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Abstract

Large scale duplicate detection, clustering and mining

of documents or images has been conventionally treated

with seed detection via hashing, followed by seed growing

heuristics using fast search. Principled clustering meth-

ods, especially kernelized and spectral ones, have higher

complexity and are difficult to scale above millions. Under

the assumption of documents or images embedded in Eu-

clidean space, we revisit recent advances in approximate

k-means variants, and borrow their best ingredients to in-

troduce a new one, inverted-quantized k-means (IQ-means).

Key underlying concepts are quantization of data points and

multi-index based inverted search from centroids to cells.

Its quantization is a form of hashing and analogous to seed

detection, while its updates are analogous to seed growing,

yet principled in the sense of distortion minimization. We

further design a dynamic variant that is able to determine

the number of clusters k in a single run at nearly zero ad-

ditional cost. Combined with powerful deep learned rep-

resentations, we achieve clustering of a 100 million image

collection on a single machine in less than one hour.

1. Introduction

N
EARLY two decades ago [6], discovering duplicates

among millions of web documents was the motiva-

tion behind one of the first locality sensitive hashing (LSH)

schemes, later known as MinHash [7]. The same method

was subsequently used to select seeds which, followed by

efficient search and spatial verification, would lead to clus-

tering and mining in collections of up to 105 images [10].

Many approaches followed, but problems have remained

such as failing to discover infrequent documents, seed

growing relying on heuristics, or more principled methods

like medoid shift still being too costly to scale up [38].

Pairwise matching remains a problem that is inherently

quadratic in the number of documents, and approximate

nearest neighbor (ANN) search has been employed to help.

Approximate k-means (AKM) is one such attempt [26],

where each data point is assigned to the nearest centroid

by ANN search. Binary k-means (BKM) [14] is another

(a) Ranked retrieval [8] (b) DRVQ [1]

(c) EGM [2] (d) This work: IQ-means

Figure 1. Different k-means variants. ( ) Data points; ( ) cen-

troids; ( ) search range; ( ) estimated cluster extent, used to dy-

namically determine k.

recent alternative where points and centroids are binarized

and ANN search follows in Hamming space. But in this

work we focus our attention on the inverse process.

Observing that data points remain fixed during k-means

iterations, ranked retrieval [8] chooses to search for near-

est data points using centroids as queries, as illustrated in

Fig. 1a. This choice dispenses the need to rebuild an in-

dex at each iteration, and requires less queries because cen-

troids are naturally fewer than data points. Points are ex-

amined more than once and not all points are assigned to

centroids; it is observed however that distortion is not influ-

enced much. If range queries were used, this method would

be very similar to mean shift [9], except that centroid dis-

placement is not independent here.

Dimensionality-recursive vector quantization (DRVQ)

[1] relies on the same inverted centroid-to-data queries.

1502



However, search is based on ideas extended from the in-

verted multi-index [4]. The entire search process for all cen-

troids resembles a propagation on a two-dimensional grid,

where each cell is visited only once and all cells are as-

signed to centroids, defining a discrete Voronoi diagram, as

illustrated in Fig. 1b. Quantization on the grid is another

form of hashing, but thanks to the orthogonal construction,

it is now easy to visit cells by ascending distance.

As illustrated in Fig. 1c, expanding Gaussian mixtures

(EGM) [2] uses a conventional data-to-centroid search, like

AKM. What is special is that its probabilistic model allows

an estimate of overlap between clusters and dynamic deter-

mination of the appropriate number of clusters, in contrast

to Fig. 1a,b. This is a standing problem of k-means, con-

trary to other methods like medoid shift [31].

In this work we borrow the best ingredients from all

the methods above and introduce a new k-means variant,

called inverted-quantized k-means (IQ-means, or IQ-M), il-

lustrated in Fig. 1d. Its unique properties are given below,

summarizing our contributions:

1. We adopt the subspace quantization and multi-index

search of DRVQ, yielding fast centroid-to-cell search,

since actual data are in fact discarded. However, search

cost is governed by the length of a single priority queue

for all centroids, which is the bottleneck of DRVQ. Thus,

we switch to independent queries per centroid, as in

ranked retrieval. Even though cells may be visited more

than once, the use of multiple independent queues offers

a spectacular speed-up.

2. Although centroids are arbitrary vectors, they can still

be quantized on the grid. We exploit this observation

to obtain as a by-product the nearest centroids to each

centroid during the same centroid-to-cell search pro-

cess. We use this information to estimate pairwise clus-

ter overlaps and purge centroids between iterations. This

dynamically determines k, exactly as in EGM, and is re-

ferred to as dynamic IQ-means (D-IQ-M). This is unex-

pected since EGM assigns data points to multiple cen-

troids as required by its probabilistic model.

Another contribution is to revisit web-scale image clus-

tering. To scale up, we choose a global image representa-

tion, in particular state of the art deep-learned features [20],

which have been recently applied to visual search [5] and

even shown to outperform local feature-based representa-

tions in low dimensions [28]. We achieve clustering of a

100 million image collection in less than one hour on a sin-

gle machine, while estimating the number of clusters at the

same time. Given that IQ-M time complexity depends on

grid size rather than number of data points, this result opens

the way to truly web-scale image clustering, given enough

resources. We provide our implementation online1.

1http://github.com/iavr/iqm

The remaining text is organized as follows. Section 2

discusses related work, while sections 3, 4 present our algo-

rithms IQ-M and D-IQ-M, respectively. Experiments fol-

low in section 5 and conclusions are drawn in section 6.

2. Related work

The interest in large scale image duplicate detection,

clustering and mining is now stronger than ever. Lever-

aging the billions of images available in community photo

collections, many recent approaches utilize their metadata,

e.g. tags or geotags for clustering [19, 27, 11, 3]. Kennedy

et al. [19] were among the first to extract textual and ge-

ographical patterns from metadata and use them in visual

clustering. Most methods follow a two-stage approach,

first by geographic location and then by visual similarity.

However, clustering within each geographic cell remains

quadratic: even if fast retrieval is employed, a query per

image is still necessary. Other approaches find iconic im-

ages [22, 38, 32], e.g. for scene summarization [32] or 3D

reconstruction [22]. With few exceptions [3], most methods

focus on landmarks and points of interest [11, 23].

Following earlier work on discovering object categories

from image segmentations [29], Chum and Matas [10] in-

troduce an approach for web-scale clustering using visual

information alone. Starting from local features, they use

minHash collisions to find seed images which they grow

via retrieval and expansion. Although faster than most of

the aforementioned approaches due to hashing, it is limited

by the memory cost of local descriptor indexing as well as

the pairwise nature of geometric matching. It also focuses

on popular scenes. Although our quantization is another

form of hashing, we rather use a principled way of updating

seeds as in k-means. Besides, our multi-index approximate

search strategy is arguably the fastest possible, once images

are represented in a Euclidean space.

Most aforementioned approaches use local features and

descriptors, that hold the state-of-the-art in image retrieval

but incur significant space and time cost [34]. We choose

to sacrifice their matching quality for scalability and repre-

sent each image by a single global representation. Although

several methods exist for aggregating local descriptors [17],

we rather choose deep learned features, which are shown

to be superior in low dimensions [5],[28]. We only assume

a Euclidean space representation, so our method is generic

and can apply well beyond image clustering.

Our approach is an approximation of k-means. Density

based approaches like mean shift [9] and medoid shift [31]

are typically inefficient for large datasets. Quick shift [35]

is a fast approximate variant, but still requires nearest neigh-

bor search with each point as a query. Medoid-based meth-

ods as well as kernelized methods like kernel k-means [30]

and spectral clustering methods [36] are more generic in ap-

plying to non-Euclidean spaces but they are largely imprac-
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tical above a few million points. There are several methods

for estimating k even dynamically like component annihila-

tion [12], DP-Means [21] and EGM [2]; here we choose to

integrate our approach with EGM, which comes as a natural

extension at nearly zero cost.

Parallelism has widely been utilized for large scale clus-

tering [24, 15], while algorithms for distributed systems ex-

ist for many popular clustering algorithms like Parallel k-

means [39] or parallel DB-SCAN [25]. We are however

interested in large scale clustering without the need of a dis-

tributed grid. We show that we are able to provide an effi-

cient k-means approximation that can cluster 100M images

in less than an hour on a single machine, while a distributed

implementation of standard k-means on the same dataset

using 300 machines on the grid takes over one day.

3. Inverted-quantized k-means (IQ-means)

Representation. We are given a dataset X of n points in

R
d, and the problem is to find k cluster centroids minimiz-

ing distortion as in k-means. IQ-M assumes the same repre-

sentation and codebook building as in multi-indexing [4]. In

particular, assuming d is even, Rd is expressed as the Carte-

sian product of two orthogonal subspaces, S1 × S2, of d/2
dimensions each. Although this decomposition is subject to

optimization [13], which we do apply in our experiments,

we assume here the simplest decomposition whereby each

vector x is written as a tuple (x1, x2) consisting of two sub-

vectors x1, x2 ∈ R
d/2.

We also assume there are two sub-codebooks U1, U2

trained independently on projections of sample data on

S1, S2 respectively. Each U ℓ contains s sub-codewords,

partitioning Sℓ into s disjoint subsets for ℓ = 1, 2. Then,

codebook U = U1×U2 contains s× s codewords and par-

titions Rd into s × s cells. We thus refer to each codeword

u ∈ U as a cell, while U can be seen as a discrete two di-

mensional grid. Given sub-codewords u1

i ∈ U1, u2

j ∈ U2

with i, j ∈ [s] = {1, . . . , s}, we represent cell (u1

i , u
2

j ) ∈ U
by the multi-index notation uα with α being the integer tu-

ple (i, j) ∈ I = [s] × [s]. Every point x can be quan-

tized to a cell q(x) = (q1(x1), q2(x2)), where qℓ(xℓ) =
argminuℓ∈Uℓ ‖xℓ − uℓ‖ is the nearest sub-codeword of U ℓ

to projection xℓ of x on subspace Sℓ for ℓ = 1, 2.

Update step. Next, similarly to DRVQ [1], all points of

X are quantized on the grid and a discrete two-dimensional

distribution p of points over cells is constructed. In particu-

lar, for each cell uα, probability pα = |Xα|/n measures

the empirical frequency of points falling into uα, where

Xα = {x ∈ X : q(x) = uα}. Further, the mean

µα = 1

|Xα|

∑
x∈Xα

x of all points in Xα is kept for each

cell uα. At this point, dataset X may be discarded. An

arbitrary initial set C of k centroids is assumed.

As in all k-means variants, the algorithm then alternates
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Figure 2. Centroid-to-cell search during assignment, for two cen-

troids c1, c2. ( ) Data points; ( ) centroids; ( ) cells V1 visited by

c1; ( ) cells V2 visited by c2; ( ) other cells.

between an assignment and an update step, where the latter

is simply given by weighted average

cm ←
1

Pm

∑

α∈Am

pαµα, (1)

for all centroids cm ∈ C. Here, Pm =
∑

α∈Am
pα

is the proportion of points assigned to centroid cm and

Am = {α ∈ I : a(uα) = m} contains the indices of all

cells assigned to cm during the assignment step, where

a(u) = arg min
cm∈C

‖u− cm‖ (2)

is the index to the nearest centroid c to cell u ∈ U . In other

words, cells cα with their sample mean µα and probability

pα have completely replaced the original data. Still, assign-

ment (2) of cells to centroids is the bottleneck.

Assignment step. Here is where fast search is required. Al-

though assignment rule (2) implies a cell-to-centroid search,

we follow the inverse process as explained in section 1. As

in ranked retrieval [8], this process takes the form of a set of

individual queries for nearest cells, one for each centroid.

Search follows a multi-indexing approach in this work, in

particular using the multi-sequence algorithm [4].

Fig. 2a illustrates part of the grid, with two centroids

c1, c2 and the set of nearest cells to each centroid, say

V1, V2, in different colors. Recall that rows and columns

of the grid correspond to sub-codewords in U1, U2. These
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Algorithm 1: Centroid-to-cell multi-sequence search

1 function SEARCH(C,U, f)
2 for uα ∈ U do

3 a[α]← 0; dist[α]←∞; ⊲ cell assignments

4 visit[α]← FALSE; cen[α]← 0 ⊲ cen: section 4

5 for cm ∈ C do

6 (k1, d1)← NNw(c
1
m, U1) ⊲ nearest..

7 (k2, d2)← NNw(c
2
m, U2) ⊲ ..sub-codewords

8 f.INIT(m, (k1
1, k

2
1)); V ← ∅ ⊲ initialize list

9 Q.INIT(); Q.PUSH((0, 0), 0) ⊲ initialize queue

10 while ¬Q.EMPTY() do

11 ((i, j), d)← Q.EXTRACT-MIN()
12 α← (k1

i , k
2
j ) ⊲ current cell index

13 V ← V ∪ α; visit[α]← TRUE ⊲ record cell

14 if f(m,α, d) then break ⊲ terminate?

15 if i = 0 ∨ visit[k1
i−1, k

2
j+1] then

16 Q.PUSH((i, j + 1), d1i + d2j+1) ⊲ right

17 if j = 0 ∨ visit[k1
i+1, k

2
j−1] then

18 Q.PUSH((i+ 1, j), d1i+1 + d2j ) ⊲ below

19 for α ∈ V do visit[α]← FALSE ⊲ reset

20 return a ⊲ cell assignments

21 function f.INIT(m,α)
22 n← 0 ⊲ number of points visited

23 function f(m,α, d)
24 if d < dist[α] then a[α]← m; dist[α]← d ⊲ re-assign

25 n← n+ |Xα|; return n ≥ T ⊲ target reached?

are just shown by their indices in Fig. 2a. Due to the inde-

pendent search processes, a number of cells, shown in color

overlay, belong to both V1, V2 and will be visited twice, trig-

gering a comparison to determine which of c1, c2 is nearest.

To understand the search process, Fig. 2b,c illustrate what

search looks like with c1, c2 as queries respectively.

For each query ci, the w nearest sub-codewords are

found in U1, U2, and ordered by ascending distance to ci,
for i = 1, 2. A w × w search block is thus determined for

ci. For w = 11, the two 11 × 11 search blocks of c1, c2
are shown in Fig. 2b,c, illustrating row/column selection

and ordering. Row/column numbers refer to the numbers

of Fig. 2a, but are re-arranged such that centroid ci and its

nearest cells appear on the top-left corner of the block. For

instance, top-left cells (8, 8) and (5, 12) of the two blocks

are indeed where c1, c2 are placed on the grid of Fig. 2a.

Observe however that due to re-arrangement, the nearest

cells to c2 are no longer contiguous in the block of c1 and

vice versa. They rather appear interlaced, and in higher di-

mensions they would appear randomly shuffled.

Search. The search process is outlined in Algorithm 1. For

each centroid c, the w nearest sub-codewords are given by

a list of ascending (squared) distances dℓ and indices kℓ

Algorithm 2: Centroid-to-centroid search function f

1 function f.INIT(m,α)
2 cen[α]← m ⊲ centroid per cell

3 Nm ← ∅ ⊲ (neighbors,distances) of centroid cm
4 n← 0 ⊲ number of points visited

5 function f(m,α, d)
6 if d < dist[α] then a[α]← m; dist[α]← d ⊲ re-assign

7 if cen[α] 6= 0 then Nm ← Nm ∪ (cen[α], d)
8 n← n+ |Xα|; return n ≥ T

for ℓ = 1, 2, specifying a search block. Nearest cells in

the block are visited by ascending (squared) distance d to

c using a priority queue Q, as in the multi-sequence algo-

rithm [4]: a cell to the right is visited if the one above right

is visited, and a cell below is visited if the one below left is

visited. There are substantial differences, though.

First, a function f determines the action to be taken at

each visited cell. Alternative functions are discussed in sec-

tion 4, but here f merely updates the current assignment a
and lowest distance dist found for each cell uα. Second,

f also controls search termination. Alternatives are again

discussed in section 4, but here f counts the total number

of underlying points in visited cells, and terminates when

this reaches a target number T . Finally, property visit is

global over the entire grid, indirectly accessed via indices

kℓ and reset after each block is searched, with the help of

an additional list V of visited cells. This implies that space

w × w and its initialization is no longer necessary [4]; the

algorithm is linear in the number of visited cells.

4. Dynamic IQ-means

While IQ-means searches from centroids to cells at each

iteration, its dynamic version also searches from centroids

to centroids, and keeps track of the nearest neighboring

centroids of each centroid, while both queries and indexed

points are constantly updated. Similarly to EGM [2], it

then uses this neighborhood information to compute cluster

overlaps and purge clusters between iterations in an attempt

to automatically determine k.

Search. The most interesting aspect of this centroid-to-

centroid search process is that it relies on the same indexing

structure; in fact, even though centroids are constantly up-

dated, it is a mere by-product of centroid-to-cell search, so

it comes at negligible cost. All that is needed is to keep

some additional information per cell and change the defini-

tion of function f in Algorithm 1. The key observation is

that although centroids are arbitrary vectors, they can still

be quantized on the grid, just like data points.

The additional property cen holds up to one centroid in-

dex per cell and is initialized to zero by Algorithm 1. As

shown in Algorithm 2, each centroid cm is subsequently
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quantized to cell uα just before search and its index m is

recorded in cen[α]. This operation comes at no cost, since

the w nearest sub-codewords to each centroid are readily

available from NNw in Algorithm 1 and we can just take

the first ones, α = (k1
1
, k2

1
).

A list Nm of nearest centroid indices and distances is

also maintained for each centroid cm, and is emptied just

before search. Then, for each cell α visited, a nonzero

cen[α] means that another centroid is found and is inserted

in Nm along with distance d. List Nm can be constrained to

hold up to a fixed number of neighbors; no particular order-

ing is needed because cells, hence neighboring centroids,

are always found by ascending distance to cm.

Purging. Once neighboring centroids are found, clus-

ter overlaps may be estimated. Following EGM [2], we

model the distribution of points assigned to cluster cm by an

isotropic normal densityN (x|cm, σm), where σm is simply

the standard deviation of points assigned to cluster m, esti-

mated only from cell information by

σ2

m ←
1

Pm

∑

α∈Am

pα‖µα − cm‖
2. (3)

Then, the same purging algorithm as in EGM applies,

roughly iterating over all clusters m in descending order of

population Pm, and purging clusters that overlap too much

with the collection of all clusters that have been kept so

far. Given the normal cluster densities, pairwise overlaps

are computed in closed form at the cost of one vector oper-

ation per pair. This algorithm is quadratic in k.

5. Experiments

In this section we evaluate the proposed approaches on

large scale clustering and compare against relevant state-

of-the-art methods. We first present the datasets and fea-

tures used, as well as implementation details and evaluation

protocol. We then report results on three publicly available

datasets, including a dataset of 100 million images.

5.1. Experimental setup

Datasets. We experiment on three publicly available

datasets. SIFT1M [16] consists of 1M 128-dimensional

SIFT vectors, and a learning set of 100K vectors. Paris [37]

contains 500K images from Flickr and Panoramio, crawled

by geographic bounding box query around Paris city center.

The ground truth consists of 79 landmark clusters covering

94K dataset images. Yahoo Flickr Creative Commons 100M

(YFCC100M) [33] contains a subset of 100 million public

Flickr images with a creative commons license.

Features and codebooks. For Paris and YFCC, we use

convolutional neural network (CNN) features to globally

represent images. In particular, we use the AlexNet ar-

chitecture [20] as a pre-trained model provided by Caffe

deep learning framework [18]. We use the output of the

last fully connected layer (fc7) as a 4096-dimensional fea-

ture vector for each image. By learning a covariance ma-

trix from the entire dataset, we further reduce to 128 di-

mensions, which not only speeds up the search process, but

also does not harm performance [5]. For IQ-means, we per-

mute the dimensions to balance the variance between the

two subspaces before multi-indexing [13]. For IQ-means

on SIFT1M, we use the separate learning set for off-line

learning of the sub-codebooks, while on Paris and YFCC

we use a 10M-vector random subset of YFCC.

Compared methods. For the smaller SIFT1M and Paris

datasets we compare the proposed IQ-means (IQ-M) and

dynamic IQ-means (dynamic IQ-M or D-IQ-M) methods

against the fastest approaches from the related work that

can also scale to large datasets: Ranked Retrieval (RR) [8]

and Approximate k-means (AKM) [26]. DRVQ [1] was

found to be faster than these methods but of significantly

lower quality, so it is not included in the comparison. Bi-

nary k-means (BKM) [14] is only slightly faster than AKM,

so it is also not included. As all methods are approxima-

tions of k-means, we further report the upper bounds given

by k-means. For the large YFCC100M dataset, no related

method can run on a single machine due to space and time

requirements2. As a baseline, we apply k-means on the

non-empty multi-index cell centroid vectors, which is re-

ferred to as cell-k-means or CKM. This can be seen as an

approximation of IQ-means, where although actual points

are discarded as in IQ-means, cells are not weighted. Given

all 100M vectors as input, we also compare to a distributed

implementation of k-means, referred to as DKM, on 300

machines on the grid using Spark3. Again, this experiment

provides an upper bound on performance.

Implementation. We implement the offline learning pro-

cess and clustering interface in Matlab, using the Yael li-

brary4 for exact nearest neighbor search, assignment and

k-means clustering. Subspace search of centroids to sub-

codewords is also using Yael, while all remaining IQ-means

iteration, as outlined in Algorithm 1, is implemented in

C++, interfaced through a single MEX call. For any other

method that requires ANN search, i.e. ranked retrieval [8]

(RR) and Approximate k-means (AKM) [26] we use the

FLANN library5. Observe that RR’s own search algorithm

WAND is particularly targeted to documents and does not

apply to Euclidean spaces. Unless otherwise stated, all ex-

periments are performed on a single machine.

2The 128-dimensional visual feature vectors alone require 52GB of

space. One could of course use e.g. PQ-encoding yielding also fast search,

but again this would just be an alternative to our implementation of RR.
3http://spark.apache.org/
4https://gforge.inria.fr/projects/yael/
5http://www.cs.ubc.ca/research/flann/
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Evaluation protocol. We report clustering time (total or

per iteration) and average distortion on SIFT1M and Paris

with varying number of centroids k and data points n. Time

does not include off-line learning of sub-codebooks for IQ-

means; unless otherwise stated, total clustering time does

include encoding as explained in Table 1. Average dis-

tortion is the squared Euclidean distance of each point to

the nearest centroid, averaged over the dataset. Given the

ground truth labels of Paris, we also adopt the measures of

precision (or purity) and recall [37]. YFCC100M has no

associated ground truth, so in order to report more than just

clustering time, we also present precision on a public set of

noisy labels extracted through image classification [33]. We

measure the average precision over all clusters, where pre-

cision is defined as the percentage of the most popular class

in the cluster, i.e. the class present in the cluster most times.

In all algorithms, centroids C are initialized as k random

vectors from the dataset X . We run each experiment five

times and report mean measurements.

5.2. Results

Tuning. We first evaluate the effect of the main parameters

of IQ-means on its performance, as measured by average

distortion and running time. These are the sub-codebook

size or grid size s, which determines how fine the space

partition is, the size w of the search block and the search

target T ; the latter two determine the accuracy of search

from centroids to cells. The finer the grid is, the higher

the quality of data representation, but the more cells need

to be visited; and the more accurate search is, the longer

it takes. For convenience, we set T = (n/k)t where t is

a normalized target parameter with respect to the average

cluster population under uniform distribution.

Table 1 presents results on SIFT1M for varying s and t,
which confirm our expectations. It appears that s = 512
and t = 5 are reasonable trade-offs. We choose those set-

tings for the remaining experiments on SIFT1M and Paris,

which are of comparable size. On the other hand, we choose

s = 8K for the larger YFCC, so that the total number

of cells s2 = 64M is comparable to n = 100M. We set

the search block size w = 16 on SIFT1M and Paris, and

w = 512 on YFCC. Increasing w further would only make

search slower without improving distortion. This is particu-

larly important considering that sub-codeword search is the

most time-consuming part of Algorithm 1.

To evaluate dynamic IQ-means, Fig. 3 shows how the

final estimated number of clusters k′ after termination de-

pends on the original one k. While k′ is nearly linear

in k for IQ-means—some clusters are still lost due to

quantization—there is a saturation effect with increasing

value of overlap threshold τ that controls purging [2]. It

is thus possible, given an unknown dataset, to begin cluster-

ing with an overestimation of k and let the algorithm purge

s (for t = 5) t (for s = 512)

128 256 512 1024 1 2 5

encode (s) 4.570 8.380 16.44 33.70 16.44 16.44 16.44

search (s) 3.153 4.366 7.760 12.78 6.418 7.557 7.760

distortion 4.816 4.545 4.403 4.343 4.425 4.412 4.403

Table 1. Encode/search times (sec) and average distortion (×104)

for 20 iterations on SIFT1M for k = 104 and varying values of

grid size s and normalized search target t. Encoding includes

quantization of points on the grid and the inversion process to com-

pute cell population pα and means µα (1).
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Figure 3. Final k′ versus initial k number of centroids on SIFT1M

for varying overlap threshold τ .

clusters as needed; subsequent iterations then become in-

creasingly faster. As a fair trade-off, we choose τ = 0.6 in

subsequent experiments.

Comparisons. We then evaluate the performance of IQ-

means against competing methods under varying number

of clusters k. Fig. 4a,4b measure average distortion and

running time for k up to 104 on SIFT1M. The quality of

k-means and AKM is close, indicating that most points are

correctly assigned to centroids; the quality of RR and IQ-

means is also close, indicating the loss of accuracy due to

unassigned points. There is also a clear ordering of running

times: AKM is faster than k-means by approximate search,

RR is even faster by inverted search, and IQ-means is the

fastest by more efficient inverted search. Fig. 4c shows dis-

tortion versus time: the more the approximation the higher

the distortion, but at spectacular gain in speed.

Fig. 5 shows a different experiment for SIFT1M. We now

fix k and vary n by clustering subsets of increasing size

from the original dataset. Otherwise distortion and time

measurements remain the same as in Fig. 4. Now both

distortion and time are increasing with n for all methods.

Again, as shown in Fig. 5a, distortion is similar for k-means

and AKM, higher for RR and slightly higher for IQ-means.

Observe that in IQ-means data points are quantized on a

fixed grid and the algorithm operates on cell distributions

alone, regardless of n. The increase of time with n in Fig. 5b

is in fact only due to the encoding of data points, which is

linear in n. The gain in speed varies up to more than two
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Figure 4. Average distortion and total time for 20 iterations on SIFT1M for varying number of clusters k. Time for IQ-means includes

encoding of data points that is constant in k, but not codebook learning, which is performed on a different dataset.
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Figure 5. Average distortion and total time for 20 iterations on SIFT1M for k = 104 and varying number of data points n. Time for

IQ-means includes encoding of data points that is linear in n, but not codebook learning.
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Figure 6. Precision vs. recall for varying k on Paris.

(nearly three) orders of magnitude compared to k-means,

while the loss in distortion is reasonable.

Given the existing ground truth of Paris dataset, Fig. 6

further evaluates IQ-means and dynamic IQ-means against

other methods on a precision-recall diagram. Due to quan-

tization, it appears that our methods do not reach the upper-

left extreme of high precision and low recall, which can be

improved with a finer grid at higher cost. Otherwise, all

methods are comparable regardless of their cost. Of course,

none of these methods is anywhere near in performance to

more expensive dedicated methods like iconoid shift [38].

CKM DKM D-IQ-M

k/k′ 100000 100000 85742

time (s) 13068.1 7920.0 140.6

precision 0.474 0.616 0.550

Table 2. Time per iteration and average precision for cell-k-means,

dynamic IQ-means and distributed k-means on YFCC100M with

initial k = 105. For DKM, we use Spark on 300 machines.

IQ-M D-IQ-M

k/k′ 100K 150K 200K 86K 120K 152K

time (s) 212.6 271.1 325.8 140.6 249.6 277.2

Table 3. Time per iteration and k/k′ for IQ-means and dynamic

IQ-means on YFCC100M.

One could just take into account that we are using a global

feature reduced to 128 dimensions per image. What is im-

portant is that in terms of classification, all approximations

are equivalent to k-means in practice.

Large scale experiments. To demonstrate the scalability

of IQ-means, we perform clustering on the YFCC100M

dataset. We fix the grid size to s = 8192, leaving 13M

non-empty cells for the 100 million vectors. Following the

tuning experiments, we use overlap threshold τ = 0.6 for

dynamic IQ-means and end up with k = 85742 after 20

1508



(a)

(b)

Figure 7. Mining example: subsets of similar clusters for (a) Paris and (b) Paris+YFCC100M. Images in red outline are from the Paris

ground truth.

iterations.

We report timings and average precision in Table 2 for

k = 105 clusters. We observe that the proposed approach is

two orders of magnitude faster than CKM. Both approaches

discard the initial data points but dynamic IQ-means further

weights each cell with its point statistics and gives more

consistent clusters in terms of label precision. Distributed

k-means on 300 machines takes 2.2 hours per iteration on

average, i.e. one order of magnitude slower than dynamic

IQ-means. In terms of precision, D-IQ-M performs better

than CKM and while the upper bound of DKM is high, the

latter requires far more time and resources. In Table 3 we

further present timings under varying k/k′ for IQ-means

and dynamic IQ-means.

To visualize the dynamic IQ-means result we show in

Fig. 7 a subset of a sample Paris cluster when clustering is

performed either on the Paris dataset alone or Paris along

with the entire YFCC100M dataset. We handpick the clus-

ter to depict approximately the same images from one of the

annotated landmarks of the Paris dataset. There are 2511

and 7382 images respectively in this cluster. Annotated

ground truth images are depicted in a red outline, while the

rest is a random sample in Fig. 7a and the images closest to

the annotated samples in Fig. 7b.

6. Discussion

By quantizing data points on a grid of two subspaces and

applying inverted search from centroids to cells using multi-

indexing, we have achieved an extremely fast variant of k-

means that can be used in any application where input data

lie on a Euclidean space. We have also achieved dynamic

estimation of the number of clusters in a single run at nearly

zero cost. Data points are extremely compressed (e.g. 26

bits per point on YFCC100M), which is a significant space

improvement compared to all known methods. By using

global deep learned image representation, we have applied

this method to clustering 108 images on a single machine

in less than one hour. Although the result cannot be com-

pared to dedicated more costly mining methods, it is shown

to be on par with other k-means variants that are orders of

magnitude slower. In fact, the assignment step, convention-

ally the bottleneck of k-means, turns out to be faster than

the update step in IQ-means, which leaves small margin for

further improvement.
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