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Abstract

In this paper, we provide a new, real photo dataset with

precise ground-truth for intrinsic image research. Prior

ground-truth datasets have been restricted to rather sim-

ple illumination conditions and scene geometries, or have

been enhanced using image synthesis methods. The dataset

provided in this paper is based on complex multi-illuminant

scenarios under multi-colored illumination conditions and

challenging cast shadows. We provide full per-pixel intrin-

sic ground-truth data for these scenarios, i.e. reflectance,

specularity, shading, and illumination for scenes as well as

preliminary depth information. Furthermore, we evaluate 3

state-of-the-art intrinsic image recovery methods, using our

dataset.

1. Introduction

One of the main goals in the image processing research,

from the early days until now, is the ability to describe

the scene in terms of “intrinsic” characteristics like depth,

shape, surface orientation (normals), incident light, and re-

flectance at each visible surface point [4]. Each of these

intrinsic characteristics provides us with valuable cues for

scene understanding. Several methods have been proposed

which tackle different aspects of this problem in an image-

based manner, i.e. utilizing image-based scene represen-

tations with a fixed camera pose. While color constancy

methods are more interested in the chromatic value of the

incident light on the object surface, intrinsic image estima-

tion methods try to separate the effects of the lighting and

scene geometry from the object’s reflectance, i.e. its color

and texture.

A major difficulty for intrinsic image research is getting

access to datasets of images which depict realistic scenar-

ios, and provide precise ground-truth information regard-

ing all intrinsic scene parameters, i.e. reflectance, specular-

ity, shading, and illumination. This kind of datasets allows

the evaluation of the performance of any intrinsic image

method, as well as providing training data for these algo-

rithms. The first reliable dataset is published by Grosse et

al. [15], known as the MIT dataset. While the MIT dataset

has paved the way for many recent intrinsic image methods,

it suffers from limitations like: simple lighting condition (a

single white light source with no ambient lighting, no col-

ored interreflections, no colored lighting edges, no colored

shadows, and very little specularities), simple toy objects

with limited color and texture, and no geometry data.

Recently Barron et al. [2] have synthetically rendered the

MIT images to provide more complex lighting. In their later

work [3], they have also featured synthesized range (depth)

data for the MIT dataset with synthesized Kinect-like noise,

and shown the value of such complimentary information

about the scene in improving the performance of intrinsic

image recovery. Furthermore, they have provided results

on the NYU dataset [21] for which range data, but no real

intrinsic image ground-truth is available.

In the current work, we provide a new, real-photo

ground-truth dataset applicable to intrinsic image research,

which strongly improves over the existing ones in terms of

illumination and scene complexity, and which includes full

intrinsic ground-truth data. Inspired by Grosse et al. [15]

and Beigpour et al. [6], our approaches to scene setup, data

acquisition, and ground-truth determination comprise the

following contributions, addressing new challenges in the

field which were previously not considered:

• Creation of the first reliable multi-illuminant real-

photo dataset for the purpose of intrinsic image re-

search presenting complex geometry, multi-colored

non-uniform lighting, large specularities, and chal-
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Figure 1. Schematic example of the setup: Scene with colored objects (left) and geometrically identical with objects painted in gray (right).

Figure 2. The scenes: We have designed five scenes with complex geometry and shading effects. Here we show the colored scene versions.

lenging colored shadows.

• Precise per-pixel ground-truth of reflectance, specular-

ity, shading, and illumination for scenes under multi-

colored illumination conditions.

• Preliminary depth information of the scene on a coarse

resolution level.

• Evaluation of 3 state-of-the-art intrinsic image recov-

ery method using our dataset.

The main contributions of the proposed dataset over the

MIT dataset are that it features: colored light, non-uniform

multi-colored illumination (e.g., challenging colored cast

shadows, color variations of the incident light dependent

on the surface normal) with pixel-wise accurate ground-

truth, large specularities, a preliminary depth map, as well

as adding more complexity to the scene geometry (e.g.,

scenes contain multiple objects with very different geome-

tries). Thus, our dataset enables advanced evaluations of

existing and future intrinsic image algorithms.

The reminder of this paper is organized as follows: Sec-

tion 2 summarizes the related work; Section 3 provides de-

tails on our dataset acquisition and ground-truth calculation;

a benchmarking of state-of-the-art using our dataset is given

in Section 4; Section 5 discusses challenges and future work

followed by conclusions in Section 6.

2. Related work

In this section we briefly explain the image formation

model, which is fundamental for the intrinsic images con-

cept (Sec. 2.1). Afterwards, we summarize the related work

in intrinsic image dataset creation (Sec. 2.2) as well as the

intrinsic image recovery methods (Sec. 2.3).

2.1. Image Formation Model

Recovering the intrinsic characteristics of the scene

based on acquired imagery is a highly complex problem,

which requires a model of the image formation as such.

These models often use an image space representation, i.e.

all characteristic parameters are given in image coordinates

denoted by x.

One of the early models for image formation is the

Dichromatic Reflection Model (DRM) [24], which decom-

poses the image I into its diffuse and specular components:

Ic (x) = md (x)

∫

ω

b (λ,x) e (λ,x)ρc (λ) dλ (1)

+ms (x)

∫

ω

i (λ) e (λ,x)ρc (λ) dλ,

where e(λ,x) represents the energy of the incident light,

and b(λ,x) is the surface albedo. We integrate over the

wavelength λ of the visible spectrum ω. ρc(λ), c ∈
{R,G,B} denotes the spectral sensitivity of the camera

(sensor) for the R, G, and B channels. We will omit the

channel superscript c without loss of generality. The achro-

matic terms md(x) and ms(x) summarize the geometric

dependence of the reflected diffuse and specular light, re-

spectively, to the view angle, direction of the incident light

and the surface normal for the observed scene location re-

lated to the image location x.

A common assumption is the neutral interface reflection,

i.e. the Fresnel reflectance i is independent of λ and can be

omitted from Eq. 1 as it is a constant factor. Note that in-

trinsic image decomposition methods only provide shading

and reflectance values up to a constant scalar multiple of the

real values [15].

Later work has extended this model to account for

non-uniform illumination, e.g. by considering shadows.
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Maxwell et al. [20] formulate a multi-illuminant image as

a linear combination of images under different illumination

conditions. In their work, they focus on ambient illumi-

nation as they are mainly interested in chromatic shadows.

However, considering Eq. 1, variations in the color of the

incident light can be accounted for directly, as e(λ,x) can

encode the spatially varying information depending on the

image coordinate.

In the case of the MIT dataset [15], the illumination is

homogeneous and white, leading to e(λ,x) = const in

Eq. 1, i.e. it is independent of the wavelength and the posi-

tion. Using the assumption that the image of the object can

be modeled as a linear combination of shading, reflectance,

and specularity, Grosse et al. [15] simplify the representa-

tion of the model to its main components:

I(x) = S(x)R(x) + C(x) , (2)

where S, R, and C represent the shading, reflectance, and

specular components respectively. We refer readers to the

work of Grosse et al. [15] for further explanation.

2.2. Datasets

As mentioned in the previous section, the MIT dataset

by Grosse et al. [15] is the main resource for intrinsic im-

age research. It is constructed from single-object scenes

and white illuminant scenario with precise reflectance, and

shading ground-truth. Further work by Barron et al. [3]

used synthetic rendering on top of the MIT dataset in or-

der to achieve more complex multi-illuminant ground-truth

data, as well as depth information. Beigpour et al. [6] also

extends the MIT concept to account for non-uniform illu-

mination, but their approach is solely based on synthetic

image generation for scene geometry and image formation,

whereas the illumination data is synthesized from real light

spectra. Furthermore, they provided a thorough study of

state-of-the-art in intrinsic image recovery, but the data does

not account for noise, scenes are entirely diffuse, and no

depth information has been provided. Some color constancy

datasets have targetd multi-illuminant scenes [14, 5, 31] but

do not provide any shape and reflectance ground-truth.

Recent advances in the field of computer graphics based

on physically motivated models produce realistic-looking

images and, thus, have encouraged researches to use syn-

thetic data as ground truth. In general, replacing real-world

measurements by synthetic, computer generated imagery

(CGI) is problematic in two ways. First, the photometric

consistency of CGI compared to equivalent real-world im-

agery has yet to be validated. Considering image foren-

sics, several methods exist that can classify photo-realistic

CGI from real photos with more than 90% accuracy [28].

Second, there is a strong overlap between the models used

for rendering CGI and physics-based models used by intrin-

sic image methods. Thus the evaluation of different meth-

ods using synthesized data is potentially biased in favor of

methods which rely on similar models as to which the syn-

thesized data has been created.

The creation of a real multi-illuminant intrinsic image

dataset with complete ground truth involves laborious, time

consuming, and very precise procedure as well as expertise

in the field. This paper takes on the challenge of providing

such a dataset which extends over the MIT dataset in terms

of complexity of the illumination and scene geometry, along

with its full intrinsic ground-truth data.

2.3. Intrinsic Image Estimation Methods

Many works in intrinsic image recovery have been pro-

posed in the literature. The earlier approaches relied on

the assumption that the reflectance changes produce sharp

edges, while shading changes are smooth [18]. Considering

that the object reflectance is independent of the illumina-

tion, Weiss [29] has used several images of a scene under

different lighting conditions to solve this problem. Entropy

minimization, e.g. Finlayson et al. [10], and learning-based

approaches, e.g. Tappen et al. [27], have proven to be ad-

vantageous. Non-local texture constraint [25], integration

of local luminance amplitude with hue and texture [16], and

image clustering [12] further improved the results.

Use of sparse reflectance priors has resulted in strong im-

provements in performance and results in the works of Shen

et al. [26] Gehler et al. [13] and Serra et al. [23]. Bar-

ron et al. [2] combine priors on the local smoothness and

global sparsity of the reflectance with priors on shape (flat-

ness, outward-facing orientation at the occluding contour,

and local smoothness).

In section 4 we evaluate some of the most recent meth-

ods in this field by Gehler et al. [13], Serra et al. [23] and

Barron et al. [2] on our multi-illuminant real-photo ground-

truth dataset.

3. Dataset and Ground-Truth Acquisition

The main contribution of this work is providing a dataset

of images of real objects lit in complex, non-uniform, multi-

colored lighting conditions with precise ground-truth, i.e.

the Lambertian reflectance and shading as well as specular-

ity. Furthermore we provide pixel-wise accurate color of

the incident light on the objects. Our complete dataset is

publicly available online1.

Our work is inspired by works of Grosse et al. [15] and

Beigpour et al. [6]. But it differs from the former mainly in

that it present complex multi-colored lighting in the scenes

with precise pixel-wise ground-truth as well as depth in-

formation. The latter has also provided the multi-colored

lighting, but only on synthetic data. In this section we ex-

1http://www.cg.informatik.uni-siegen.de/data/

iccv2015/intrinsic
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plain in detail our framework for capturing the images and

extracting the ground-truth information.

3.1. Scene Setup

Our dataset consists of 5 distinct scenes, each of which

contains two colorful objects with complex geometry; see

Fig. 2. A schematic example of a scene is given in Fig. 1.

Lighting in each scene is provided using a DC-950 regu-

lated illuminator with a 150W quartz halogen light source

fitted with an IR filter. The intensity of the light can be

controlled. Using a dual branch fiber optics light guide, the

light is directed through two filter-wheels fitted with color

filters.

One wheel is mounted on the scene’s ground level at the

front-left side and is equipped with a set of orange (’O’),

yellow (’Y’), and white (’W1’) filters, and the other wheel

is mounted on the top-front-right side of the scene and is

equipped with a set of blue (’B’), green (’G’), and white

(’W2’) filters. W1 and W2 are results of two neutral density

filters with different levels - in order to regulate the scene’s

brightness - but have the same chromaticity. Each of these

wheels act as a separate light source. The spectra of each

of the individual illuminants, i.e. light source plus filter, is

given in Fig. 3.

Using the combination of filters, we produce a set of 15

lighting conditions L = {ℓ1, ..., ℓ15} consisting of 9 two-

illuminant and 6 single-illuminant (by blocking one of the

sources) lighting conditions. In the following, we denote an

illumination condition as

LR with

{
L ∈ {O, Y, W1, N} (left filter color)

R ∈ {B, G, W2, N} (right filter color).

Thus, OB stands for orange from left and blue from right.

We use ’N’ to indicate absence of an illuminant, e.g. NB

means blue illuminant from right while the left source is

blocked. The position of the two light sources are rigidly

fixed in relation to the scene and the camera.

In order to represent the complexity of natural scenes,

our scenes feature different types of surfaces and geome-

tries, e.g. flat, curved, sharp or smooth edges, as well as var-

ious types of reflectance, e.g. uniformly colored and sparse

scribbles. The illumination in the scenes resulted in both

soft shadows and shadows with sharp edges, as well as

smooth blending of differently colored illuminants over a

curved surface. Fig. 4 presents an example of the lighting

conditions of an acquired scene.

3.2. Data Acquisition and Calibration

The scene is captured using a Nikon D300 camera cou-

pled with a Kinect version 2 Time-of-Flight (ToF) depth

camera. The two cameras are rigidly attached together at

about 8 cm distance, so the relative transformation is not al-

Figure 3. The illumination spectra: By placing color filters in front

of the halogen lamp we create 5 distinctly colored light. Spectral

distribution of each light is presented in this plot.

tered during the experiments. The extrinsic and intrinsic pa-

rameters of this stereo-like setup are calibrated beforehand

using a checkerboard and the standard camera calibration

model from Bouguet’s Matlab toolbox [9]. This way, we

estimate a mapping between the images of the two cameras

in order to register the color and depth images.

For the Nikon camera we use a 30mm Sigma zoom lens

to acquire our scenes. The Kinect camera, on the other

hand, has a wide field of view optics, which can unfortu-

nately not be exchanged. Alternatively using the Kinect’s

built-in color camera is not possible, as its colors are not

reliable.

In order to acquire reliable data, we disable the automatic

white balance of the Nikon camera, set all the parameters of

the camera to manual, and capture RAW images. Since Eq 1

is based on the linearity of the image, it is crucial to use the

uncompressed raw output of the camera without any ma-

nipulation which is usually done by the software embedded

in the camera. We use raw images for our evaluations and

calculation of the ground-truth. But since linear raw images

often appear dull and dark on the screen or when printed,

we apply the color transform of Akkaynak et al. [1] (cre-

ated using a Macbeth color checker) along with a gamma

encoding as a post processing step for visualization of our

images in this paper.

Regarding the depth acquisition, several problems arise

due to the operation principle of ToF cameras in general,

as well as to the restricted functionality and flexibility of

the specific ToF Kinect camera. Most of the error sources

related to ToF cameras, such as motion artefacts or interfer-

ence with background illumination are less prominent due

to our specific acquisition setup (see Kolb et al. [17] for a

survey on ToF cameras and their error sources). Two as-

pects are more relevant in our setup, i.e. the range measure-

ments of ToF are less reliable for darker object regions and

highly reflective objects may lead to so-called multi-path

interference, where different light paths from the camera’s

illumination unit to the sensor chip superimpose and lead to

wrong depth values. To circumvent both effects, we capture
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Figure 4. An example of the 17 different illumination conditions: Diffuse Multi-illuminant (Top-row), Diffuse Single-illuminant (bottom-

row left), Specular Multi-illuminant (bottom-row right).

Figure 5. Determined Ground-Truth: The original image Iorg (left), the diffuse image Idiff (second from left), the relative shading image

S̃ (center), the relative reflectance image R̃ (second from right), and the specular image Ispec (right) for the W1W2 (top row) and the OB

(bottom row) lighting condition. Note that these images are enhanced for visualization using the gamma curve.

the depth images from the diffuse gray version of the scene

(see Sec. 3.3). Due to the baseline between the Nikon and

the Kinect, we further have the problem of false color as-

signments due to occlusions, i.e. scene points observed by

the range sensor, but not by the color camera may get as-

signed to the color of the occluded object portion. We use

the shadow-maps like approach from Lindner et al. [19] in

order to identify these points and mask them as black.

As far as the specific ToF Kinect camera is concerned,

we already mentioned the wide field of view optics, which

can unfortunately not be exchanged. Furthermore, Kinect’s

ToF can only provide images in a VGA resolution, while

the Nikon has 12 Mega-pixel resolution. Therefore, any of

the two options for image based fusion of the range and the

depth information implies difficult challenges:

• A depth-to-color transformation results in a very

sparse depth representation of the scene with an up-

scaling factor of about 16. Interpolating depth at this

level of sparsity is an unsolved problem. We apply

an inpainting method to illustrate the sub-optimality of

the result; see Fig. 6, left.

• A color-to-depth transformation yields a strongly

down-sampled color image, which would discard a

vast amount of color information and may even be sub-

ject to aliasing; see Fig. 6, right.

Even though, one might argue that using lower resolution

input data is feasible due to intrinsic image decomposition

methods being often computationally exhaustive, we opted

for not using the depth information at this stage, as most ex-

isting intrinsic image decomposition methods do not feature

depth information so far. However, we provide the prelim-

inary, sparse depth information, as it is still an additional

and valuable cue. We will address the challange of provid-

ing full range, high resolution ground-truth depth data and

depth upsampling in our future research.

3.3. Determination of Ground­Truth

The main goal of the paper is to provide ground-truth

data for several scenes under varying illumination condi-

tions. As the shading and the reflectance values can only

be determined up to a constant scalar multiple of the real

values, we cannot calculate the true shading image S and

the true reflectance image R from Eq. 2, but only relative

shading image S̃ and the relative reflectance image R̃.
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Condering Eq. 2 the following relations hold:

Iorg = S ·R+ Ispec and Idiff = S ·R, (3)

S ∝ S̃ and R ∝ R̃.

where Iorg denotes the original image, Idiff the diffuse im-

age, and Ispec the specularities.

Specularities: Fig. 5 demonstrates an example from our

dataset with specularity, shading, and reflectance ground-

truth. The first step in creating the ground-truth is to sep-

arate the specular image Ispec from the diffuse component

Idiff. Following the work of Grosse et al. [15], we use a

cross-polarization approach by placing linear polarizing fil-

ters in front of each of the light sources. First we block one

of the light sources and rotate the polarizing filter placed in

front of the camera lens until there are no specularities vis-

ible in the scene. We place a chrome sphere in the scene

to judge the quality of the cross-polarization. Then we un-

cover the second light source and rotate its polarizing filter

until the specularities caused by the second source also dis-

appear from the chrome sphere. This yields Iorg and Idiff,

and from Eq. 3 we get: Ispec = Iorg − Idiff.

Note that even though the polarizing filters’ nominal per-

formance is less than 100% the captured images demon-

strate no visible specularities on the objects.

Reflectance: The second and more difficult step is to sep-

arate reflectance from shading and illumination. Similarly

to Grosse et al. [15], we create exact replica of the scene,

one colored version for capturing reflectance and shading

and one gray version for capturing shading only. We need

to fulfill two main requirements in setting up the two ver-

sions of each scene:

• The geometric accuracy in the acquisition needs to be

at pixel precision, and

• any inter-reflection must equal for both scene variants,

as variations in the inter-reflection lead to erroneous

reflectance.

In order to cope with the first requirements, we use only one

instance of each object, where the initial object version is

painted in a diffuse grayish reference color (RAL7042 stan-

dard paint; RGB=(142,146,145)); our alignment approach

is described later in the text. The colored object versions

are generated by sparsely applying various chromatic paint.

In principle, one could also use initially colorful objects and

uniformly paint them gray, but we found it easier to meet the

first requirement using the prior approach. The second re-

quirement is handled by placing the scene and the camera in

a black tent, thus removing all ambient inter-reflections, and

painting the back side of the objects in diffuse gray in order

not to cause colored reflections on the objects. As we ap-

ply chromatic paint sparsely, the variation in the inter-object

reflection is minimized.

The diffuse acquisition of the initial grayish and the col-

ored scene versions yields the diffuse gray image Igray
diff and

the diffuse colored image Icol
diff. From Eq. 3 we determine

S̃ = Igray
diff , R̃ = Icol

diff/I
gray
diff . (4)

As some intrinsic color reconstruction methods can han-

dle specularities, or even use them to optimize their results,

we additionally provide the captured specular colored im-

age Icol
spec for each scene, i.e. without polarizing filters, for

the W1W2 and the OB illumination conditions.

Alignment: It is crucial to keep the position of the ob-

jects, lights, and the camera fixed between the acquisition of

the colored versions Icol
diff and the gray version Igray

diff . These

images must be aligned at pixel accuracy. It is not enough

to align them in a post-processing step as even slight dis-

placements can drastically alter the cast shadows and other

features of the scene. Painting the objects on the set could

result in some movements. Grosse et al. [15] have con-

structed a platform balanced on a group of spheres to be

able to position the objects on their exact position. We have

found that in our case, as our scenes consist of multiple ob-

jects with different geometries, Grosse et al.’s approach is

difficult to apply. Therefore, we have fixed a large LEGO

plate on the ground level of the scene and glued each of

the objects on a platform made of a small LEGO plate with

4 legs on the corners; see Fig. 2. This structure provides

us with more freedom as well as a very precise way of re-

positioning the objects in the scene. We have examined the

images of the scene with great scrutiny and discarded the

scenes with any slightest visible displacement or rotation.

Figure 6. Top-row: Original RGB (left) and Depth (right) images;

Bottom-row: Depth-to-color transformation using an inpainting

method (left) and color-to-depth transformation (right). The reso-

lution ratio is about 16:1.

3.4. Noise Analysis and Reduction

Since we calibrate the Nikon and Kinect cameras to-

gether, we need to keep the focal length constant for all
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scenes. To avoid blurring artifacts, we have chosen a small

aperture for which the depth of field would give us enough

room to place each scene [11].

Dark pixels in the image tend to be much more prone

to noise. In our setup we are interested especially in the

effect of shadows. To avoid artifacts in the shadow areas

we have tested each lighting condition with several different

exposure times and choose the one which produces reliable

images, i.e. in which the object’s pixels’ RGB values are not

being over or under exposed. For each lighting condition,

we capture the gray and the colored version of the scene

with the same exposure time. As our scenes are stationary,

we can allow for longer exposure, while keeping the ISO

low enough to reduce noise.

As any camera-based image acquisition is affected by

noises, we evaluate the noise-level of the Nikon in order to

determine an appropriate number of images that need to be

taken and averaged for noise reduction. Therefore, we run

a sequence of acquisitions of the Macbeth chart, manually

segment one of its gray-level patches, and compute the stan-

dard deviation for R, G, and B using all pixel values within

the segmentation. Fig. 7 depicts the resulting standard de-

viation as function of the number of averaged images.

In the current work, we use the average of 10 images

to construct one shot, which is a feasible compromise be-

tween the amount of data to be acquired and the noise level

achieved.

Figure 7. The standard deviation of a gray cell inside a Macbeth

chart as function of the number of averaged images.

4. Benchmarking

In this section we evaluate Barron et al. [2], Gehler et al.

[13], and Serra et. al. [23], three of the state-of-the-art in-

trinsic image recovery methods using the proposed dataset.

We use the publicly available code for each of these meth-

ods from the authors’ own web pages. All the parameters

are set to the default provided with these codes and no fur-

ther training on our data has been done. Tab. 1 provides

quantitative evaluation of each method on our dataset 2. To

better explain the results we have grouped our lighting con-

2Examples of results are available for qualitative comparison in the sup-

plementary document.

ditions from Sec. 3.1 in six categories:

White ∈ {W1W2 , W1N , NW2}

MonoColor ∈ {ON , YN , NB , NG}

ColorWhite ∈ {W1B , W1G , OW2 , YW2}

MultiColor ∈ {OB , OG , YB , YG}

SpecWhite ∈
{
{W1W2}Spec

}

SpecMultiColor ∈
{
{OB}Spec

}

where the Spec subscript denotes that the polarizing fil-

ter has been removed to allow for specularities. Here we

use two different metrics, namely Local Mean Square Er-

ror (LMSE) and Angular Error (Ea).

As discussed before, the ground truth shading and re-

flectances can only be provided up to a scalar multiple of

the true values. To tackle this issue, Grosse et al. [15] de-

fine LMSE as the scale-invariant mean square error (MSE):

MSE(x, x̂) = ‖x− α̂x̂‖2 , (5)

where x and x̂ are the vector-valued true and estimated val-

ues respectively with α̂ = argminα‖x− α̂x̂‖2 . Here α is

fitted over each local square sized window w of size k. The

LMSE is given by:

LMSEk(x, x̂) =
∑

w∈W

MSE(xw, x̂w) . (6)

We refer the readers to Grosse et al. [15] for more details.

We provide LMSE values for each of the methods regarding

the reflectance and shading in Tab. 1. While the shading

ground-truth of Grosse et al. is a 2D grayscale image, our

shading ground-truth contains an extra dimension, i.e. the

color of the illuminant at each pixel. Here we only use the

gray values of our ground truth and the estimated shadings

by the 3 methods.

Barron et al. [2] also provides color values for shad-

ing which integrates the illumination estimate. To evalu-

ate the per-pixel illumination estimates, we use the Angular

Error which is a common metric in the field of color con-

stancy [5]. For a pair of vectors igt and iest which denote

ground truth and estimated illuminant color respectively,

we define:

Ea = arccos
(
(igt)

T
(iest)

)
. (7)

In Tab. 1, the illumination evaluation is produced by cal-

culating the mean value of the per-pixel Ea over the en-

tire estimated and ground truth shading. As [13, 23] only

provide grayscale shading, we compare Barron et al. [2]

against the baseline that is to set the estimation to a gray

178



Diffuse Acquisition Specular Acquisition

Evaluation Method White MonoColor ColorWhite MultiColor SpecWhite SpecMultiColor

Reflectance

Barron et al. 0.045 0.233 0.158 0.264 0.051 0.410

Gehler et al. 0.155 0.263 0.194 0.257 0.154 0.280

Serra et al. 0.049 0.117 0.096 0.133 0.044 0.102

Shading

Barron et al. 0.018 0.024 0.024 0.029 0.015 0.028

Gehler et al. 0.013 0.014 0.011 0.015 0.013 0.023

Serra et al. 0.014 0.019 0.020 0.024 0.019 0.030

Illumination

Barron et al. 2.0◦ 23.0◦ 17.6◦ 29.8◦ 4.7◦ 48.9◦

Baseline 21.9◦ 29.3◦ 23.9◦ 28.0◦ 21.9◦ 28.5◦

Table 1. Evaluation results.

value (R=G=G). Note that Ea is invariant to the scale fac-

tor which exists between the true value of the illuminant at

each pixel and our ground truth.

According to Tab. 1, the methods are more challenged

when the illumination color strongly deviates from white as

it is very difficult to separate the effect illumination color

from the natural intrinsic color of the object. The lowest er-

ror is achieved when the illumination is all white. The pres-

ence of specularities also increases the error. Over all, Bar-

ron et al. perform better when estimating the illumination

since they consider colored lighting in the optimizations,

Gehler et al. are more accurate in estimation of shading,

and Serra et al. perform better in recovering reflectance.

5. Discussion and Future Work

Here we briefly discuss challenges and avenues for fu-

ture work:

Lighting: Even though using the gray-painted version

of the scene, a reliable ground-truth can be calculated, this

strongly relies on all the other conditions in the scene, espe-

cially the lighting, to be unchanged. Outdoor lighting and

natural scenes are widely dynamic, e.g., moving clouds,

shaking leaves in a light breeze. Bell et al. [7] tackle this

using a crowd-sourced ground-truth labeling performed by

human subjects. But the authors admit that this creates er-

rors since the human judgment is subjective and does not

always hold up to the reality due to perceptual errors. We

will further investigate the incorporation of ambient light

and complex backgrounds in the future.

Interreflections: Global illumination in real-world re-

sults in colored interreflections which though interesting to

have in a dataset, could falsify the ground-truth because the

colored interreflections caused by the diffuse-diffuse reflec-

tion will not be present on the gray-painted scene; therefore,

the ground-truth calculation wrongly considers them as part

of the reflectance. Despite our best effort, some minor in-

terreflections are still present in our data, e.g. car fenders

in scene 2. We argue that these effects can be over-looked

as in our data they cause only an average 1.69◦ alteration in

recovered ground-truth reflectance color in terms of angular

error for an area of about .4% of total object pixels. This is

far below affecting the numbers in Table 1. In the future, we

will explore more effective ways of avoiding such artifacts

while featuring scenes with interreflections.

Texture: The MIT dataset does not contain color texture

and has minimal 3D texture. Our dataset features some fine

3D textures (e.g., the brush strokes, the texture of the 3D-

printed dragon in Scene 1, and the pattern on the LEGO

plate). We would like to extend our dataset to include more

color variations and 3D textures like fur and woven textile.

Depth upsampling: The current real depth information

acquired with a ToF-Kinect is sparse in resolution compared

to the color imagery. Some works in the literature have so

far attempted to tackle range data upsampling using corre-

sponding RGB data [22].

6. Conclusion

In this paper, we have presented the methodology to gen-

erate real-photo ground-truth dataset for intrinsic image re-

search with complex, multi-illuminant scenarios under non-

uniform lighting and challenging colored cast shadows. We

provide full per-pixel intrinsic ground-truth data for these

scenarios, including reflectance, specularity, shading, and

illumination. Furthermore, we have evaluated 3 state-of-

the-art intrinsic image recovery methods, using our dataset.

Our versatile, ground-truth dataset can be used for devel-

oping and evaluating any current and future intrinsic image

reconstruction technique. We hope that as the MIT dataset,

despite its shortcomings, has sparked the creation of several

intrinsic image methods in the past, our dataset can con-

tribute to the new developments in this field.

Intrinsic video decomposition methods are becoming a

recent trend in the community [30, 8]. It would be interest-

ing to extend our dataset to dynamic scenes.
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