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Abstract

We study the question of how to make loss-aware predic-

tions in image segmentation settings where the evaluation

function is the Intersection-over-Union (IoU) measure that

is used widely in evaluating image segmentation systems.

Currently, there are two dominant approaches: the first

approximates the Expected-IoU (EIoU) score as Expected-

Intersection-over-Expected-Union (EIoEU); and the second

approach is to compute exact EIoU but only over a small

set of high-quality candidate solutions. We begin by asking

which approach we should favor for two typical image seg-

mentation tasks. Studying this question leads to two new

methods that draw ideas from both existing approaches.

Our new methods use the EIoEU approximation paired with

high quality candidate solutions. Experimentally we show

that our new approaches lead to improved performance on

both image segmentation tasks.

1. Introduction

The goal of a “good” evaluation metric for a vision task is

to quantify the (dis)similarity of a proposed solution w.r.t.

the ground truth in a perceptually meaningful way. For the

task of semantic image segmentation (labeling each pixel in

an image with a class label), one popular metric is the Jac-

card Index or Intersection-over-Union (IoU) measure [8],

computed between the binary masks of a predicted segmen-

tation and ground-truth, averaged over all categories.

Motivation and Challenge. A number of works have ar-

gued [7,8] that IoU is an evaluation metric better correlated

with human judgement than alternatives. Unfortunately, it

is a high order loss [9, 19, 23] making it difficult to train

models to optimize performance under this measure. In

general, the recourse has been to optimize a simpler loss

amenable to tractable training, such as the Hamming loss.

Recently, there has been renewed interest [13, 18, 20, 21] in

using tools from Bayesian Decision Theory (BDT). Specif-

ically, let x be an image, y be a segmentation, P(y|x) be

the conditional probability learned by a model (e.g., a Con-

ditional Random Field (CRF)), and ℓ(·, ·) be a loss func-

tion. BDT provides an elegant recipe for making decisions

based on the principle of minimum expected loss or Mini-

mum Bayes Risk (MBR):

yMBR = argmin
ŷ∈Y

∑

y∈Y

ℓ(ŷ,y)P(y|x)
︸ ︷︷ ︸

Expected Loss / Bayes Risk

. (1)

Goal. The goal of this paper is to study tractable tech-

niques for such decision-theoretic predictions under the IoU

measure. In most models of practical interest, this task is

intractable because it requires both an enumeration and a

search over an exponentially-large output space Y (e.g., the

space of all possible segmentations of an image).

How is this done today? There are two main approaches,

each making a different set of assumptions to achieve

tractability on the summation and minimization:

1. Approximating the loss ℓ(·, ·): A recent pair of papers

[18, 21] have proposed an approximation for the IoU mea-

sure and a greedy heuristic for optimizing it 1. The key idea

is to compute Expected-Intersection-over-Expected-Union

(EIoEU) as opposed to Expected-Intersection-over-Union

(EIoU). As we explain later, the former factorizes, while

the latter does not.

2. Approximating the distribution P(·): [20] proposed a

method for exactly optimizing Expected-IoU, but not under

P(·); instead under a delta-approximation of P(·) having

support only at a collection of appropriately chosen M can-

didate solutions2. In this case, the optimization is a simple

enumeration over the candidates.

Contributions and Overview. First, we show that despite

seeming complementary and disparate on surface, the two

approximations in existence today are related under a par-

1 [18] propose other heuristics for optimizing EIoEU in their work, but

it was shown that the greedy heuristic was the best performing.
2The method of [20] is actually not specific to IoU, and can be applied

to any loss function of interest.
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Figure 1: (top row) [20] proposed an approximate MBR predictor which computes exact EIoU over a set of candidate solutions Y =
{y1,y2,y3,y4}. (middle row) We show that this is equivalent to averaging EIoU over distributions with single point support on the

candidate solutions and applying the approximation of [18, 21] (EIoEU), which performs better than applying the approximation over the

entire solution space. (bottom row) This leads us to suggest averaging EIoEU over Hamming-constrained distributions. We show how to

implement such distributions using cardinality potentials.

Search Distribution

Nowozin [18] greedy CRF

Premachandran et al. [20] enum delta

CRF-EIoEU+enum (ours) enum CRF

C3RF-EIoEU+enum (ours) enum C3RF

Table 1: Comparison of the search heuristics used by the methods

we discuss and the distributions they reason over.

ticular view, which we then use as a starting point for de-

veloping methods that interpolate the two. Specifically, we

show that approximating the distribution P(·) with delta

functions (as in [20]) and computing EIoU is equivalent to

averaging EIoEU (as in [18,21]) over multiple distributions

each with a single delta function. As we explain in Section

4, this follows from a simple observation that the EIoEU

approximation is exact for a delta distribution. Although

straightforward in hindsight, this connection improves our

current understanding of the literature.

Inspired by this connection, we ask the following question –

can we combine the best of both approaches? Specifically,

can we combine the idea of using EIoEU with the idea of

optimizing EIoU for a set of candidate solutions?

We propose two ways of performing this combination:

1. CRF-EIoEU with Candidates: We utilize the EIoEU

approximation [18, 21] to estimate EIoU with marginals

over the entire distribution, but only for the set of candidate

solutions from [20]. Essentially, this replaces the greedy

search in [18,21] with a search over a small number of can-

didates from [20] (enum). We find that this combination

outperforms the greedy search of [18, 21], which suggests

that the search strategy of [20] is a more practical heuristic.

2. C3RF-EIoEU with Candidates: Summarizing a distri-

bution with a collection of delta functions seems particu-

larly harsh, and it is natural to expect that for some problems

and distributions, an intermediate level of summarization

might be more useful to reason over. We propose reasoning

over a distribution that has non-zero support only in Ham-

ming regions around the candidate set of solutions, which

we call a Candidate-Constrained CRF (C3RF). We show

how to implement such candidate-constrained distributions

via cardinality potentials [11, 22], and find that this gener-

alization leads to further improvements in performance on

the task of semantic segmentation on PASCAL VOC 2012.

In Table 1, we summarize the search heuristics adopted by

the various methods and the distributions over which they

compute EIoU.

2. Related Work

We already discussed two approaches in the introduction for

MBR prediction under IoU. Most previous work on loss-

aware decision making [3,16,25] for general loss functions

is applicable to unstructured prediction – binary or multi-

class classification – and not structured prediction. One ex-

ception is [20], which is applicable to general (high-order)

losses, due to the approximation over a set of candidate so-

lutions. [20] can be viewed as a special case of our approach

that arises when the Hamming radius in the C3RF is set to

0 (i.e., the model is a mixture of delta distributions at each

of the candidates). We will show in the experiments that the
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richer set of distributions that arise from the C3RF model

allow us to improve over this baseline.

Other methods that use candidate solutions followed by

loss-aware decision making have been explored in the Ma-

chine Translation (MT) community. MBR decoding for MT

was first introduced in [14], where it was used to predict

the best translation from a set of N -best candidate trans-

lations [1, 10]. Subsequent work [15, 24] showed efficient

ways to perform MBR prediction from a larger pool of can-

didate solutions in the statistical MT setting.

The other relevant line of work comes from variational in-

ference techniques for mixture models [4, 12, 17]. There

are two main differences in our approach. First, rather than

learn the mixture components, we simply fix the centers of

the components to the candidate solutions. This simplifies

the inference task. Second, we make use of hard mixture

assignments, but note that softer choices could potentially

be used instead, and that is a topic for future exploration.

3. Background

We begin by establishing our notation, and reviewing back-

ground on probabilistic structured prediction.

Basic Notation. For any positive integer n, let [n] be

shorthand for the set {1, 2, . . . , n}. Given an input image

x ∈ X , our goal is to make a prediction about output vari-

ables y ∈ Y , where y may be a figure-ground segmentation,

or a category-level semantic segmentation. Specifically, let

y = {y1 . . . yn} be a set of discrete random variables, each

taking values in a finite label set, yi ∈ Yi. In semantic seg-

mentation, i indexes over the (super-)pixels in the image,

and these variables are labels assigned to each (super-)pixel,

i.e. Yi = {cat, boat, cow, . . .}. For a set F ⊆ [n], we use yF
to denote the tuple {yi | i ∈ F}, and YF to be the cartesian

product of the individual label spaces ×i∈FYi.

3.1. Conditional Random Fields and Factor Graphs

Conditional Random Fields (CRFs) are probabilistic mod-

els that represent conditional probabilities P(y|x) in a com-

pact manner via factor graphs. Let G = (V, E) be a bipartite

graph with two kinds of vertices – variable i ∈ [n] and fac-

tor nodes F ⊆ [n]. Each factor holds a local compatibility

function, measuring the score of the variables in its scope:

θF : YF → R. An edge {i, F} ∈ E indicates that variable

yi participates in the factor function θF (·), i.e., i ∈ F .

The score for any configuration y is given by S(y|x) =
∑

F θF (yF ), and the corresponding probability is given by

the Gibbs distribution: P(y|x) = 1
Z expS(y|x), where Z

is the partition function or the normalization constant.

If we wish to make a prediction from our model, we employ

a predictor, which converts P(y|x) into a prediction ŷ.

In the next two sections we shall briefly review the two ap-

proaches towards performing Bayesian decision making un-

der the IoU measure.

3.2. Empirical MBR

Premachandran et al. [20] tackle the intractability of the

MBR predictor by simply restricting the solution space to

a small set of candidate solutions. Specifically, given a set

of M candidate solutions Y = {y1, ...,yM}, a loss func-

tion ℓ(., .), and the Gibbs distribution P(.) corresponding to

the scoring function, they proposed an ‘Empirical MBR’ (or

EMBR) predictor:

yDelta-EIoU+enum = argmin
ŷ∈Y

∑

y∈Y

ℓ(ŷ,y)P̃(y|x) (2)

where P̃(y|x) = exp (S(y))∑
y′∈Y

exp (S(y′)) is the re-normalized dis-

tribution over the M candidate solutions. In this paper, we

refer to the predictor as Delta-EIoU+enum, because of the

way the distribution is assumed to be summarized by a set

of delta functions at the candidate solutions, and expected

loss is enumerated for each of the candidate solutions.

The candidate solutions are acquired by using the same

setup as [20] to generate DivMBest solutions [2].

3.3. EIoEU

For a ground-truth segmentation y and a predicted segmen-

tation ŷ, where each variable can take K possible classes

yi ∈ {1, · · · ,K} ∀i ∈ V , the Intersection-over-Union mea-

sure is given by

ℓ(ŷ,y) =
1

K

K∑

k=1

∑

i∈V 1{ŷi = k ∧ yi = k}
∑

i∈V 1{ŷi = k ∨ yi = k} . (3)

This definition is actually a gain function and not a loss,

hence it will be maximized. [18, 21] proposed approx-

imating the Expected-IoU by Expected-Intersection-over

Expected-Union (EIoEU):

EP[ℓ(ŷ,y)] =
∑

y∈Y

ℓ(ŷ,y)P(y|x) (4)

=
1

K

K∑

k=1

EP

[
∑

i∈V 1{ŷi = k ∧ yi = k}
∑

i∈V 1{ŷi = k ∨ yi = k}
]

(5)

≈ 1

K

K∑

k=1

EP[
∑

i∈V 1{ŷi = k ∧ yi = k}]
EP[

∑

i∈V 1{ŷi = k ∨ yi = k}] , (6)

which can now be written simply as a function of single

variable (i.e. pixel) marginals pi:

1

K

K∑

k=1

∑

i∈V 1{ŷi = k}pi(k)
∑

i∈V

(
1{ŷi = k}+ pi(k)1{ŷi 6= k}

) = f(P, ŷ)

(7)
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where P = {pi(yi|x)}i,yi
=

{
∑

y′:y′

i
=yi

P(y′|x)
}

i,yi

is

the set of marginals. [18, 21] suggest a greedy heuristic for

finding the solution with optimum EIoEU.

4. Relating EMBR and EIoEU

We now show how the EIoEU approximation [18, 21] is re-

lated to the EMBR predictor (2) of [20].

Given a set of solutions Y, let us define Z(Y) =
∑

c∈Y exp (S(c|x)) as the normalization constant for the

multiple-delta distribution over these solutions. For exam-

ple, Z({c}) = exp (S(c|x)) is a special case for a single

delta distribution. With this notation, we can express the

multiple-delta distribution used by [20] as:

PY(y|x) =
∑

c∈Y

Z({c})
Z(Y)

1{y = c}. (8)

Plugging this definition of P(.) into the expression for

EIoU, we have

EPY
[ℓ(ŷ,y)] =

∑

y∈Y

ℓ(ŷ,y)
∑

c∈Y

Z({c})
Z(Y)

1{y = c}

=
∑

c∈Y

Z({c})
Z(Y)

∑

y∈Y

ℓ(ŷ,y)1{y = c}, (9)

which can be interpreted as a weighted average of EIoU un-

der M distributions, each with support on a single solution,

i.e. P{c}(y) = 1{y = c}, ∀c ∈ Y.

If we apply the EIoEU approximation (7) to the inner sum,

the expression turns into:

∑

c∈Y

Z({c})
Z(Y)

1

K

K∑

k=1

∑

i∈V 1{ŷi = k}pic(k)
∑

i∈V

(
1{ŷi = k}+ pic(k)1{ŷi 6= k}

) .

(10)

Since each delta distribution P{c} has support only on so-

lution c, the marginals are also delta functions pic(k) =
1{ci = k}. Substituting these marginals above converts

EIoEU into EIoU – i.e. the EIoEU approximation is exact

for a single delta distribution. Thus, we derive the same

predictor as (2).

5. Our Proposed Generalizations

This connection between the EMBR predictor [20] and the

EIoEU approximation [18,21] leads us to consider combin-

ing ideas from both.

Optimize EIoEU only for candidate solutions: As shown

in Sec. 4, the framework of [20] can be viewed as opti-

mizing EIoEU over a summarized delta distribution. It is

natural to extend this to optimizing EIoEU over the entire

distribution for the set of candidate solutions. We call this

predictor CRF-EIoEU+enum.

Reason over an intermediate level of summarization:

We consider reasoning over an intermediate level of sum-

marization of the distribution, with the delta approximation

at one extreme and the original distribution at the other.

Just as the EMBR method averages loss over a collection of

delta distributions, we shall average EIoU over a collection

of distributions that have support only in Hamming neigh-

borhoods of the candidate solutions.

5.1. Candidate­Constrained CRFs

In analogy to the definition of P{c}, let P{c},R(y|x) ∝
1{∆Ham(y, c) ≤ R} exp (S(y|x)) be the distribution

constrained to have support only within a Hamming ball

of radius R centered at a candidate solution c, where

∆Ham(y, c) =
∑

i 1{yi 6= ci} is the Hamming distance

function.

Recalling that Y = {y1, . . . ,yM} is the set of candidate

solutions, we define the candidate constrained distribution,

which is parameterized by the candidate set Y and a radius

R, to be

PY,R(y|x) ∝
∑

c∈Y

1{∆Ham(y, c) ≤ R} exp (S(y|x)),

(11)

which can be rewritten as follows:

PY,R(y|x) ∝
∑

c∈Y

Z({c}, R)P{c},R(y|x), (12)

where Z(Y, R) =
∑

y∈Y

∑

c∈Y 1{∆Ham(y, c) ≤
R} exp (S(y|x)) is the normalizing constant (intuitively

Z(c, R) is the mass of the candidate solution c). Follow-

ing the same steps as in Sec. 4, we can derive an expression

for average EIoU over the individual Hamming-constrained

distributions:

EPY,R
[ℓ(ŷ,y)] =

∑

y∈Y

ℓ(ŷ,y)PY,R(y|x)

=
∑

c∈Y

Z({c}, R)

Z(Y, R)

∑

y∈Y

ℓ(ŷ,y)P{c},R(y|x)

=
∑

c∈Y

Z({c}, R)

Z(Y, R)
f(P{c},R, ŷ). (13)

It’s easy to notice that if we assume a constant IoU for ŷ,

and set it to ℓ(ŷ, c) for all y, the second step results in the

following formula:

E
const
PY,R

[ℓ(ŷ,y)] =
∑

c∈Y

Z({c}, R)

Z(Y, R)
ℓ(ŷ, c)

∑

y∈Y

P{c},R(y|x)
︸ ︷︷ ︸

=1
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=
∑

c∈Y

Z({c}, R)

Z(Y, R)
ℓ(ŷ, c) (14)

This expression looks similar to EMBR, but with masses

in place of exponentiated scores. This has an intuitive in-

terpretation: the local probability mass of a solution can

potentially be more informative than its score.

In the next section, we describe how we overcome the tech-

nical challenges of computing masses and marginals in the

Hamming-constrained distributions.

6. Estimating Masses and Marginals in

Hamming-Constrained Distributions

In this section, we describe how we estimate mass of a

candidate solution along with the Hamming-constrained

marginals given a factor graph, the candidate solution c, and

a given bin radius R.

To enfore the Hamming constraint, we add a higher-order

potential (HOP) to the factor graph, contributing a score

θHOP, that clamps probabilities of all solutions lying outside

the Hamming ball of radius R to 0. Thus, the probability of

a solution y in the constrained distribution takes the form

P{c},R(y) ∝ exp

{
∑

F

θF (yF ) + θHOP(y; c, R)

}

, (15)

where the HOP, θHOP, is defined as follows:

θHOP(y; c, R) =

{

−∞, if ∆Ham(y, c) > R

0, otherwise.
(16)

6.1. Imposing Hamming Constraints with the HOP

Since Hamming distance from a solution c is just the num-

ber of nodes disagreeing with c, we make use of cardinal-

ity potentials [11] to impose Hamming constraints in our

model.

In [22], an efficient method for imposing arbitrary cardinal-

ity potentials in a sum-product message passing setting was

introduced. A binary tree is constructed on top of nodes on

which some arbitrary cardinality potential is intended to be

imposed. Intermediate nodes in the tree compute the sum of

cardinalities of their children, such that at the root node, we

can compute the beliefs for the number of leaf nodes that

are ON (see Fig. 2a). An arbitrary cardinality potential can

be imposed on the root node, and passing messages down

to the leaves will give us revised beliefs.

Hamming distance in binary graphs. For graphs with

nodes taking binary labels, the Hamming distance between

solutions y and c is the sum of the count of OFF bits in y

where there are ON bits in c (denoted by C1
0 in Fig. 2b) and

the count of ON bits in y where there are OFF bits in c (de-

noted by C0
1 ). As shown in Fig. 2b, we impose the required

cardinality potential to disallow solutions outside the Ham-

ming radius, by constructing the binary tree such that the

two subtrees beneath the root node compute the two counts

C1
0 and C0

1 , and the root node sums these counts. Thus, the

root node gives us the total count of disagreements between

y and c. If we now set the cardinality potential to 0 when

the count is ≤ R, and −∞ otherwise, we can impose a hard

constraint that only allows y within radius R of c.

Hamming distance in multilabel graphs. We first expand

the multi-label graph into an equivalent binary graph. A

node taking K labels in the multi-label graph corresponds

to K nodes in the binary graph. For every such expanded

set of nodes, we impose a 1-of-K potential that forces only

one of the nodes to be ON. We construct such a potential by

once again using the cardinality tree from [22] such that the

only allowed cardinality for any subset of K nodes is 1.

For computing Hamming distance from a solution c in this

model, we only need to compute the number of OFF nodes

among the set of nodes that are ON in c, since that gives us

the number of disagreements between the current state of

the graph and c. In a similar fashion as with the binary case,

we impose a Hamming constraint that disallows solutions

outside the Hamming ball centered at c.

Hamming constrained marginals and masses: The par-
tition function of this constrained CRF is the mass of the
solution c. To estimate the partition function, we first per-
form sum-product message passing on the HOP-augmented
factor graph thus obtaining node and factor marginals. Let
N(i) be the number of factors with an edge to node i,
µi(yi) be the node marginal of node i, µF (yF ) be the factor
marginal for factor F , and θF (yF ) be the potential for fac-
tor F . Then the standard Bethe estimator for the partition
function [26] is given as follows:

logZ =
∑

i∈V

(N(i)− 1)





∑

yi∈Yi

µi(yi) log µi(yi)





−
∑

F∈F

∑

yF∈YF

µF (yF ) (log θF (yF ) + log µF (yF )) (17)

For tree-structured graphs, sum-product message passing

provides exact marginals, and the Bethe approximation is

exact. There are no guarantees in loopy graphs, but results

are often reasonable in practice; in the experiments section

we compare estimates returned by the Bethe estimator to

a sampling-based baseline on small problems and find the

Bethe estimator to be efficient in terms of accuracy.

The set of factors in the graph involve the factors in the

cardinality tree. The largest factor in the graph (assum-

ing #labels ≤ #superpixels) would belong to the cardinality

tree, and would be of O(n2) size (where n is the number
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(a) (b) (c) (d)

Figure 2: (a) The state of the root node (y7) is the cardinality of all the leaf nodes; (b) The root node d counts the Hamming distance from c;

(c) A simple 2 node multi-label graph (each node takes 3 labels {l1, l2, l3}); (d) 1-of-K potentials are imposed binary nodes corresponding

to the same multi-label variable to ensure that exactly one of them is ON. To avoid clutter, not all factors have not been shown.

of nodes/superpixels), so message passing operations are

O(n2) costly.

7. Experiments

We first perform experiments on synthetic data to confirm

that our estimated masses are a good approximation to the

true masses. Then, we evaluate the predictors we dis-

cussed on two segmentation datasets: Binary (foreground-

background) segmentation and category-level semantic seg-

mentation on PASCAL VOC 2012 val [8]. In each case, we

compare the following predictors:

1. MAP (over Y): The Maximum a Posteriori prediction is a

natural baseline for MBR methods. It is straightforward to

show that the MAP predictor is an MBR predictor assuming

0-1 loss rather than the task loss.

2. CRF-EIoEU+greedy (over Y): Greedy optimization of

EIoEU. 3

3. CRF-EIoEU+enum (over Y): Optimization of EIoEU via

enumeration over the candidate set.

4. Delta-EIoU+enum (over Y): Optimization of EIoU (av-

eraged over multiple delta distributions) via enumeration

over the candidate set. This is the approach of [20] (2).

5. Mass-EIoU+enum (over Y): Optimization of EIoU (av-

eraged over multiple delta distributions) via enumeration

over the candidate set; but the averaging uses masses of can-

didates instead of their scores (14).

6. C3RF-EIoEU+enum (over Y): Optimization of EIoEU

(averaged over Hamming ball constrained distributions) via

enumeration over the candidate set (13).

The parameters involved for the models are: an implicit

temperature parameter, T , associated with the Gibbs dis-

tribution; a diversity parameter, λ, used for computing the

set of candidate solutions as in [2]; a radius parameter, R,

for the constrained distributions. The best parameters are

chosen via cross-validation for each of the six approaches.

Approach 2 only learns T , approaches 3 and 4 learn λ and

3We use the code from http://tinyurl.com/os7coq8 for im-

plementing this optimization.

T , and approaches 5 and 6 learn λ, T , and R.

It should be noted that the experimental setups we use

from [20] are not designed to be well-calibrated, i.e. they

are not trained to encode meaningful beliefs over the space

of solutions (which is implicitly assumed in applying BDT).

We believe this is a more practical scenario, since it is typi-

cally hard to learn a well-calibrated model for problems like

segmentation in a structured prediction setting.

7.1. Estimating masses for toy graphs

As a sanity check, we used our method for computing mass

around solutions on small toy N × N grids, where true

masses can be computed via brute-force enumeration. The

unary and pairwise log-potentials are randomly set in the

interval (−∞, 0]. We also sample a random (small) radius

value ranging from 1 to
√
N . Fig. 3a shows absolute error

in log-mass estimation, averaged across 10 runs, for Bethe

and uniform sampling in the Hamming ball. We can see that

the Bethe approximation works very well, while sampling

takes a large number of samples, even in such a small graph.

7.2. Interactive Binary Segmentation

We use the foreground-background setup from [2] – 100 im-

ages were taken from the PASCAL VOC 2010 dataset, and

manually annotated with scribbles for objects of interest.

CRF construction: For every superpixel in the image, out-

puts of Transductive SVMs are used as node potentials,

which along with constrast sensitive Potts edge potentials

provide the binary CRF to be used for segmentation.

Candidate Solutions: We run DivMBest on the CRF to

acquire a set of 30 diverse solutions per test image.

Evaluation: 50 of these images were used to train the

SVM parameters, and Leave-One-Out cross-validation is

performed on the remaining 50 images. The validation ob-

jective is the performance at M = 30 for 49 images.

Results: In Fig. 3b, we show how the various predictors

perform. The shading around the curves indicate stan-

dard error bars – i.e. standard deviation/
√

#folds for the 50

Leave-one-out curves. We observe that Delta-EIoU+enum,

Mass-EIoU+enum, and C3RF-EIoEU+enum perform exactly
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(a) Errors in log-mass for toy grids (b) Foreground-background segmentation (c) Category Level Segmentation

Figure 3: (a) Errors for the grids are approximately the same for the Bethe approximation. Sampling requires more samples with increasing

grid size to provide a good estimate. (b) All EMBR predictors improve significantly upon MAP and the greedy optimization. Mass-

EIoU+enum and C
3
RF-EIoEU+enum opt for a radius of 0 and reduce to Delta-EIoU+enum. CRF-EIoEU+enum performs relatively poorly.

(c) C3RF-EIoEU+enum performs the best, with a ∼ 1.4% improvement over MAP. Again, Mass-EIoU+enum performs similarly as Delta-

EIoU+enum, and CRF-EIoEU+enum performs relatively poorly.

the same: 5.45% above MAP. This is because Mass-

EIoU+enum and C3RF-EIoEU+enum both pick a Hamming

radius of 0 during cross-validation, and reduce to Delta-

EIoU+enum. CRF-EIoEU+enum appears to perform well at

the start, however, at M = 30, it performs poorly: 3.63%

above MAP. CRF-EIoEU+greedy [18] performs slightly

worse than MAP but within error bars.

7.3. PASCAL Category Segmentation

We evaluate our predictors on the task of category segmen-

tation - label each pixel with one of a set of categories - on

the PASCAL VOC 2012 val set.

CRF Construction: Multi-label pairwise CRFs are con-

structed on superpixels of images from PASCAL VOC

2012 train and val. The node potentials are outputs of

category-specific regressors, which are trained on train

using [5]. Edge potentials are multi-label Potts.

Candidate Solutions: We use solutions generated as in

[20] - CPMC segments [6] scored by Support Vector Re-

gressors over second-order pooled features [5] are greedily

pasted. We observed that DivMBest solutions have dupli-

cates, so we pick the first 10 unique solutions from a set

of 50 DivMBest solutions. In the few cases where there

aren’t 10 unique solutions among the 50 diverse solutions,

we allow duplicates to remain, the intuition being that since

these solutions are repeatedly picked by the DivMBest al-

gorithm, they represent exceptionally strong beliefs of the

model, and allowing these duplicates to remain would as-

sign them a larger weight.

Evaluation: The standard PASCAL evaluation criteria is

the corpus-level IoU averaged over all 21 categories. Since

we are performing instance level predictions, and then eval-

uating at a corpus level, the loss function used in all predic-

tors is instance level loss, but the parameters are chosen by

cross-validation on corpus-level loss.

We perform 10 fold cross-validation on val. To acquire a

clearer sense of variance, we perform the 10 fold cross-val

for 5 different random permutations of the corpus.

Results: Fig. 3c compares performances of the vari-

ous predictors. The shading around the curves indi-

cates standard error bars across the 5 different permuta-

tions. We again observe that Delta-EIoU+enum and Mass-

EIoU+enum perform very similarly - 0.9% above MAP.

CRF-EIoEU+greedy [18] performs 0.62% above MAP, but

is the poorest among the other predictors.

Again, CRF-EIoEU+enum is relatively promising at the

start, but performs poorest at M = 10: 0.68% above MAP.

C3RF-EIoEU+enum, performs the best, with a 1.35% im-

provement over MAP, and 0.45% improvement over Delta-

EIoU+enum, with no overlap in error bars.

Note that in our current setup, there may be overlap in Ham-

ming balls across the clamped distributions. We also ran a

set of experiments where we shrink radii around each so-

lution till there is no overlap. We found that this results in

reduced performance (≈ 0.1% below MAP).

7.4. Discussion

We now discuss take-away messages from our experiments.

Search heuristic We notice that CRF-EIoEU+enum con-

sistently outperforms CRF-EIoEU+greedy, which suggests

that optimizing EIoU for a set of candidate solutions with a

high “oracle accuracy” (the accuracy of the best performing

solution in the set) as performed by [20] is a more prac-

tical heuristic. We also observe that the average EIoEU

score achieved by the greedy heuristic is 0.0739 while enum

reaches a higher score of 0.0746 using the same set of

marginals.

Mass-EIoU+enum reduces to Delta-EIoU+enum: We note

that cross-validation picks Delta-EIoU+enum over Mass-

EIoU+enum almost all of the time (by opting for a Ham-
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Figure 4: Comparing classwise accuracies for C3RF-EIoEU+enum and CRF-EIoEU+enum. The numbers on top of the bars indicate the

difference in accuracy between C
3
RF-EIoEU+enum and CRF-EIoEU+enum.

ming radius of 0). We hypothesize that this is because Mass-

EIoU+enum makes a crude assumption that worsens the ap-

proximation quality with increasing radii. As we showed

in Sec. 5.1, the Mass-EIoU+enum predictor essentially as-

sumes that the IoU of all solutions in a Hamming ball are

the same. Since we are labeling superpixels, flipping even a

small number of superpixels typically results in IoUs that

are significantly different from the solution we form the

Hamming ball around, especially since we evaluate IoU on

a pixel level.

C3RF-EIoEU+enum vs. Delta-EIoU+enum: Given that

Delta-EIoU+enum is less time-consuming than C3RF-

EIoEU+enum, an accuracy/time trade-off has to be made

when selecting one over the other. It is natural to consider

increasing the number of solutions for Delta-EIoU+enum

to see whether the performance difference between Delta-

EIoU+enum and C3RF-EIoEU+enum is bridged at a larger

M . Loopy BP takes ∼8 seconds per Hamming-constrained

distribution. Fortunately, this can be conducted in par-

allel across the candidate solutions. The optimization

for EIoU takes roughly the same time for both Delta-

EIoU+enum and C3RF-EIoEU+enum (around 10 seconds).

We run Delta-EIoU+enum for the same duration of time

that it takes C3RF-EIoEU+enum to run for 10 solutions, and

find that Delta-EIoU+enum does not reach higher perfor-

mance than C3RF-EIoEU+enum at M = 10 (Fig. 5).

8. Conclusion

We have shown that combining ideas from [18,21] and [20]

about performing loss-aware structured prediction with the

IoU measure leads to improved performance on two image

segmentation tasks. A natural question to ask in light of

the analysis presented in [18] is why there is room for im-

provement over the greedy optimization of EIoEU. We can

attribute some of the gains to our observation that the can-

didate solutions do a better job of optimizing the EIoEU

objective. However, we speculate that there could be an

Figure 5: Comparing performance for Delta-EIoU+enum and

C
3
RF-EIoEU+enum across time.

additional effect that comes from the fact that the models

we work with have not been trained to produce calibrated

probabilities (though we emphasize that there is a degree

of calibration happening within our hyperparameter search

loop). While one could insist upon only using models with

calibrated probabilities, the reality is that doing so requires

significant sacrifice in terms of the richness of the mod-

els that can then be used. We operate under the assump-

tion that we are not willing to make this sacrifice. Interest-

ingly, as we show, there is still room for ideas from classi-

cal Bayesian decision theory albeit applied in an irreverent

manner - rather than strictly adhering to the prescription of

BDT, it is beneficial to mix modern decision theoretic algo-

rithms with heuristics that work well across vision tasks.
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