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Abstract

Multilinear face models are widely used to model the

space of human faces with expressions. For databases of

3D human faces of different identities performing multiple

expressions, these statistical shape models decouple iden-

tity and expression variations. To compute a high-quality

multilinear face model, the quality of the registration of the

database of 3D face scans used for training is essential.

Meanwhile, a multilinear face model can be used as an ef-

fective prior to register 3D face scans, which are typically

noisy and incomplete. Inspired by the minimum description

length approach, we propose the first method to jointly op-

timize a multilinear model and the registration of the 3D

scans used for training. Given an initial registration, our

approach fully automatically improves the registration by

optimizing an objective function that measures the compact-

ness of the multilinear model, resulting in a sparse model.

We choose a continuous representation for each face shape

that allows to use a quasi-Newton method in parameter

space for optimization. We show that our approach is com-

putationally significantly more efficient and leads to corre-

spondences of higher quality than existing methods based

on linear statistical models. This allows us to evaluate our

approach on large standard 3D face databases and in the

presence of noisy initializations.

1. Introduction

The human face is one important factor for any kind of

social interaction in our daily life. This motivates many dif-

ferent fields such as human computer interaction, medicine,

ergonomics or security, to investigate the human face. Since

many of these areas are interested in the 3D geometry of the

face, the number of publicly available 3D face databases in-

creased over the last years. As the manual analysis of large

databases is intractable, automatic data driven and statistical

approaches are widely used to analyze the structure of the

data. To compute statistics, all shapes of the dataset need to

be in correspondence [10, Chapter 1].

Computing these correspondences for human face data is

a challenging task that many methods aim to solve (e.g. [24,

26, 17, 14, 27]). Given a good registration, a statistical face

model can be learned. In computer vision and graphics,

statistical face models are used e.g. to reconstruct the 3D

geometry of the face from 2D images [1], to recognize facial

expressions [24], to transfer expressions between images or

videos [30], or to change expressions in 3D videos [31].

Statistical face models can also be used to reconstruct

the 3D geometry from noisy or partially occluded face

scans [5] and are therefore directly applicable for registra-

tion. Furthermore, registration methods with prior learned

knowledge outperform model-free methods like template

fitting [25, 2]. Summing up, this is a chicken-and-egg prob-

lem: given a good registration, a statistical model can be

learned, and given a representative statistical model, a good

registration can be computed. The quality of a given statis-

tical model can be measured [10, Chapter 3.3.1], and due

to the dependency of the statistical model on a registration,

this measurement also evaluates the underlying registration.

Methods that aim at jointly optimizing the registration

and a statistical model have been developed for princi-

pal component analysis (PCA) (e.g. [10, Chapter 4], [21]).

Furthermore, variants of this linear method like part-based

PCA [6], kernel PCA [8] or human body specific ap-

proaches [16] exist. These methods measure the model

quality and change the registration such that the quality of

the model and the registration improve at the same time.

Since the model quality depends on all shapes, these meth-

ods are called groupwise optimization methods. Linear

PCA-based methods have been proven to outperform dif-

ferent pairwise correspondence optimization methods [9].

Since the variations in databases of human faces from

different identities performing different expressions cannot

be modeled well using a linear space, the existing methods

are not suitable for optimizing the correspondence of human

faces. The space of human faces in various expressions can

be well modeled using a multilinear model [30, 24, 31, 2, 5],

which is a higher-order generalization of a PCA model.

This motivates us to propose an approach to optimize

the correspondence for 3D face databases based on multi-

linear statistical models. The correspondence is optimized
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based on the minimum description length (MDL) principle,

which leads to a sparse multilinear model. A key advan-

tage of extending MDL to multilinear models is a reduced

parameter space, which can be optimized efficiently. The

main challenge is that while for the linear case PCA pro-

vides an optimal low-dimensional space, the solution for

the multilinear case is NP-hard to compute [15]. To find

a good basis for face models, we compare different tensor

decompositions for their ability to reconstruct unseen face

data. Another previously unaddressed challenge related to

3D face data is to allow for manifold boundaries during op-

timization, which is needed as the face has a mouth and an

outer boundary. We solve this issue efficiently by introduc-

ing constraints in the optimization framework.

The main contributions of this work are: (1) we intro-

duce the first fully automatic groupwise correspondence op-

timization approach for multilinearly distributed data, and

(2) we show that our approach is computationally signifi-

cantly more efficient and leads to correspondences of higher

quality than existing PCA-based optimization methods.

2. Related work

Template-based facial correspondence computation:

Our method is related to methods that aim to compute cor-

respondences between sets of shapes. While many meth-

ods exist to establish correspondence for arbitrary classes of

shapes, we focus on 3D face registration methods. Given a

sparse set of 3D landmarks, Mpiperis et al. [24] register 3D

faces in various expressions with an elastically deformable

face model. Passalis et al. [26] fit an annotated face model

to the scan by solving a second order differential equation.

Huang et al. [17] split the face into multiple parts and per-

form a deformation of each part to fit an input face. Guo et

al. [14] use a thin-plate spline guided template fitting to reg-

ister 3D face scans. Pan et al. [25] use a sparse deformable

model for registration. They learn a dictionary on a set of

registered faces and register a new face by restricting the

correspondences to be a sparse representation of the learned

dictionary. Salazar et al. [27] use a blendshape model to fit

the expression followed by a template fitting using a non-

rigid iterative closest point method to get the facial details.

All of these methods find a good correspondence, but

none of them aim at producing a registration that is optimal

for statistical modeling. Note that any of these methods can

be used to initialize our optimization approach.

Statistical face models: Given a set of 3D shapes in full

correspondence, various methods can perform statistical

analysis. We focus our discussion on multilinear shape

spaces for 3D faces. Vlasic et al. [30] use a multilinear

model for a database of human faces that decouples fa-

cial shape, expression, and viseme to transfer facial per-

formance between 2D videos. Mpiperis et al. [24] use a

multilinear model for identity and expression recognition.

Yang et al. [31] reconstruct the 3D face shape from 2D

videos and exploit the decoupling of identity and expres-

sion variations to modify the identity or expression within

the videos. Bolkart and Wuhrer [2] use a multilinear model

to register a large database of 3D faces in motion and per-

form analysis on the resulting registration. Brunton et al. [5]

learn multiple localized multilinear models and use these to

reconstruct models from noisy and occluded face scans.

As these methods use a multilinear model for 3D faces

of multiple identities and expressions, they employ the same

model as our method. However, none of them aim at opti-

mizing the correspondence using the learned model.

Registration optimization: While some prior works in

machine learning explore the idea of jointly learning a

model and correspondence information (e.g. [4, 29, 18]),

our method is most related to methods that aim to jointly

optimize the registration of a set of 3D shapes and a learned

statistical model. Kotcheff and Taylor [21] propose a group-

wise correspondence optimization based on a PCA model

that explicitly favors compact models. Davies et al. [10,

Chapter 4] give an overview of different objective func-

tions for correspondence optimization and motivate an in-

formation theoretic objective function minimizing the de-

scription length of the data. The basic concept of minimum

description length approaches is to minimize the length of

a message that is transmitted from a sender to a receiver.

They encode the data with a PCA model and alter the cor-

respondence such that the number of bits needed to de-

scribe the model and the encoded data is minimal. Davies et

al. [9] show that MDL outperforms state-of-the-art registra-

tion methods for medical datasets. Gollmer et al. [13] com-

pare different objective functions. They show that while the

determinant of the covariance matrix is easier to optimize,

the results are comparable to results produced by MDL.

All these methods model the data with one linear PCA

model. In contrast, Burghard et al. [6] use a part-based

linear model, and Chen et al. [8] model the data with a

non-linear kernel PCA. Hirshberg et al. [16] derive a skele-

ton based approach specifically for human body shapes to

jointly optimize the registration and a statistical model.

None of these methods can model 3D faces with vary-

ing identities and expressions. To allow this, we introduce

the first groupwise correspondence optimization approach

for multilinearly distributed data. Furthermore, while most

methods assume the object to be a closed manifold, our ap-

proach handles manifolds with multiple boundaries.

3. Multilinear shape space

This section introduces the multilinear model and dif-

ferent tensor decompositions to derive the model. Multi-

linear models can effectively model statistical variations of

faces due to identity and expression as it decouples these

two types of shape variation.
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3.1. Multilinear model

Given a set of registered and spatially aligned 3D face

scans of d2 identities in d3 expressions each, every face is

represented by a vector f = (x1, y1, z1, · · · , xn, yn, zn)
T

that consists of n vertices (xi, yi, zi). We center each face

by subtracting the mean over all training faces f and arrange

the centered faces in a 3-mode tensor A ∈ R
3n×d2×d3 ,

where modes describe the different axes of a tensor. The

data are placed within A, such that the vertex coordinates

are associated with the first mode, the different identities

with the second mode, and the different expressions with

the third mode of A. The decomposition of A into

A = M×2 U2 ×3 U3, (1)

where ×n denotes the n-th mode product, results in a tensor

M ∈ R
3n×m2×m3 called multilinear model, and orthogo-

nal factor matrices U2 ∈ R
d2×m2 and U3 ∈ R

d3×m3 . The

n-th mode product M×n Un of tensor M with matrix Un

replaces each vector m ∈ R
mn aligned with i-th mode by

Unm ∈ R
dn . The multilinear model represents a registered

3D face f ∈ R
3n as

f ≈ f +M×2 wT

2 ×3 wT

3 , (2)

where w2 ∈ R
m2 and w3 ∈ R

m3 are the identity and ex-

pression coefficients.

3.2. Tensor decompositions

The decomposition of A in Equation 1 is called Tucker

decomposition. The goal is to find the best Tucker decom-

position with a lower-dimensional tensor M that is as close

as possible to A. The quality of the tensor approximation

is measured by the norm of the residual. Computing the

best Tucker decomposition is NP-hard [15]. Furthermore,

in contrast to decomposing a matrix into orthogonal matri-

ces (computed using singular value decomposition (SVD)),

Tucker decompositions are not unique. An exact Tucker de-

composition can be computed if mn = rank(A(n)) for all

n. Here, A(n) denotes the matrix unfolding of A in the di-

rection of n-th mode (all vectors in the direction of the n-th

mode form the columns of A(n)). If mn < rank(A(n)) for

at least one n, the decomposition approximates A.

The following describes different methods to compute

the Tucker decomposition. Section 5.1 evaluates for each

method its ability to reconstruct unseen data when applied

for model fitting. We compare the three tensor decompo-

sitions described by Kolda and Bader [20], namely: higher

order SVD (HOSVD) [22], higher order orthogonal itera-

tion (HOOI) [22], and a Newton-Grassmann optimization

approach [12]. All these methods compute a Tucker de-

composition for given maximum mode ranks m2 and m3.

HOSVD: HOSVD is a higher-order generalization of ma-

trix SVD. To compute the matrices Un, a matrix SVD is

Registered Shapes

Identity Expression

Multilinear Model

Model Evaluation

ECOMP + wREGEREG

Optimization

L-BFGS

Figure 1. Overview of the iterative multilinear registration.

performed as A(n) = UnSnVT

n , where Un ∈ R
dn×dn con-

tains the left singular vectors of A(n). Truncating columns

then reduces the dimensions of identity and expression

space. The multilinear model is then computed as M =
A×2 UT

2 ×3 UT

3 . Even for given m2 and m3, the truncated

HOSVD does not give an optimal approximation of A.

HOOI: Initialized by HOSVD, this method iteratively op-

timizes the Tucker decomposition. Within each iteration,

both factor matrices are updated by fixing one and updating

the other. That is, for a fixed mode-2 factor matrix, a ten-

sor X = A ×2 UT

2 is computed, and U3 is updated by the

m3 left singular vectors of X(3). A similar computation is

performed for a fixed mode-3 factor matrix. While HOOI

gives a better approximation of A than HOSVD, it does not

necessarily find a stationary point.

Newton-Grassmann optimization: Initialized by

HOSVD, the Newton-Grassmann optimization approach

constrains each factor matrix to a Grassmannian manifold,

an equivalence class of orthogonal matrices. The Tucker

decomposition is then computed by a non-linear Newton

method on the product of two Grassmannian manifolds.

This method converges to a stationary point.

The evaluation of the different tensor decompositions

shows that applied to reconstructing unseen face data, they

perform almost identical (see Section 5.1). Since HOSVD

is the most efficient approach, in the following, we use

HOSVD to learn the multilinear model.

4. Groupwise correspondence optimization

This section introduces the concept of groupwise cor-

respondence optimizations and describes our approach for

multilinearly distributed data. Given a set of shapes in cor-

respondence, groupwise correspondence optimization min-

imizes an objective function that measures the quality of the

correspondence depending on all shapes. Using a statistical

model that describes the variation of the shapes, the objec-

tive function measures favorable properties of the model.

For PCA models, Kotcheff and Taylor [21] choose the

objective function to be the determinant of the covariance

matrix, which explicitly favors the induced linear statistical

3606



model to be compact. The compactness of a linear statistical

model can be maximized by minimizing the variability of

the model, measured by the trace of the covariance matrix.

Compactness measures the variability captured by a

model. A compact model can describe instances of a given

dataset with the minimum number of parameters and has

minimal variance. For models of different compactness that

describe the same data, the model with higher compactness

and hence lower variance is favorable. It has been shown

that minimizing the variance of a PCA model performs sim-

ilarly to information theoretic approaches that aim at mini-

mizing the description length of the model [13].

Inspired by these previous works, we develop the first

MDL-based optimization approach for multilinear models.

This extension is challenging because the notion of com-

pactness needs to be extended to multilinear models, where

optimal tensor approximation is NP-hard. For 3D face

data, a further challenge arises from manifold boundaries.

Figure 1 gives an overview of our multilinear optimiza-

tion approach. Given a set of 3D faces of different iden-

tities performing different expressions with an initial corre-

spondence, we iteratively optimize the correspondence. We

compute a multilinear model on the registered data, and it-

eratively improve the model. In each iteration, the quality

of the model is measured using a groupwise objective func-

tion (Section 4.1). The registered shapes are represented

using a continuous parametrization (Section 4.2), and the

objective function is optimized in parameter space with a

quasi-Newton method (Section 4.3).

4.1. Multilinear objective function

Our groupwise objective function consists of two parts:

a compactness energy ECOMP , and a regularization energy

EREG. We therefore aim to minimize

E = ECOMP + wREGEREG, (3)

where wREG is a weight that controls the influence of the

regularization. We now describe both terms in more detail.
Compactness: The compactness of a multilinear model
can be measured as the percentage of data variability cap-
tured in the first k components of each mode, where k =
1, . . . ,max (d2, d3) [2]. Compactness is maximized by a
sparse model that captures all of the variability in few com-
ponents. To encourage a sparse model, we introduce an
energy on the variability of the identity and expression sub-
spaces. Like Kotcheff and Taylor [21], we choose a log-sum
penalty function, as log-sum functions are known to encour-
age sparsity by heavily punishing small values [7]. That is,
we aim to minimize

ECOMP =
1

d2

d2∑

i=1

ln(λ
(2)
i

+ δ2) +
1

d3

d3∑

i=1

ln(λ
(3)
i

+ δ3), (4)

where λ
(n)
i

denotes the i-th eigenvalue of the mode-n co-

variance matrix. Small regularization constants δn are used

Figure 2. Initial surface parametrization of the 3D face template.

Left: 2D parameter domain. Right: 3D parametrization.

Figure 3. Parametrization for one shape. Left: initialization. Mid-

dle: thin-plate spline. Right: (u, v)-parameter lines.

to avoid singularities of ECOMP for vanishing eigenvalues.

Equivalent to HOSVD, the mode-2 and mode-3 covariance

matrices are computed as 1
d3

A(2)A
T

(2) and 1
d2

A(3)A
T

(3).

The energy ECOMP is minimized by moving points

within the continuous surface of each shape. Since the com-

putation of the covariance only considers a discrete number

of points instead of the continuous surface, ECOMP can be

minimized by moving points away from complex geometric

regions with high variability.

Regularization: To avoid undersampling in these regions,

Davies et al. [10] approximate the integral of the continu-

ous covariance matrix by weighting the points by their sur-

rounding surface area. Since this does not always prevent

the undersampling [13], as done in Burghard et al. [6], we

use a regularization within the objective function. The reg-

ularization term for each shape is a bi-Laplacian of the form

EREG =
1

n

n
∑

k=1

∥

∥U2(vk(x))
∥

∥

2
, (5)

where vk(x) denotes the k-th vertex of shape x. The double-

umbrella operator U2(p) is the discrete bi-Laplacian ap-

proximation [19] computed by

U2(p) =
1

|N(p)|

∑

p
r
∈N(p)

U(p
r
)− U(p), (6)

where N(p) denotes the set of neighbors of vertex p within

the mesh, and U(p) = 1/ |N(p)|
∑

p
r
∈N(p) p

r
− p. The bi-

Laplacian regularizer encourages the points to be regularly

distributed over the mesh and prevents fold-overs.
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4.2. Parametrization

The registration is optimized by moving points in the

surface of each face. Since the surface of the face is 2-

dimensional, moving points within the surface can be done

by re-parametrization. This requires an initial parametriza-

tion together with a continuous mapping from parameter

space to the surface of each face. We compute an initial reg-

istration for a database of 3D faces using template fitting,

and additionally unwrap the 3D template mesh in 2D pa-

rameter space to compute an initial discrete parametrization

with parameters ti ∈ R
2. The embedding in 2D is chosen

to minimize distortions of angles and areas. Each parame-

ter ti is mapped to the mesh vertex vi = (xi, yi, zi) ∈ R
3.

Figure 2 visualizes the initial parametrization in 2D param-

eter space (left) and mapped on the 3D surface (right). Due

to the full correspondence of all face shapes, this discrete

parametrization is the same for all shapes of the database.

With this discrete embedding in parameter space, a con-

tinuous mapping Φ is computed that maps parameters α =
(u, v) ∈ R

2 into the surface of the shape. A thin-plate

spline [11] defines this mapping, computed as

Φ(α) = c+Aα+WT (σ(α− t1), . . . , σ(α− tn))
T , (7)

where c ∈ R
3, A ∈ R

3×2, and W ∈ R
n×3 are the parame-

ters of the mapping, and where σ : R2 → R is the function

σ(h) =

{

‖h‖
2
log(‖h‖) ‖h‖ > 0,

0 ‖h‖ = 0.
(8)

The surface of Φ interpolates all vertices of the shape

(Φ(ti) = vi) and gives the surface with the minimum

bending energy. Figure 3 shows one initially registered

shape (left) together with the computed continuous thin-

plate spline visualized as densely approximated mesh (mid-

dle) and (u, v)-parameter lines (right). The evaluation of

Φ at parameters α, where u (respectively v) is fixed and v
(respectively u) is varied by a fixed discrete step size, gives

one (u, v)-parameter line. While the spline interpolates the

geometry of the initial shape, it gives a reasonable extrapo-

lation of the shape beyond the outer border of the face.

4.3. Optimization

The objective function E in Equation 3 is non-linear.

Due to the choice of the parametrization, E is analytically

differentiable with respect to α. The supplementary mate-

rial gives the full analytical gradient. We minimize E us-

ing L-BFGS [23], a quasi-Newton method with linear con-

straints. These linear constraints allow for each vertex in

parameter space to specify a valid rectangular area.

Boundary constraints: For meshes with boundary,

ECOMP is minimized if the entire surface collapses into

a single point. Hence, boundary conditions need to be en-

forced. Face shapes have two boundaries, an inner bound-

ary at the mouth and an outer boundary at the end of the

acquired scan. Since landmarks are used during the ini-

tial registration, the inner boundary at the mouth is regis-

tered well. To avoid points that move from the lower to

the upper lip or vice versa, we fix the points in the 1-ring

neighborhood of the mouth boundary during optimization.

Since the outer boundary is not registered well as scans

in the database are cropped inconsistently, we allow lim-

ited movement for points in the 1-ring neighborhood of the

outer boundary. Specifically, the movement is restricted to

at most 20 mm.

Optimization schedule: Optimizing for the parameters of

all shapes at the same time is not feasible for a large pop-

ulation of shapes due to the large number of parameters

(d2d32n). Instead, we only optimize the parameters of each

shape individually as proposed by Davies et al. [10, Chapter

7.1.1]. This optimization is performed for all shapes of the

database during each iteration. Note that E still depends on

all shapes for this shape-wise optimization, and the method

therefore still optimizes the groupwise correspondence. To

avoid bias towards any shape, the order of the shapes is ran-

domly permuted for each iteration step. Since the rigid

alignment of the shapes depends on the correspondence,

during optimization of one shape, the alignment is updated

after a few optimization steps.

Computational complexity: The computational complex-

ity of one optimization step is O(nd22d3 + nd2d
2
3) (see sup-

plementary material for details). As shown in the following

section, our approach is significantly more efficient than ex-

isting PCA-based MDL approaches.

5. Evaluation

This section evaluates three different tensor decomposi-

tions and our model optimization approach.

Data: For evaluation, we use models of the BU-3DFE [32]

and Bosphorus [28] databases. BU-3DFE contains 3D face

scans in neutral expression and in six prototypic expres-

sions. Bosphorus covers the six prototypic expressions and

a subset of up to 28 action units per subject. Since both

databases are acquired with different scanner systems, the

resulting scans have different resolution and noise charac-

teristics. We register the face scans with a template fitting

method [27] using the provided landmarks.

For BU-3DFE we use 50 randomly chosen identities in

7 expressions: neutral and the highest level of each expres-

sion. For Bosphorus we use all 65 identities that are present

in all 7 expressions. In the following, we call these subsets

BU-3DFE subset and Bosphorus subset, respectively.

Model quality: We quantitatively evaluate the quality of

the optimization with the widely used measures compact-

ness, generalization and specificity [10, Chapter 9.2]. The
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Figure 4. Artifacts obtained by optimizing ECOMP without regu-

larization (wREG = 0). Left: initial registration. Right: result.

identity and expression spaces should ideally be compact,

general and specific.

Generalization measures the ability of the statistical

model to represent shapes that are not part of the train-

ing. The generalization error is measured in a leave-one-out

fashion. For the identity mode, each subject is once fully

excluded from training and the resulting model is used to

reconstruct all excluded scans. The error is then measured

as the average vertex distance between all corresponding

vertices. The error for the expression mode is computed

accordingly by excluding once each expression.

Specificity measures the ability of the statistical model to

only represent valid shapes of the object class. To measure

the specificity of the model before and after optimization,

we randomly choose 10000 samples in identity and expres-

sion space and measure the average vertex distance of the

reconstruction to the training data.

Reproducibility: To facilitate evaluating the model for dif-

ferent applications, we make our optimization code and the

optimized statistical model available [3].

5.1. Tensor decompositions

We evaluate the different tensor decomposition methods

described in Section 3.2 by fitting the resulting multilinear

models to unseen 3D face scans. For this, we use a 10-fold

cross validation on the registered BU-3DFE scans. We split

the database randomly into ten groups, each with the same

ratio of male and female subjects, where all scans of one

identity belong to the same group. The error is measured

as the distance between a vertex in the fitting result and its

closest point in the face scan. The error distribution of all

three methods is nearly identical. The median vertex error

is for HOSVD 1.145 mm, for HOOI 1.144 mm and for the

Newton Grassmann method 1.144 mm. Since all methods

perform almost the same, we compute the decomposition

with HOSVD in the following.

5.2. Influence of regularization

This section evaluates the influence of the regulariza-

tion EREG on the BU-3DFE subset. The optimization is

performed twice, once only optimizing ECOMP without

EREG and once only optimizing EREG without ECOMP .

As discussed in Section 4.1, the regularizer is needed to

Figure 5. Noise example of the database before (top) and after

(bottom) optimization. Left to right: no, low, and high noise.
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Figure 6. Influence of the initialization for different levels of noise.

Left: compactness. Middle: generalization. Right: specificity.

Top: identity mode. Bottom: expression mode.

avoid undersampling in regions with high variability and

fold-overs. Figure 4 shows the result for one face after only

five iterations of optimizing ECOMP . When minimizing

only ECOMP , the optimization moves points away from the

eyebrows and around the nose, resulting in sparsely sam-

pled regions. Furthermore, fold-overs at the mouth cause vi-

sual artifacts. Optimizing EREG leads to regularly sampled

meshes. However, ECOMP increases in this case. Mini-

mizing E is therefore a tradeoff between getting a compact

model and a regular mesh structure. In the following, we

empirically choose wREG = 0.5.

5.3. Influence of initialization

This section evaluates the robustness to noise in the ini-

tialization. State-of-the-art registration methods for faces,

as used for the initialization of our method, are able to fit

the facial surface well with sub-millimeter accuracy, but

the result is likely to contain drift within the surface. To

simulate noise regarding these methods, we use the initial
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Figure 7. Visual comparison of template fitting [27] (red) and our

result (blue) for one subject in four expressions (overlap in gray).

parametrization and add two different levels of noise in the

parameter domain. The parameter values of each shape

of the BU-3DFE subset are disturbed by random Gaussian

noise. Since the 1-ring neighborhood of the mouth bound-

ary is fixed during optimization, these vertices are left with-

out noise. For both noise levels we choose noise with mean

zero and standard deviation f times the average 3D edge

length. For the lower noise level we choose f to be 0.25,

for the higher 0.75, respectively.

The optimization is performed on the BU-3DFE subset,

initialized with the noisy registration. The top of Figure 5

shows an example of the database without noise (left), the

lower level of noise (middle) and the higher level of noise

(right). The average 3D vertex distance of the initial shapes

to the noisy shapes over the entire database is 1.11 mm for

the lower and 2.50 mm for the higher noise level.

Adding random noise within the surface to each ver-

tex increases the variance in 3D positions and therefore in-

creases the variability of the data. As expected, Figure 6

shows that the compactness of identity mode and expres-

sion mode decreases with increasing noise, since the mul-

tilinear model captures less variability with the same num-

ber of components. Further, the multilinear model becomes

less general and less specific. After 15 iterations, the aver-

age compactness increases by 3.8% for the low noise level,

and by 8.7% for the high noise level, respectively. The aver-

age generalization error decreases by 0.58mm and 1.65mm
for the low and high noise level, the average specificity de-

creases by 0.43mm and 1.26mm for the low and high noise

level. After optimization, the model quality for both lev-

els of noise is comparable to the optimization of the data

without noise. Hence, our optimization method effectively

reduces variability caused by drift.

5.4. Comparison

This section compares our approach to two state-of-the-

art registration methods for 3D faces based on template fit-

ting [27] and PCA-based groupwise correspondence [10].

Template fitting: We compare our optimization to tem-

plate fitting on the BU-3DFE and Bosphorus subsets. For

the two subsets, Figures 8 and 9 show the compactness,

generalization and specificity for template fitting and after

15 iterations of the multilinear optimization. For the BU-
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Figure 8. Comparison of template fitting [27], PCA optimiza-

tion [10] (PCA opt.) and multilinear model optimization (MM

opt.) on BU-3DFE subset. Left: compactness. Middle: general-

ization. Right: specificity. Top: identity mode. Bottom: expres-

sion mode.
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Figure 9. Comparison of template fitting [27] and multilinear

model optimization (MM opt.) on Bosphorus subset. Left: com-

pactness. Middle: generalization. Right: specificity. Top: identity

mode. Bottom: expression mode.

3DFE subset, the average compactness increases by 3.0%,

and the average generalization and specificity decrease by

0.25mm and 0.32mm, respectively. For the Bosphorus

subset, the average compactness increases by 1.7%, and the

average generalization and specificity decrease by 0.15mm
and 0.16mm, respectively.

Figure 7 visually compares the template fitting (red) to

our result (blue) for one subject of the BU-3DFE subset.

Before optimization, the shape of the outer boundary dif-

fers. The optimization decreases the face for the first and

fourth expressions at the cheek, for the second expression

at the jaw, and for the third expression at the forehead. Ex-

pressions one, two and three are extended at the forehead.

After 15 iterations, the outer boundaries are similar.

To demonstrate the ability of our method to optimize

over large sets of shapes, we consider a second subset of the

Bosphorus database consisting of 39 identities performing
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26 action units each, leading to a total of over 1000 shapes.

To keep 95% of the data variability after template fitting, a

total of 27 components are necessary, while after 15 itera-

tions of our optimization, 20 components suffice. As for the

other subsets, generalization and specificity also improve

after optimization. To the best of our knowledge, this is

the first time a registration optimization based on MDL has

been applied to such a large set of shapes.

For all three datasets the model improves significantly

during optimization, leading to a more compact model with

improved generalization and specificity.

PCA: For brevity, we abbreviate PCA optimization by PCA

opt. and our method by MM opt. during the discussion of

the comparison. We start by comparing the computational

complexity of the two methods. In the supplementary ma-

terial, we show that one optimization step for PCA opt. has

complexity O(nd22d
2
3), while one optimization step of MM

opt. has complexity O(nd22d3 + nd2d
2
3). For the BU-3DFE

subset our non-optimized implementation takes about 16.2h

for MM opt. and about 21.5h for PCA opt. for one iteration

when executed on a standard PC.

Figure 8 quantitatively compares PCA opt. and MM opt.,

both after 15 iterations. While MM opt. gives significant

improvements, PCA opt. only slightly improves the corre-

spondence. For small subsets PCA opt. gives significant

improvements within few iterations. Our experiments sug-

gest that for an increasing number of shape space parame-

ters, an increasing number of iterations is required. Since

MM opt. models identity and expression independently, the

number of shape space parameters is d2+d3, while for PCA

opt. the number of shape space parameters is d2d3.

Hence, our method gives better improvements after the

same number of iterations and is computationally faster

than existing linear optimization methods.

5.5. Discussion

Parametrization: Our proposed method optimizes the cor-

respondence by re-parametrizing the shapes guided by the

optimization of a multilinear compactness objective func-

tion. This re-parametrization requires a continuous repre-

sentation of the surface for each shape. While any kind of

continuous mapping can be used, we establish this by a thin-

plate spline. For other continuous mappings, the gradient

changes, and therefore depending on the mapping (e.g. for

mappings without analytical gradient) E must be optimized

with a different method.

Data quality: Computing this continuous surface mapping

assumes the original face scans to be regularly densely sam-

pled with points that are within the surface of the scan. To

get this sampling, any existing template fitting method can

be used. For face scans with partial occlusions or strong

distortions, template fitting methods fail, since they are un-

able to estimate the real face surface in these regions. To

optimize the registration for scans with strong distortions,

we would either need another initialization that gives a rea-

sonable surface estimation within the occluded and noisy

regions (e.g. Brunton et al. [5]), or the optimization of E
must be allowed to leave the surface of the disturbed scan

guided by the underlying multilinear model.

Computational complexity: While the multilinear corre-

spondence optimization is computationally more efficient

than previous linear methods, due to the groupwise objec-

tive function, the computational complexity is still high.

Our experiments show that only a low number of iterations

are necessary to get significant improvements. Note that the

registration can be seen as pre-processing that only needs

to be done once. The application for larger datasets would

require the use of a compute cluster to exploit the full po-

tential of the parallelizability of the method (especially the

gradient computation).

Extensions: Our method is generally applicable to other

classes of multilinearly distributed data. The geometry of

the shapes can contain no or multiple holes as long as the

boundaries of the holes are constrained. The regulariza-

tion EREG prevents fold-overs around these holes. Fur-

thermore, the extension of our method to more modes is

straightforward, e.g. for faces to associate the fourth mode

with viseme or age.

6. Conclusion

We have presented the first method for multilinearly

distributed data that jointly improves a given registration

and a multilinear model. A continuous representation of

each shape allows to optimize the registration with a quasi-

Newton method. We have evaluated our method on scans

of two databases and have demonstrated that our method is

robust to noise in the initial registration. A key advantage

of our approach over existing linear MDL methods is its in-

creased computational efficiency, which allows for the first

time to apply an approach based on MDL to databases con-

taining over 1000 shapes. We have shown that using the

efficient HOSVD method to compute the multilinear model

performs similarly when reconstructing unseen face data to

more elaborate tensor decompositions. To facilitate experi-

ments for different application scenarios, we make our opti-

mization code and the optimized statistical model available.
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