion scores. We added the score given by the person detec-

tor [9] making φ(x,h) a 2405 dimensional feature vector.

The loss ∆ is the standard 0-1 loss.

Experimental setting. We split the dataset into 1940

training images and 484 validation images. Hyper pa-

rameters are chosen via 5 fold cross-validation. We use

four random seed values in order to mitigate possible ef-

fects of the initialization; this is to ensure that the non-

convexity of the optimization objective does not lead to

poor results by local minima. For each fold, we report

the test error corresponding to the seed with the low-

est training objective value. All models are initialized

with LSSVM [10, 28] except for M3E with α → ∞
that includes random initialization of the hidden variable

value. The convergence tolerance is set to λ = 0.01.

For each model, we tested the following range of param-

eters: C = [0.1, 1, 10, 100, 1000], ǫ = [0.001, 0.01, 0.1, 1]
(referring to the parameter of the ǫ-framework), ǫh =
[0.001, 0.01, 0.1, 1.0], α = [0.01, 0.1, 2, 100, 1000, 10000]
and β = [0.0, 0.5, 1.0]. In terms of computing CPU times,

all models require comparable times. We refer the reader to

the supplementary material for detailed timing.

Results. Figure 2 shows the mean loss on the test set over

the 10 classes of each model with best cross-validated pa-

rameters (averaged over the 5 folds). We refer the reader

to the supplementary material for additional details regard-

ing the experimental setup and the results. From figure 2,

we see that the performances of UF as a replication and

the corresponding existing model are similar. We see that
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Figure 2: Test loss mean on the

10 classes (in %) ± standard er-

ror of the mean (in %) with cross-

validated parameters on the PAS-

CAL VOC 11 dataset, after aver-

aging on the 5 folds.

predicting the output by marginalizing the output and hid-

den variables as done by MSSVM is the less accurate cri-

terion. Our UF and M3E models provide slightly better

performances than LSSVM, MSSVM and the ǫ-framework.

For clarity purposes we do not report the best parameters

chosen by cross-validation but they are available in the sup-

plementary material. In most cases the set of UF parame-

ters chosen by cross-validation boils down to a prediction

criterion that maximizes over the output and hidden vari-

ables. Similarly, the best α chosen for the M3E models is of

high value. In other words, M3E recovers LSSVM. The ǫ-

framework chooses a small value of ǫ, which also approx-

imates LSSVM. Thus for this specific task there is a small

gain to be made from taking into account the uncertainty

over the hidden variable. This comes at the cost of using

a more complicated model with more parameters to cross-

validate. This result is aligned with the fact that the size of

the latent space is small (we use 20 bounding boxes) and

that uncertainty over the hidden variable is reduced since

we consider top scoring bounding boxes.

6.2. Multiclass gesture recognition

We now explore an experiment where the uncertainty

over the value of the hidden variable is high and the latent

space is large. To do so, we tested the UF and the loss-based

models presented in Section 2 on the task of gesture recog-

nition in video sequences. Given a set of video sequences,

our goal is to learn to classify, among c possible classes of

gestures, the gesture performed in a video sequence.

MSRC-12. The MSRC-12 data set [11] contains 594 se-

quences of motion capture data, recording the 3D world po-

sition of 20 joints in the human body using a Kinect sensor

from a population of 30 individuals. In each sequence the

actor performs one type of gesture repeatedly, typically 10

times, and each instance of the gesture is marked at a typ-

ical frame. The original purpose of the data set was to en-

able research into low latency gesture detection [20]. How-

ever, it has since been used to classify the sequence as a

whole [11, 14]. We also perform sequence classification

but do not use the individual frame-level annotations. In-

stead, as training data we use only the sequence class label.

This is a realistic assumption for example in an interactive

setting when the user is instructed by a system to perform

a gesture for an initial training phase. In this case we only

know that a gesture of a given class will be performed but

do not know when the user will perform it.

Noisy MSRC-12 dataset. In order to evaluate the behav-

ior of the different models in presence of noisy data, we

corrupt the MSRC-12 dataset by adding random Gaussian

noise with zero mean and various standard deviations. In

particular we add noise to each elements of all frames’

feature vectors. We use three values of standard devia-

tions: σ = [1cm, 5cm, 8cm].

Modelling and features. The input data x consists of 3D

world position of a person performing a gesture. The out-

put y is the class of the gesture performed in the video se-

quence. In a video sequence only a few percent of the video

frames effectively contain the person performing the ges-

ture. We consider the training data as weakly labeled, i.e.

the video sequences are only labeled at the sequence level

and each frame is not individually annotated as containing

the gesture or not. We use the latent variable h to model

this lack of information. The size of the latent space is the

number of frames per video sequence, that is on average

1200 frames per sequence. The score of a specific frame

in a video sequence x is wTφ(x,y,h) = wT
y φ(x,h)

where wy are the parameters that correspond to the label y

and φ(x,h) is the feature vector extracted from the video

sequence frame h. We take the same features derived from

3D joint locations as in [11, 14, 20], obtaining a feature vec-

tor φ(x,h) of dimension 130. The loss ∆ is the standard

0-1 loss.

Experimental setting. We use the 594 sequences from

the MSRC-12 dataset. We divide this dataset into five folds,

each fold containing 20% of the trainval data set for testing

and 80% for training, using stratified sampling over class

labels in order to ensure a uniform distribution over classes.

As in the action classification experiment of Section 6.1,

hyper parameters are cross-validated over 5 folds and we

use 4 random seeds for initialization and for each fold, we

report the test error corresponding to the seed with the low-

est training objective value. All models are initialized with

LSSVM [10, 28] except for M3E with α → ∞. The con-

vergence tolerance is set to λ = 0.01. We tested the same

range of parameters as in the binary action classification

experiment except for the parameter C we used the values

[1, 10, 100, 1000, 10000]. When looking at CPU times, all

models require comparable times. We refer the reader to the

supplementary material for detailed timing.

Results. Table 1 reports the best parameters chosen

by cross-validation for the UF. Table 1 shows that the

best parameters combination (ǫh, α, β) always take in

account the AD entropy of the hidden variable and the

term Hα,β(P
y
x ;w) in (12) is never set to 0. This would be

the case if we had (α = 2, β = 0) or (α → ∞, β = 1).
Thus the UF is never boiling down to either LSSVM,
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MSSVM or the ǫ-framework. Recall that UF recovers all

models with the use of the same algorithm. This means that

regardless of the algorithm used to solve the minimization

problem during learning, predicting the output variables by

minimizing the uncertainty over the latent space is a more

relevant method than marginalizing the latent variables or

estimating their most likely values.

σ = 0cm σ = 1cm σ = 5cm σ = 8cm

ǫh = 1, α =
0.01, β = 1

ǫh = 1, α =
2, β = 0.5

ǫh = 1, α =
0.1, β = 1

ǫh = 1, α =
0.1, β = 1

Table 1: Cross-validated parameters for the UF.

Figure 3a shows the average loss on the test set for each

model with respect to the noise level corrupting the dataset.
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Figure 3: Test loss (%) on the MSRC-12 dataset averaged on 5 folds, per

noise level. Each model is shown with best cross-validated parameters.

Figure 3b shows the average loss on the test set for LSSVM,

M3E and MSSVM, and their replication with the UF. This

figure shows two things. First, by looking at the perfor-

mances of their replication by the UF, we can compare

LSSVM, MSSVM and M3E models without taking into

account their specific training algorithm. Second, this

figure also shows how the UF replicates existing models.

In the cases when the UF replicates LSSVM and MSSVM

results are similar, this was expected since the algorithm

we derived for training the UF is similar to the specific

algorithm of these models. When the UF replicates M3E,

results are also similar even if the optimization procedures

are different (the M3E models use a trust-region based

algorithm to solve the optimization problem). From these

two figures 3a and 3b we conclude that entropy-based

models (either M3E or the UF) give significantly better

performances at all noise levels. We refer the reader to

the supplementary material for p-values and comparison at

statistical significance level of 0.05.

Figure 4 shows the scoring of the UF on an example

“bowing” gesture of the non-noisy MSRC-12 dataset. A

3D representation of the frame feature vector is added in

the upper part of the plot. For the ground-truth label, the
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Figure 4: Scoring of the UF on an example “bowing” gesture of the non

noisy MSRC-12 dataset. Upper part of the plot shows the scoring for the

ground truth label (in red), and all other labels in grey. Lower part of the

plot shows the location of the action frames as per MSRC-12 ground truth

(we do not use this frame-level annotation).

UF gives high score at typical frames of the video sequence

when the person is effectively bowing, and a low score in

between. The scores of all others labels (shown in grey)

are smaller than the smallest score of the ground-truth label

frames.

7. Discussion

We developed a Unified Framework (UF) by defining a

simple prediction criterion for generalizations of LSSVM.

By developing an optimization algorithm for learning the

parameters of the UF, we evaluate each prediction criterion

without taking into account the differences in performances

that could arise from using their specific optimization al-

gorithm. Our experimental results show that the use of the

minimization of the latent space uncertainty is an accurate

prediction criterion when the size of the latent space is large

and when there is uncertainty on the hidden variable. The

UF also offers an additional advantage, namely, the use of

the extra parameter β. This has yet to be explored tho-

roughly, and could lead to improved performance. As a di-

rection for future work, we suggest to use a fully Bayesian

setting with prior distributions over the UF parameters. We

also propose to incorporate the UF in the framework of deep

learning to further improve the performance of this popular

framework.
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