
Contour Detection and Characterization for Asynchronous Event Sensors

Francisco Barranco∗ 1,2, Ching L. Teo∗ 1, Cornelia Fermüller1, Yiannis Aloimonos1

1 Computer Vision Lab, University of Maryland (USA) 2 CITIC, University of Granada (Spain)

{barranco, cteo, fer, yiannis}@umiacs.umd.edu

Abstract

The bio-inspired, asynchronous event-based dynamic vi-

sion sensor records temporal changes in the luminance of

the scene at high temporal resolution. Since events are only

triggered at significant luminance changes, most events oc-

cur at the boundary of objects and their parts. The detection

of these contours is an essential step for further interpreta-

tion of the scene. This paper presents an approach to learn

the location of contours and their border ownership using

Structured Random Forests on event-based features that en-

code motion, timing, texture, and spatial orientations. The

classifier integrates elegantly information over time by uti-

lizing the classification results previously computed. Fi-

nally, the contour detection and boundary assignment are

demonstrated in a layer-segmentation of the scene. Experi-

mental results demonstrate good performance in boundary

detection and segmentation.

1. Introduction

Event-based computation has been gaining increasing at-

tention in Machine Vision. The Dynamic Vision Sensor

(DVS) provides asynchronous responses at pixels where lu-

minance changes, along with very precise timing informa-

tion in the order of a few microseconds. In other words,

it records at high temporal resolution where and when

changes in the image occur. This sensor can become a new

tool for processing dynamic scenes, especially when there

is demand for real-time performance, low computational

resources or low latency. Such capabilities currently can-

not be exploited by Computer Vision methods using frame-

based sensors.

Unlike conventional cameras, the great advantage of the

DVS is that it provides very high temporal resolution data at

object boundaries. These are the most challenging locations

for frame-based image motion estimation, and most of the

computations in image motion algorithms are spent there.

In conventional Computer Vision, estimation of image mo-

∗– indicates equal contribution

Figure 1. Our approach improves over the simple baseline contours

(A), obtained by accumulating DVS events over short time inter-

vals, to produce contours that are not only more accurate but also

includes border ownership information (B-I) useful for generating

a segmentation of the scene (B-II).

tion and the detection of object boundaries are considered

two problems coupled in a chicken-and-egg situation. Find-

ing object contours in early processing stages, will greatly

facilitate further processes, such as accurate and dense im-

age motion estimation, segmentation, or recognition.

Recent studies have shown the advantages of event-

based data for the estimation of local features such as sparse

image motion [2, 3, 4], moving corners [8], and tracking [9].

However, the problem of detecting extended contours has

not yet been addressed. The asynchronous frame-free rep-

resentation of the DVS consists of sparse event responses

with accurate timing, but they are not grouped into mean-

ingful entities: e.g. object boundaries or segments. It may

appear at first sight that this data, because of its sparseness

and the fact that there is no image intensity, is not suited

well for conventional vision techniques. In this work we in-

troduce an approach, using methods from Computer Vision,

but adapted to the event based data, to obtain contours and

ordinal depth as shown in Fig. 1.

Neurophysiological experiments suggest that human vi-

sion has processes dedicated to linking contours in early vi-

sual areas V1 and V2 (see [11]). Further evidence shows

that biological vision also has mechanisms for assigning or-

dinal depth information to contours, via the so-called border

ownership assignment [31, 33]. Such processes determine

which of the two sides next to the boundary belongs to the
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foreground object and which to the background. Inspired by

these findings, we propose an approach that learns to detect

object border pixels and their border ownership from event

data as shown for some objects in Fig. 1 (B-I).

A few works in the event-based literature have grouped

local edges. Delbruck [9] locates short edges by selecting

events fired in spatial proximity within a small time inter-

val. In [20], the rate of events per time interval for a spe-

cific location is used for grouping, with a threshold to select

the locations that are most likely part of the same contour.

However, none of the existing approaches explicitly locates

contours. Thus, our baseline method for comparison groups

these events, creating contours if their orientation is similar,

and making them thinner with non-maximum suppression

as in the Canny edge operator (see Fig. 1 (A)).

The proposed method is the first to detect boundaries di-

rectly from events. A learning approach is used to asso-

ciate patterns of events in spatial neighborhoods and over

multiple time intervals with object contours and assign bor-

der ownership. In other words, the method localizes object

boundaries and assigns which side of the boundary belongs

to the foreground or background. The usefulness of the ap-

proach is demonstrated in a segmentation application. How-

ever, the long contours detected with our method can serve

as input to many other processes, such as flow estimation,

3D motion and structure estimation, and recognition.

2. Related work

In this section we describe first the prior works on event-

based algorithms and second, conventional Computer Vi-

sion approaches on motion-based segmentation and occlu-

sion detection for border ownership assignment.

2.1. Event­based computing

The DVS ([18]) asynchronously records address-events

corresponding to scene reflectance changes, with a maxi-

mum temporal resolution of 15 µs, and 128 × 128 spatial

resolution. This sensor fires an event every time the log in-

tensity changes by a fixed amount at a position (x, y). An

event ev(x, y, t, p) encodes position and time information,

along with the polarity p of the event, that is, +1 or -1 de-

pending on whether the log of the intensity increases or de-

creases by a global threshold.

The first computational approaches on asynchronous

event data exploited the high temporal resolution of the

sensor to track simple moving objects [9]. Then, differ-

ent approaches for estimating image motion, such as [4, 2],

were presented. Assuming a strong correlation between

events fired relatively close in time and at neighboring po-

sitions, these methods reconstruct gradients from the num-

ber of events at a position to compute the velocity, and/or

their exact timestamps. There are also a few approaches

on object recognition and detection. The authors in [13]

propose a hardware system that detects hundreds of ob-

jects per second using orientation information from edges.

The method works well for simple plain shapes with sharp

edges. Finally, in [24] an approach for object recognition is

presented, using a neural network trained on conventional

frames that is mapped to an event-driven representation.

2.2. Classic Computer Vision approaches

Related works fall into two areas: 1) motion-based seg-

mentation and 2) occlusion boundary detection.

1) Motion-based segmentation uses mainly image mo-

tion to consistently segment regions in the input data (usu-

ally a video) based on geometric constraints or some mo-

tion priors. Earlier works in the so-called structure from

motion framework, developed geometric constraints to seg-

ment, for an observer undergoing rigid motion, other mov-

ing objects in the scene [5, 21]. The classical work of Wang

and Adelson [32] partitions an image frame into motion lay-

ers that exhibits similar optical flow vectors. The clustering

is done via a parametric motion model. Along similar lines,

[6] applied the method of level sets on optical flow fields

to produce segments exhibiting different motion patterns.

The recent work of Papazoglou and Ferrari [23] introduced

a fast video segmentation technique that combines an initial

foreground segmentation from flow followed by an energy

based labeling refinement where temporal smoothness con-

straints on labels over the entire video are used to segment

moving objects.

2) Boundaries in an image frame are defined as edge re-

gions where two objects meet. Occlusion boundaries are

induced by static image cues or motion discontinuities. An

important output of occlusion boundary detection is the as-

signment of ownership to an edge: which side next to the

edge belongs to the foreground (closer to the camera) and

which to the background. Such ownership assignments are

very useful in computational vision approaches, as they pro-

vide some geometric information useful for further process-

ing such as for motion segmentation (above), or higher-level

processes, such as recognition, spatial reasoning and scene

understanding. Numerous works in computer vision have

addressed this problem using static image cues. Recent

works such as [14, 26, 17] have explored the use of mul-

tiple local image cues: color, image gradients, junctions,

convexity etc. together with global reasoning via Condi-

tional Random Fields (CRFs) to enforce spatial smoothness

in the final ownership assignment. Stein and Herbert [28]

combined static cues with motion cues from video frames

for improving the detection of occlusion boundaries. The

approach begins with an oversegmentation into superpixels,

and the goal is to determine for each superpixel, whether

it is an occlusion edge or not, and if so, which side (fore-

ground or background) it belongs to.
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3. Approach

The structure of the event pattern in the regions close to

the boundaries, where occlusions occur, can be used for lo-

calizing the boundary and determining the relative depth or-

dering of the regions next to the boundary. We first describe

in this section the features derived from DVS in §3.1, that

are used to train a Structured Random Forest (SRF) classi-

fier, a variant of the standard Random Forest [12] that pre-

dicts structured outputs. In this work, we use the SRF to

predict reliable boundary locations and ownership assign-

ment from DVS data (§3.2), unlike [30] which considers

only RGB images. Finally, we present a sequential exten-

sion of the SRF in §3.3 that uses temporal history on a con-

tinuous DVS sequence to further improve predictions.

3.1. Features

Several works in the computer vision literature use fea-

tures such as gradients, contrast, or texture [29, 14, 28, 19]

for boundary detection and border ownership assignment in

images. However, due to the nature of the DVS, such visual-

based features cannot be extracted. For this reason, we have

selected here event-based features on the basis of how their

evolution in time could help us detecting occlusion bound-

aries. The features selected for the training are separated

into four groups:

Event-based Orientation. Recent works such as [14, 28,

7] explore the use of orientation for contour detection and

border ownership. As done in [15], we use the convexity of

edges, which is encoded by the edge orientation. The intu-

ition is that concave edges often belong to foreground ob-

jects [22]. To estimate the orientation we consider spatio-

temporal neighborhoods of 11 × 11 pixels and 20ms. We

only consider eight orientations (from 0 to π). For every

new event, first its timestamp is compared to the average

timestamp of the events in the neighborhood. If the dif-

ference exceeds 10 ms, the event is considered an outlier.

Then, a winner-takes-all strategy is used to obtain the most

likely orientation for the new event. Next, the orientation is

updated, using the previous stored orientation for the loca-

tion. As another feature, a normalized Histogram of Orien-

tations with 8 bins is computed for patches of 15× 15 pix-

els. Every event-based orientation is extracted and stored

with its timestamp.

Event temporal information. Intuitively, the timestamps

provide information for tracking contours [9]. Specifically,

they define a surface that encodes locally the direction and

speed of image motion; and the changes of this time-surface

also encode information about occlusions boundaries. In

the same way, some authors use the orientation from tem-

poral surfaces extracted from frame sequences as a cue to

assign border ownership [28]. Guided by this intuition we

collect the following features: the number of events accu-

mulated for different time intervals, the first and last times-

tamps of the events at every pixel, and the series of times-

tamps for all the events per location. This last feature cap-

tures the surface variability within local patches.

Event-based Motion Estimation. Image motion encodes

relative depth information useful for assigning border own-

ership. The idea is formulated in the so-called motion par-

allax constraint, used in previous works [28, 27, 26], i.e.

objects that are close to the camera move faster in the im-

age than objects farther away. To compute image motion

we used the method in [4], where a function Te that assigns

to every position the timestamp of its last event is defined.

This function locally defines a surface (in our case of size

5 × 5). The spatial derivatives of this surface provide the

speed and direction of the local motion. With every new

event, a local plane that is fitted to the surface is updated

within a time interval of 7.5 ms. The plane is updated with

a new event if it lies reasonably close (< 0.2 pixels) to the

current fitted plane. We repeat this process of iterative plane

fitting two times.

Along with the motion estimate, we store for every pixel,

the time of the last update of the motion estimate. In par-

ticular, this timing characterizes the evolution of the motion

in time which encodes the type of occlusion/disocclusion,

that is encountered for example when the object is moving

on top of a changing background.

Event-based time texture. Many works have used spatial

texture patterns to detect contours and assign border owner-

ship [19, 26, 14]. The aim in this case is to separate occlu-

sion edges from texture edges. First, texture edges are sur-

rounded by nearby edges with comparable contrasts making

them not very salient [26, 25]. Second, long smooth bound-

aries with strong texture gradients are more likely to oc-

cur at occlusions [14]. Instead of intensity texture gradients

as used on images, we use a map of the timestamps of the

last event triggered at every pixel. This map defines a time-

texture surface, that is similar to the concept of surface ori-

entation used in [14]. As features we use time-texture maps

that are updated continuously with every new event, so there

is no need to interpolate information as in the frame-based

representations. To this we apply a bank of Gabor filters,

using 6 orientations and 3 scales. As features, we use at ev-

ery scale the maximum response over different orientations

at every location.

All these features are estimated using short time intervals

at 20 ms, 40 ms, 60 ms, 80 ms, and 100 ms. Examples of

these features can be found in the Supplementary Material.

3.2. Border ownership assignment via SRF

We detail in this section how we train an SRF for pre-

dicting border ownership given input DVS features. Similar

to other works using SRFs ([16, 10]), we assume that the

input features xf ∈ Xf are non-structured, while only the

output is structured. Each Xf ∈ R
N×N is derived from
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Figure 2. Training an SRF for border ownership assignment. (A) Features Xf are extracted from the DVS data. (B) During training, we

pair features xf ∈ Xf with its ownership annotations, Y to learn the optimal split thresholds θ for each h(xf , θ). (C) During inference, we

average the prediction over all K trees to obtain the final ownership prediction Eo = {EB , EFG, EBG}: boundary (blue), foreground (red)

and background (yellow). We then obtain Eowt by applying watershed transformation over EB to recover an initial segmentation Sowt

given a scale threshold. (D) Training a sequential SRF, Rsq . We first run Rns (non-sequential SRF) over the training data to provide initial

predictions Eo (left) which is then used as an augmented training feature set Uf for learning weights in Rsq (right). (E) Inference from

sequential data. (Above) For the first DVS data at 20ms, we use Rns to predict E20

o . Using the augmented input features, the sequential

Rsq is then used to produce E40

o at 40ms. (Below) The process is repeated for all subsequent DVS data using Rsq .

a N × N (N = 16) feature patch. The corresponding tar-

get output structure, obtained from the same spatial location

is a structured label Y ∈ Z
N×N that contains the orienta-

tion coded annotation of the border ownership which is used

as groundtruth during training (Fig. 2 (A)). Using a 8 way

local neighborhood system, this amounts to 8 possible di-

rections of border ownership that each decision tree, Tj ∈
(T1, · · · , TK) will predict. For each tree, the goal is to de-

termine at each split node i, the optimum parameters, θi that

will send features xf either to the left or right child nodes

(Fig. 2 (B)) via a binary split function h(xf , θi) ∈ {0, 1}.

If h(·) = 1 we send xf to the left child and to the right

child otherwise. h(xf , θi) is an indicator function with

θi = (k, ρ) and h(xf , θi) = 1 if [xf (k) < ρ], where k
is the feature dimension corresponding to one of the fea-

tures described in §3.1. ρ is the learned decision threshold

that splits the data Di ⊂ Xf ×Y at node i into DL
i and DR

i

for the left and right child nodes respectively. ρ is based on

maximizing a standard information gain criterion Ni:

Ni = H(Di)−
∑

p∈{L,R}

|Dp
i |

|Di|
H(Dp

i ). (1)

We use the Gini impurity measure H(Di) =
∑

y cy(1−cy)
with cy denoting the proportion of features in Di with own-

ership label y ∈ Y . Since we have structured output labels,

we use an intermediate mapping Π : Y 7→ L of discrete la-

bels L following [10] to compute Eq. (1). The process is re-

peated with the remaining data Dp, p ∈ {L,R} at both child

nodes until a maximum tree depth of dt = 64 is reached or

Ni is sufficiently small. During inference, we extract test

feature patches and classify them using all K trees. The

final ownership label at each pixel is determined by averag-

ing the predicted ownership labels over all trees, producing

a direction code that we convert into an oriented bound-

ary, Eo = {EB , EFG, EBG}, that respectively encodes the

boundary, foreground and background (Fig. 2 (C)).

Given the predicted boundaries with ownership informa-

tion, we adapt the hierarchical oriented watershed transform

(owt) segmentation technique of Arbelaez et al. [1] that

converts Eo into a closed segment. This is done by weighing

each of the watershed arcs derived from EB with the pre-

dicted boundary strength to derive the owt transform Eowt

of EB . Using a fixed scale threshold (learned from a sepa-

rate training data), we obtain an initial segmentation Sowt.

The runtime performance of the trained SRF is extremely

fast. After feature extraction, it takes ≈ 0.05s to process

the DVS data for a 128 × 128 resolution. It takes around

0.01s to estimate Sowt from EB . Training a SRF with K =
8 decision trees in parallel takes around 5 to 10 minutes

(depending on dataset size) over a cluster with dual Intel-

Xeon 2.9GHz CPUs and 128GB of RAM using Matlab.

3.3. A sequential extension to the SRF

The SRF described in §3.2 above and used in the ex-

perimental evaluation (§4.2) predicts boundaries and bor-

der ownership for input DVS data for each time interval in-

dependently. For the evaluation, since the DVS data does

not have temporal correlation across time, this is sufficient.

However, as we will be dealing with DVS data from a con-

tinuous sequence in §5, it would be desirable that the SRF’s

prediction uses in addition to the features Xf some form of

temporal history, resulting in a smoother and cleaner pre-

diction over time. We do this by augmenting the existing

DVS features used with the output predictions of the previ-

ous time’s DVS data as shown in Fig. 2 (D-E). Specifically,

denoting n = 20 as the first DVS data at 20ms, we use the

existing non-sequential SRF (Rns in Fig. 2 (E)) to produce

a prediction of the data, E20
o . For subsequent DVS times,

n+20, we augment the input DVS features Xn+20

f with the
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Sequence Description
# Objects/ # Layers/ # Mo-

tion/{# Train | # Test}
Rotation Mainly rotational motion 1/1/1/{20 | 20}

Translation Mainly translational motion 1/1/1/{18 | 18}
Zoom Mainly zoom motion 1/1/1/{18 | 18}

Complex
Up to 3 objects and clutter,

different backgrounds
3/3/3/{73 | 86}

NewObj-

NewBG

Only for testing: new objects

and backgrounds
3/3/3/{- | 47}

Cars
Moving and static cars in real

world
2/2/3/{43 | 36}

Complex-C Mainly translation + rotation 3/3/2/{-|1}

Table 1. Descriptions of DVS sequences used. Note that “NewObj-

NewBG” is a held out testing sequence and “Complex-C” is used

only for testing the sequential SRF (§3.3).

previous data’s prediction En
o to obtain a larger feature set

Un+20

f = En
o ×Xn+20

f which we then pass into a sequential

SRF, Rsq . Rsq is a SRF that contains K/2 trees trained us-

ing DVS features Xf and K/2 trees trained using Uf (Fig. 2

(D)) which during inference produces two predictions: Eo
from the DVS features and Eosq from the augmented fea-

tures. Eo is exactly what Rns predicts for the current DVS

data (with half the number of decision trees) while Eosq is a

prediction that takes into account the results from the previ-

ous time’s DVS data. We use Rns trained from the “Com-

plex” sequence (see Table 1) and retrain Rsq using the same

sequence in this paper. By choosing wf ∈ [0, 1], a weight

factor that combines these two predictions, the final predic-

tion is thus defined as En+20
o = wfEosq + (1− wf )Eo.

4. Experiments

We first describe the DVS dataset used and the perfor-

mance metrics for assessing boundary detection and border

ownership assignment accuracies. Next, we detail the ex-

periments that combine DVS features in a series of ablation

studies to evaluate their contributions. We then show results

of using the sequential variant of the SRF, Rsq , and compare

it to the non-sequential version, Rns.

4.1. Dataset, baseline and evaluation procedure

In order to investigate in a systematic manner the per-

formance of the proposed approach, we have collected and

annotated 7 DVS sequences of varying complexity, sum-

marized in Table 1. The first three sequences depict sin-

gle objects, and the camera undergoes a single predominant

motion. Using these sequences we can investigate the effect

of different motions on border detection and ownership. In

the experiments we used 15 common objects of different

shapes and sizes taken over varying backgrounds and dis-

tances to demonstrate the generalizability of the approach.

The “Complex” sequence has general rigid motions (rota-

tion + translation + zoom) with a maximum of 3 objects

inducing 3 motion layers (excluding the background). In

addition, we use for testing a challenge test set (“NewObj-

NewBG”) with random objects and complex backgrounds

not encountered during training. We have also collected an

outdoor “Cars” sequence that includes examples of moving

and static cars with complex real-world dynamics and back-

grounds. The “Complex-C” sequence contains temporally

correlated DVS data and is recorded with the sensor moving

with a predominantly translation motion in front of 3 objects

partially occluding each other. For each sequence, we hand

annotated each foreground object with a label indicating its

ordinal depth, where foreground objects have smaller depth

than the background. The ordinal depth was then converted

into ownership labels, Y , along boundaries.

We evaluate the performance of our approach by report-

ing the F-measure over Precision and Recall (P-R) for as-

sessing ownership and boundary accuracy. For boundaries,

we use the evaluation procedure from the Berkeley Seg-

mentation Dataset [19] to generate P-R curves and report

the maximal F-score (ODS). For ownership, we compute

its F-score, Fown, by first matching ownership predictions

that are no further than 0.4% of the image diagonal to the

groundtruth (see [17]), and we consider a pixel to have the

correct ownership when its orientation code is less than

90 degrees from the groundtruth. Finally, the average of

the owner assignment and boundary accuracy is reported

as a final combined measure of performance, denoted as

Fc. Since this is the first approach that detects boundaries

from DVS data, there are no other methods to compare with.

However, we have created a baseline that groups events us-

ing their timestamps. This simple method connects edges

to create long contours, if they appear in spatial proximity

within a small time interval and their orientations match.

Moreover, it applies non-maximum suppression as in the

Canny edge operator, to make cleaner boundaries.

4.2. Feature ablation experiments

Table 2 summarizes the performance for both the bound-

ary prediction and ownership assignment using the evalu-

ation metrics described in §4.1. We also show in Fig. 4

the P-R curves comparing the performance of boundary

prediction for several feature ablations over the DVS se-

quences.The same parameters noted in §3.2 are used to train

the SRFs for all sequences and experiments.

The various feature ablations are selected by training

the SRF with a subset of the DVS features that capture

certain properties that are sensitive to boundary prediction

and ownership assignment. First, we train separate SRFs

that used each feature subset (§3.1) separately: [Timestamp

(TS) only], [Motion Only], [Orientation (Orient) Only] and

[Time-Texture Only]. Next, we train a SRF that uses all fea-

tures together [All features], with the exception of “Cars”

where we used only [Timestamp + Motion]. We highlight

key observations and results in the next paragraphs.

Boundary prediction accuracy, ODS. Our approach sig-

nificantly outperforms the baseline predictions, producing

much better boundaries that are closer to the groundtruth.
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Figure 3. Example results (Top to bottom): Original scene configuration; Hand annotated segmentation and border ownership groundtruths;

Predicted boundaries (blue) and ownership (red: foreground, yellow: background) from DVS data; Predicted segmentation from DVS data;

Predicted baseline contours. More results are available in the Supplementary Material.

Feature ablations Rotation Translation Zoom Complex NewObj-NewBG Cars

Timestamp Only 0.394, 0.641, 0.517 0.308, 0.591, 0.449 0.239, 0.498, 0.368 0.331, 0.569, 0.450 0.255, 0.473, 0.364 0.343, 0.517, 0.430

Motion Only 0.307, 0.558, 0.433 0.271, 0.492, 0.381 0.251, 0.475, 0.363 0.278, 0.522, 0.400 0.217, 0.429, 0.323 0.337, 0.510, 0.423

Orientation Only 0.321, 0.570, 0.445 0.323, 0.536, 0.429 0.243, 0.494, 0.368 0.311, 0.525, 0.418 0.232, 0.434, 0.333 0.286, 0.463, 0.375

Time-Texture Only 0.268, 0.552, 0.410 0.197, 0.512, 0.354 0.223, 0.492, 0.358 0.248, 0.472, 0.360 0.193, 0.409, 0.301 0.278, 0.426, 0.352

All features 0.373, 0.661, 0.517 0.313, 0.578, 0.445 0.268, 0.523, 0.395 0.340, 0.585, 0.463 0.255, 0.478, 0.366 †0.344, 0.519, 0.431

Baseline –, 0.218, – –, 0.237, – –, 0.344, – –, 0.273, – –, 0.257, – –, 0.240, –

Table 2. Performance evaluation of feature ablations over different DVS sequences. For every dataset and ablation, each cell reports the

{Fown, ODS, Fc} scores described in §4.1. †For “Cars”, instead of All features, [TimeStamp + Motion] is reported. See text for details.

Moving on to the individual features, Timestamp (TS) is

an extremely strong feature that predicts the spatial location

of the object (motion) boundary, yielding the highest ODS

scores in all sequences (except for “NewObj-NewBG”).

This highlights the importance of further studies into the

use of the event timestamps, which is a unique feature of

the DVS camera, not present in conventional sensors. Next,

we note that in “NewObj-NewBG”, time textures yield the

most accurate results which may indicate some form of in-

variance under challenging scenarios not captured by other

features. Further experiments with more precise motions,

however, are needed to confirm this. Finally, using all fea-

tures together improves border ownership in all sequences

except “Translation” (where TS remains the best). For the

outdoor “Cars” dataset that contains mostly moving cars,

the combination of [Timestamp + Motion] features produce

the best results, as expected in a dynamic sequence.

Ownership assignment accuracy, Fown. We first note

that the best results are obtained by different features for

different sequences (motions). This shows that ownership

assignment compared to boundary prediction is more com-

plicated to capture from the features we investigated and no

single feature accurately predicts ownership reliably across

different motions (sequences). Interestingly, we note that

even though the combination of all features do not yield the

best accuracy, it consistently produces one of the top re-

sults which shows the advantage of using the SRF to deter-

mine the best feature combination. This also highlights an-

other issue: the dependency of the motion pattern on the 3D

motion. We believe that a possible approach in a practical

application would be to selectively use features for border

ownership characterization, according to the general pre-

dominant 3D motion, i.e. depending on the kind of motion

(predominant parallel translation, zoom, or rotation) we can

use specific SRF classifiers tuned for the predicted motion.

Overall performance, Fc. We note that in spite of the

selectivity of features for boundary prediction and/or own-

ership, the best results (except for “Translation” and “Cars”)

are obtained when all features are used. This confirms that

our choice of features is balanced in terms of these two per-

formance criteria and the SRF is trained to make the optimal

selection to this end. For “Cars”, the combination of times-

tamp and motion features again result in the best overall

performance due to the dynamic nature of the sequence.

We illustrate in Fig. 3 our prediction results using all fea-

tures compared to the baseline for some DVS examples. We

note that qualitatively, not only are our predictions much

cleaner and smoother than the baseline, we are able to gen-

erate these predictions in real-time which is a key require-

ment for event-based approaches. However, due to the low

spatial resolution of the DVS (128×128 pixels), small struc-

tures or distant objects (e.g. mug handles) do not provide

sufficient information for reliable prediction. A sensor with

higher resolution should ameliorate this issue.

4.3. Results of using the sequential SRF, Rsq

In this section, we turn our attention to the effects of

using the sequential variant of the SRF, Rsq , over the
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Figure 4. Precision-Recall of boundary prediction accuracy for all DVS sequences. Top row (L-R): “Rotation”, “Translation” and “Zoom”,

“Complex”. Bottom row (L-R): “NewObj-NewBG”, “Complex-C”, and “Cars”. See text for details.

SRF Complex-Continuous

Rns [wf = 0.0] 0.181, 0.324, 0.252

Rsq [wf = 0.4] 0.212, 0.310, 0.261

Figure 5. (Above) Predictions of the sequential SRF, Rsq (top to

bottom), for wf = {0.0, 0.4, 0.7}, using 120 ms of the “Complex-

Continuous” sequence. Predictions retain more history with in-

creasing wf . The last row shows the segmentation results after

refining the predictions for wf = 0.4, and the previous segmenta-

tion. The new results remove false segments and are more stable.

(Below) Evaluation results comparing Rns (non-sequential SRF)

with Rsq: each cell encodes {Fown, ODS, Fc} scores.

“Complex-C” sequence and compare its results with the

non-sequential variant, Rns. We illustrate the effects of us-

ing three values of wf in Fig. 5 (above) over the “Complex-

C” sequence: a small wf results in more noisy predictions

while a large one retains more temporal history, some of

which are propagated to the subsequent DVS times. We

have determined that a value of wf = 0.3 to 0.4 provides

reasonable predictions that removes temporally inconsis-

tent predictions while reinforcing the strongest predictions

over time. This is confirmed experimentally as shown in

Fig. 5 (below) where the sequential variant of the SRF,

Rsq , outperforms the non-sequential variant Rns (by set-

ting wf = 0.0) in the combined F-score, Fc. Most of the

improvement is derived from improving ownership accu-

racy, at the slight expanse of boundary accuracy (due to the

blurring of edges across time), which is also observed in

their corresponding P-R curves (Fig. 4 (bottom-right)).

5. Segmentation

An application for the boundary and border ownership

predictions from DVS data is segmentation. Next we de-

scribe a preliminary segmentation procedure. The initial

segmentation, Sowt, is first estimated from the predictions

Eo of the SRF via a learned threshold, determined from

training data (see §3.2). Next, these segments are refined

by enforcing motion coherence between segments (§5.1).

Finally, we describe an extension that exploits temporal his-

tory from the “Complex-C” sequence for improving the fi-

nal segmentation prediction over time in §5.2.

5.1. Event­based segmentation and refinement

The initial segments Sowt, are further improved by com-

bining/separating regions that exhibit similar/different mo-

tion patterns. We first estimate the motion pattern per seg-

ment using the method in [2], that provides a very precise

and sparse motion estimation for DVS. It estimates normal

flow at contours (the projection of the flow on the gradient

direction). We note here that we did not use the same esti-

mated motion as in the training of the SRF, since this image

motion is already encoded in the SRF, and thus would not

add new information for refining the segmentation. Abut-

ting segments that have similar motion patterns are merged

if they are similar and split otherwise via an iterative search

procedure. We use only the motion cues estimated inside

these regions and close to the boundaries. The key idea is

that texture information in objects far from contours makes

the estimation from normal flow more complex. The pro-

cedure ends when no new regions can be merged or split

anymore. For the split/merge decision, we use a similar-

ity measure defined by the average motion estimates from

different regions, which were projected onto the same di-
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Sequence
Before refine-

ment, Sowt

After motion

refinement, SM

Rotation 0.91, 0.91, 0.40 0.93, 0.93, 0.37

Translation 0.92, 0.92, 0.42 0.93, 0.93, 0.40

Zoom 0.80, 0.81, 0.64 0.79, 0.81, 0.91

Complex 0.88, 0.89, 0.51 0.91, 0.91, 0.51

Complex-C 0.65, 0.66, 1.45 0.67, 0.68, 1.30

Table 3. Improvement of segmentation accuracy in SM when mo-

tion information is used over several DVS sequences compared

to Sowt. The performance metrics reported are {ODS, RI, VI}:

Mean GT Cover , Random Index and Variation of Information

used in [1]. For VI, a smaller value is better.

rection for comparison. Isolated regions or regions with in-

sufficient valid estimates (where the number of estimates is

less than 5% of the number of pixels in each region) were

assigned according to the initial segmentation Sowt. The

final motion refined segmentation is denoted as SM .

We evaluate the refined segmentation using SM from the

first four DVS sequences (excluding “Complex-C”). We use

the standard segmentation evaluation metrics: GT-Cover

(ODS), Random Index (RI) and Variation of Information

(VI) as proposed by [1] and compare SM with their respec-

tive Sowt as shown in Table 3. With the exception of the

“Zoom” sequence, we can see that imposing motion co-

herence in general improves the final segmentation using

all three metrics. The improvement in the segmentation is

largely correlated with the ease of estimating the motion

of [2]: the largest improvement occurs in “Rotation” and

“Translation”, which have simple motions while the im-

provement is less pronounced for the “Complex” sequence.

As reported in [2], the estimates for zoom-like motions are

the most difficult, and our slight drop in segmentation accu-

racy further confirms this observation.

5.2. Continuous refinement for segmentation

In this section, we show how the proposed segmentation

approach can be refined continuously over time, as more

DVS data becomes available. We do this by first estimating

the motion refined segmentation, Sn
M , from Sn

owt via the

procedure in §5.1 for the current DVS time at n ms. At the

next DVS time n+ 20ms, we augment the hierarchical ori-

ented watershed transform (owt) structure En+20
owt from the

current DVS time with the previous refined segment, Sn
M ,

to obtain a new owt structure, Un+20
owt = (1−wsf )E

n+20
owt ∪

wsfS
n
M . Using a learned threshold, we can then recover

S′n+20
owt from Un+20

owt and obtain Sn+20

M as before. Similar

to wf in Rsq , wsf is a weight parameter that determines

the amount of temporal history that the current segmenta-

tion retains: a larger wsf will retain more history while a

smaller wsf may be too noisy. We empirically determined

that a value of wsf = 0.3 yields the best results. We show

in Fig. 5 (above) results of the final motion refined segmen-

tation, SM , over the “Complex-Continuous” sequence ob-

tained via this procedure. Note that the initial segmentation

is very coarse. When more events from these contours are

obtained over time, the segmentation is improved and, as we

see in the final segmentation provided after 60 ms, the qual-

ity of the segmentation is good enough for us to accurately

determine the number of objects and their individual shapes.

This improvement is confirmed quantitatively by the results

reported in the last row of Table 3: the segmentation accu-

racy of SM with temporal refinement outperforms the orig-

inal Sowt in all three segmentation performance metrics.

6. Conclusions

We have presented a method for locating object con-

tours with data from the Dynamic Vision Sensor (DVS).

The method is based on a Structured Random Forest classi-

fier, that uses as input a set of event-based features. These

features represent spatial structure, image motion and tem-

poral evolution of the events, and thus intuitively capture the

essential spatio-temporal information characterizing object

boundaries. The classifier predicts the locations of objects

boundaries and their border ownership assignment, with the

inference taking approximately 0.05 s for input from events

in time intervals of 20 - 100ms.

Extensive ablation studies on data with different rigid

motions and backgrounds, number of objects, and environ-

ments (indoors and outdoors) with static and moving ob-

jects were conducted. Timestamp features were shown to be

the most useful cue for prediction and the method achieved

an average combined F-score, Fc, of 0.41 using all features.

To demonstrate the usefulness of the approach, we ap-

plied it to the problem of segmentation. In a simple imple-

mentation, an initial segmentation obtained through clus-

tering was augmented with depth order relationships, and

improved using motion cues in a split/merge iterative pro-

cess. In future work, we plan to develop more sophisticated

segmentation methods that make use of the border owner-

ship assignment and contour detection using a variational

framework. We also plan to combine the contour informa-

tion from DVS with intensity provided along with the events

by the new experimental cameras (ATIS and DAVIS).

We consider the proposed method, which we will make

available to the community1, a useful tool for further

motion-based processes, such as more sophisticated seg-

mentation, estimation of rigid motion, and motion-based

recognition.
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