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Abstract

In this paper, we address the problem of simultaneously

recovering the 3D shape and pose of a deformable and po-

tentially elastic object from 2D motion. This is a highly am-

biguous problem typically tackled by using low-rank shape

and trajectory constraints. We show that formulating the

problem in terms of a low-rank force space that induces the

deformation, allows for a better physical interpretation of

the resulting priors and a more accurate representation of

the actual object’s behavior. However, this comes at the

price of, besides force and pose, having to estimate the elas-

tic model of the object. For this, we use an Expectation

Maximization strategy, where each of these parameters are

successively learned within partial M-steps, while robustly

dealing with missing observations. We thoroughly validate

the approach on both mocap and real sequences, showing

more accurate 3D reconstructions than state-of-the-art, and

additionally providing an estimate of the full elastic model

with no a priori information.

1. Introduction

The goal of the Non-Rigid Structure from motion

(NRSfM) is to simultaneously recover the camera motion

and 3D shape of a deformable object from monocular

images. It is known to be a severely under-constrained

problem, typically solved by introducing prior informa-

tion through shape deformation models or camera trajectory

constraints. Along these lines, early approaches extended

the rigid factorization algorithm [37] to the non-rigid do-

main [7, 12, 39], and approximated the shape by a linear

combination of basis estimated on-the-fly. Alternatively,

other approaches have represented the evolution over time

of each point on the object through a set of pre-defined tra-

jectory basis [6, 29, 41]. Both these constraints are com-

monly referred to as statistical priors, as they do not have a

direct physical interpretation.

In this paper, we introduce a new constraint based on a

low-rank force prior. This prior has a direct physical in-

terpretation, as it models the interaction between the object

Figure 1. Low-rank force space. Non-rigid shape can be repre-

sented by means of the object elastic model and the force field

acting on it. In turn, the full force field can be approximated by a

low-rank basis. In this work, we simultaneously learn the elastic

model (compliance matrix) and estimate the low-rank force space,

while recovering shape and camera motion. In the figure we repre-

sent the full force-space and its corresponding shapes in red. The

low-rank forces and shapes are shown in blue.

and the underlying forces that deform it. Interestingly, we

also show its connection with the aforementioned shape and

trajectory models, turning these, into physical priors too.

The essence of our approach is described in Fig. 1. Let

us consider N points on the object, which is deformed un-

der the action of external forces. Following continuum me-

chanics, the relation between the acting forces and the de-

formation field can be characterized by an elastic model.

Regarding the force space, we can fully define it by 3N in-

dependent forces, whose combination allows mapping the

shape from a rest configuration to a wide variety of arbitrary

arrangements. Yet, to represent realistic deformations, only

a few of these forces, conforming a low-rank force space,

are necessary. Based on this idea, we propose a new for-

mulation of the NRSfM problem in which, given 2D point

tracks, we estimate camera trajectory and force parameters

(and consequently shape). Even though reasoning on the

force space introduces the compliance matrix as new un-

known, we are able to simultaneously solve for all parame-

ters using Expectation Maximization (EM), with partialM -

steps. By thorough testing on mocap and real sequences we
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show that our formulation yields more accurate reconstruc-

tions than state-of-the-art shape and trajectory based meth-

ods, while providing more physical insights in terms of the

elastic model of the object.

2. Related Work

The inherent ambiguity of the NRSfM problem is com-

monly tackled by constraining the shape to lie on a low-rank

space spanned by a set of deformation modes [7, 16, 17, 39].

This is further constrained by enforcing spatial [39] or

temporal [7, 17] shape smoothness, or by imposing the

3D shapes to be closely aligned [22]. A number of ap-

proaches, instead constraining the shape, introduce restric-

tions on the trajectory of every object point using predefined

bases [6, 29, 41]. There have also been recent attempts to

combine low-rank shape and trajectory spaces [19, 20, 35].

All these techniques are referred to as statistically-based

methods, since the low-rank representations used to con-

dition the problem are not physically grounded. Despite

their popularity, one inherent limitation of these methods is

that they are very sensitive to the number of shape or trajec-

tory modes, which needs to be carefully chosen to correctly

model the deformation.

A better representation of the underlying dynamics in-

volved in non-rigid deformations can be obtained through

physically-grounded models [26, 34]. Force-based kine-

matics [4, 13, 33], linear elastic models [24], and numer-

ical techniques based on Finite Element Methods (FEM)

for tracking [43] or 3D reconstruction [2], are just a few

examples of the renewed interest in physical models. Ad-

ditionally, there exist approaches in which the parameters

ruling these models are learned from input data. For in-

stance, displacement and force measurements allow recov-

ering the Young’s modulus [44] together with the Poisson’s

ratio [9]. More recently, material properties of fabrics mov-

ing under wind forces [11] or under small motions [15] are

estimated from only video sequences. And vice-versa, ap-

plied forces can be recovered from 2D displacements and an

estimate, up to scale, of the elastic parameters [2]. However,

in all these approaches only small pieces of the full physical

model (i.e., the complete stiffness matrix) are recovered.

Contribution: In this paper we propose a new low-rank

force model which we use to simultaneously recover cam-

era motion, 3D shape and the full elastic model of the object.

Note that the latter is specially challenging, as it involves es-

timating a large number of parameters, and not just the ma-

terial properties such as the Young’s modulus or Poisson’s

ratio. We do all this from the sole input of 2D input tracks,

which may even be discontinuous due to missing data. In

addition, we link our physical model to previous shape and

trajectory statistical approaches, giving them a physical in-

terpretation, too.

3. Low-rank Force Model

A standard approach to reduce the ambiguity of the

NRSfM problem involves representing the object in low di-

mensional spaces. Two spaces have been considered so far,

the shape and the trajectory ones. Before describing the new

low-rank force space we propose, we review these previous

formulations.

3.1. Low­rank Shape and Trajectory Space

The most natural way to represent time-varying shapes

is by means of a low-rank shape basis. These priors

are computed using either Principal Component Analysis

(PCA) over training data [10, 27], applying modal analysis

over a rest configuration [1, 30], or are estimated on-the-

fly [12, 17, 28, 39]. In particular, let us consider N 3D

points on an object, being observed along T frames. If we

denote by x
t
i = [xti, y

t
i , z

t
i ]
⊤ the 3D coordinates of the i-th

point at time t, and by s
t = [(xt

1)
⊤, . . . , (xt

N )⊤]⊤ the 3N -

dimensional representation of the shape at time t, we can

compactly write the time-varying shape as a 3N×T matrix

S = [s1, . . . , sT ]. Every instant shape s
t can be approxi-

mated by a linear combination or Q basis shapes s̃q:

s
t =

Q
∑

q=1

ψt
q s̃q = S̃ψt (1)

where ψt = [ψt
1, . . . , ψ

t
Q]

⊤ are the coefficients for the

shape at time t, and S̃ = [s̃1, . . . , s̃Q] is a 3N×Q matrix

containing all basis shapes. By aggregating all coefficients

into a Q×T matrix Ψ = [ψ1, . . . ,ψT ], we can finally write

the factorization of the time-varying shape S as:

S = S̃Ψ. (2)

Alternatively, we could include a shape at rest s0 in the sub-

set of basis shapes [1, 39]. In that case, we would take

Ŝ = [s0, s̃1, . . . , s̃Q], and the basis vectors s̃i, i = 1, . . . , Q
would be interpreted as 3D displacements over s0.

When representing the time-varying structure in trajec-

tory space [6], predefined basis of a Discrete Cosine Trans-

form (DCT) are used to span the trajectory of each object

point (i.e., the rows of S). We can then factorize S as:

S = ΦT̃, (3)

where T̃ is a Q×T matrix made of Q predefined basis tra-

jectories, and Φ is a 3N×Qmatrix of trajectory coefficients.

3.2. Modeling Shapes in a Low­rank Force Space

We next derive the formulation of our physics-based

low-rank force model to represent the shape. We draw inspi-

ration on the Hooke’s law, which states that the force needed

to extend or compress a spring by a certain distance is pro-

portional to that distance by a factor k, known as stiffness.
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This simple model can be generalized to 3D objects with

mass and volume, resulting in complex systems of partial

differential equations [8] that generally do not have an ana-

lytical solution and require from numerical approximations,

such as FEM. For instance, applying FEM over a shape at

rest, made ofN points and represented as a 3N-dimensional

vector s0, yields the following linear system:

Ku = f , (4)

where K is the 3N×3N stiffness matrix that maps the 3N
displacement vector u into a 3N -dimensional force field

f . The matrix K is usually built considering a number of

physical characteristics, such as material elastic properties,

the type of deformation (e.g., beam bending, stress plane)

and the connectivity between the nodal points, which de-

pends on the type of element discretization (e.g., triangular,

wedge, tetrahedral). Additionally, unless providing bound-

ary conditions, K is ill-conditioned, i.e., rank(K) < 3N .

Note that Eq. (4) allows computing the forces f that need

to be applied onto every point of s0 to obtain a pre-defined

displacement u. However, we will regard this relation in

the opposite direction, that is, we seek to compute the 3D

displacement when the 3D acting forces are known. In this

case, we will apply the relation u = Cf , where C is a

3N × 3N compliance matrix. When boundary conditions

are known this matrix is computed as C = K
−1 [5, 40], and

C is guaranteed to be a strictly positive-definite symmetric

matrix. When boundary conditions are not available, we

make use of the pseudoinverse, i.e., C = K
†, but we can

only assume C to be symmetric [2].

Once C is known, we can estimate a 3D displacement

u for any 3D applied force vector f , and therefore a new

configuration of the object shape as:

s = s0 + u = s0 +Cf = C(Ks0 + f) = C(f0 + f), (5)

where f0 = Ks0 can be interpreted as the forces applied to

keep the shape at rest. We can now expand this expression

to account for all T frames of a time-varying sequence:

S = C[f0 + f
1, . . . , f0 + f

T ] = CF, (6)

where F is a 3N×T matrix made of the force fields along

the sequence. At this point we can introduce our low-rank

force model. As it has been previously done for the shapes

or point trajectories, realistic distributions of acting forces

can also be approximated by a reduced number of modes.

To follow the parallelism with the previous section, we con-

sider a basis made of Q force vectors, and represent our

low-rank force field as a 3N×Qmatrix F̃. The time-varying

shape can then be written as:

S = CF̃Γ, (7)

where Γ = [γ1, . . . ,γT ] is a Q×T matrix of time-varying

force coefficients.

3.3. Shape­Trajectory­Force Duality

A direct comparison of the low-rank shape, trajectory

and force models defined in Equations (2), (3) and (7), re-

spectively, gives the equivalence between the three repre-

sentations. And most importantly, it gives a relation be-

tween two models, the shape and trajectory ones, that have

thus far been considered as statistical, and our new low-rank

force model, directly derived from physical relations.

In particular, considering the shape-force duality, we ob-

serve that S̃ = CF̃, that is, we can write the linear sub-

space of shapes in terms of force and elasticity parameters,

and therefore, the statistical shape model does inherently

encode physically-grounded properties. Similarly, we can

establish a trajectory-force duality, and write that Φ = CF̃

and T̃ = Γ. In this case, the low-rank force model is equiv-

alent to the trajectory coefficients, and the low-rank trajec-

tory bases, correspond to the force coefficients.

It is also worth to point that while the proposed approach

has equal compaction power than shape and trajectory mod-

els, factorizing the low-rank space into a force component

F̃, and a component C which encodes the elastic properties

of the object, makes it possible to model a much wider range

of object behaviors and configurations. This factorization,

though, introduces an additional complexity in the learning

process, as we need to discover all these terms from the sole

input of 2D tracks. In the next section, we describe how we

resolve this learning process, but when this is done, besides

estimating shape, we could also address the inverse prob-

lem of estimating the forces necessary to obtain a specific

shape configuration. This might be extremely useful in cer-

tain robotic applications dealing with the manipulation of

deformable objects, or in laparoscopy surgery.

4. Learning Elastic Model, Shape and Pose

In this section we describe how we introduce our low-

rank force space into the formulation of the NRSfM problem,

and how we then simultaneously solve for the elastic model

of the object, plus the shape and camera pose.

4.1. Problem Formulation

Let us consider a deformable object with N points at a

time instant t, represented by a 3N vector st. Assuming an

orthographic camera model, we can write the projection of

the 3D points onto the image plane as a 2N vector wt:

w
t = G

t
s
t + h

t + n
t, (8)

where G
t = IN ⊗ R

t has 2N× 3N size, IN is the N -

dimensional identity matrix, Rt are the first two rows of

a full rotation matrix, and ⊗ denotes the Kronecker prod-

uct. Similarly, ht = 1N ⊗ t
t is a 2N vector resulting from

concatenating N bidimensional translation vectors t
t, and
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Factor Full Shape Trajectory Force

Camera 5T 5T 5T 5T
Basis - 3NQ - 3NQ
Coefficients - QT 3NQ QT
Model 3NT - - 3N(3N + 1)/2

Total number 5T 5T + 3NQ 5T 5T + 3NQ+QT
of unknowns +3NT +QT +3NQ +3N(3N + 1)/2

Table 1. Total number of unknowns that need to be estimated when

considering the Full model, or the low-rank models in Shape, Tra-

jectory or Force space, respectively. The results are represented in

terms of the number of object points N , the number of frames T

and the dimensionality Q of the low-rank space.

1N is a N -vector of ones. Finally, nt is a 2N dimensional

vector of Gaussian noise.

We can therefore define our problem as that of estimat-

ing, for t = 1, . . . , T , the shape s
t and camera pose pa-

rameters {Rt, tt}, given the observation of point tracks wt

corrupted by noise n
t. The total number of unobserved

variables includes 3NT parameters for the shape and 5T
parameters for the pose1. Estimating all these unknowns

from the only 2NT noisy observations of the point tracks

is clearly an ill-posed problem. We make the problem

tractable by introducing our low-rank force model and en-

coding the time-varying shape as:

s
t = s0 + u

t = s0 +CF̃γt, (9)

where C is the compliance matrix, F̃ are the low-rank force

vectors, and γt are the corresponding force coefficients at

frame t. The projection Eq. (8) becomes:

w
t = G

t(s0 +CF̃γt) + h
t + n

t. (10)

Note that using the low-rank force model introduces a

new challenge to the problem, which is that besides hav-

ing to estimate the variables involved in a standard NRSfM

problem (i.e., pose, shape basis and shape coefficients, or

equivalently in our framework, pose, force basis and force

coefficients), we now need to learn the full elastic model C

of the object.

Since C remains constant along the sequence, it intro-

duces a fixed number of unknowns independently of the

number of frames T . Specifically, C is a 3N× 3N sym-

metric matrix, for which we only need to estimate the upper

triangular part, i.e., 3N(3N + 1)/2 elements. Addition-

ally, we still need to estimate the 5T pose parameters, 3NQ
components for the low-rank force space (assuming we con-

sider a force basis with Q components), and QT unknowns

for the force coefficients. In Table 1 we summarize the to-

tal number of unknowns as a function of the parameters N
(number of points), T (number of frames) and Q (dimen-

sionality of the low-rank space) and for the full-space prob-

lem and the three low-rank versions (shape, trajectory and

1An orthographic projection has five degrees of freedom, namely the

three parameters describing the rotation matrix, plus two of the translation.

N T Q Obs. Full Shape Traj. Force

55 260 12 28,600 44,200 6,400 3,280 20,095

40 316 11 25,280 39,500 6,376 2,900 13,636

29 450 7 26,100 41,400 6,009 2,859 9,837

41 1,102 10 90,364 141,056 17,760 6,740 25,386

Table 2. Total number of unknowns that need to be estimated when

considering the Full model, or the low-rank models in Shape, Tra-

jectory or Force space, respectively, for the combination of param-

eters N , Q and T we consider in the experimental section. The

column “Obs.” refers to the number of observed variables, 2NT ,

corresponding to the 2D tracks of all N points along the T frames.

force). In Table 2 we give the number of unknowns for the

specific combinations of N , Q and T we will use in the

experimental section. Observe that for long sequences (T
large), the number of unknowns of the Shape and Force sub-

spaces become similar, while our Force-based model yields

much richer information about the elastic object properties.

4.2. Probabilistic Low­Rank Force Model

In order to simultaneously learn shape, pose and elas-

tic models from 2D point tracks as described in Eq. (10),

we follow a Probabilistic PCA formulation [31, 36, 38].

Broadly, this consists of two main steps. We start by writing

the observations wt as a probabilistic distribution and then

we estimate the parameters that maximize its likelihood us-

ing EM. We next describe the first of these steps.

To estimate the distribution over the projected points wt

we first assume the weight coefficients γt to be modeled by

a zero-mean Gaussian distribution γt ∼ N (0; IQ). These

weights become latent variables that can be marginalized

out and are never explicitly computed, and using Eq. (9), we

can propagate their distribution to the time-varying shapes,

yielding s
t ∼ N

(

s0;CF̃F̃
⊤
C

⊤
)

.

By also assuming the noise over the shape observations

n
t to follow a Gaussian distribution with variance σ2, i.e.,

n
t ∼ N

(

0;σ2
I2N

)

, we can finally estimate that the pro-

jected points wt are also Gaussian:

w
t ∼ N

(

G
t
s0 + h

t;Gt
CF̃(Gt

CF̃)⊤ + σ2
I2N

)

(11)

We next explain how we perform Maximum Likelihood Es-

timation (MLE) on this latent variable problem using EM.

4.3. Expectation Maximization

For the purpose of estimating the MLE of the distribution

in Eq. (11), we use an EM algorithm in a similar way as

done in [3, 38]. We denote by Θ
t ≡ {Rt, tt} the set of

model parameters to estimate per frame, Υ ≡ {C, F̃, σ2}
the set of parameters to estimate along the sequence, γt the

latent variables and w
t the observed data. Given the 2D

trajectories of all points w = {w1, . . . ,wT }, we seek to

estimate all set of parameters Θ = {Θ1, . . . ,ΘT ,Υ}. The
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EM algorithm iteratively estimates the maximum likelihood

alternating between E-step and M -step.

4.3.1 E-Step

We initially estimate the posterior distribution over the la-

tent variables given the current observations and model pa-

rameters. Assuming iid samples and applying the Bayes’

rule and the Woodbury’s matrix identity, it can be shown

this distribution to be:

p(γt|wt,Θt,Υ) ∼ N (µt
γ
;Σt

γ
), (12)

where:

µt
γ
=Λ(wt −G

t
s0 − h

t) ; Σ
t
γ
= IQ −ΛG

t
CF̃

Λ =F̃
⊤
C
(

G
t
)⊤

(σ2
I2N +G

t
CF̃(Gt

CF̃)⊤)−1.

4.3.2 M-Step

We then replace the latent variables by their expected values

and update the model parameters by optimizing the negative

log-likelihood functionA(Θ,w) with respect to the param-

eters Θt, for t = 1, . . . , T , and Υ where:

A(Θ,w) = E

[

−
T
∑

t=1

log p(wt|Θt,Υ)

]

= NT log(2πσ2)

+
1

2σ2

T
∑

t=1

E

[

‖wt −G
t(s0 −CF̃γt)− h

t‖22

]

(13)

Note that this log-likelihood function is quadratic in all

parameters we seek to estimate, and in contrast to [17,

32, 33], it does not need regularization weights. To up-

date every parameter, we compute the corresponding par-

tial derivative assuming the other parameters are fixed, set

it to zero and solve it. The update rules we obtain are the

following.

Updating Elastic Model (C): To perform computations

with the matrix C we need to rewrite it in vectorized form.

Further, since C is symmetric, we only need to vectorize the

upper triangular part of it. For this, we define the function

vech(·), a generalization of the full-matrix vectorization op-

erator vec(·). The two operators can be related by means of

a so-called duplication matrix D, of size r2× r(r+1)
2 , where

r is the size of the original matrix we are vectorizing [23].

For C, we have that r = 3N and we can write:

vec(C) = Dvech(C) . (14)

The inverse mapping is computed by means of the pseu-

doinverse, that is, vech(C) = D
†vec(C). If we now set

∂A/∂vech(C) = 0, it can be shown that:

vech(C)←

(

T
∑

t=1

(

(F̃µt

γ
)⊤⊗ (D⊤(F̃µt

γ
⊗ Ir)(G

t)⊤Gt)
)

D

)−1

×

T
∑

t=1

D
⊤(F̃µt

γ
⊗ Ir)(G

t)⊤(wt
−G

t
s0 − h

t).

Updating Low-Rank Force Space (F̃): For computing F̃

we need to define the expectation φt
γγ

= E[γt(γt)⊤] =

Σ
t
γ
+ µt

γ
(µt

γ
)⊤. By using again the vectorized form, we

can update the force space as:

vec(F̃)←

(

T
∑

t=1

(φt
γγ

)⊤ ⊗ (Gt
C)⊤Gt

C

)−1

× vec

(

T
∑

t=1

(Gt
C)⊤(wt −G

t
s0 − h

t)(µt
γ
)⊤

)

.

Updating the Camera Pose (Rt, tt): The camera rota-

tion R
t needs to be updated enforcing orthonormality con-

straints. In order to do so we follow the iterative strategy

proposed in [3], where ∂A(Rt)/∂Rt = 0 is optimized en-

forcing R
t to lie on the smooth manifold defined by the

orthogonal group SO(3). Regarding the translation vector

t
t it is easy to show that it can be updated as:

t
t ←

1

N

N
∑

i=1

(wt
i −R

t(s0,i + (CF̃µt
γ
)i)), (15)

where w
t = [(wt

1)
⊤, . . . , (wt

N )⊤]⊤, wi are 2D coordi-

nates, s0 = [s⊤0,1, . . . , s
⊤
0,N ]⊤, s0,i are 3D coordinates, and

(CF̃µt
γ
)i is the i-th 3D point of the 3N vector CF̃µt

γ
.

Updating Noise Variance (σ2): Setting ∂A(σ2)/∂σ2 = 0
we can finally update the noise variance as:

σ2 ←
1

2NT

T
∑

t=1

(

tr
(

(Gt
CF̃)⊤Gt

CF̃φt
γγ

)

(16)

+‖wt−Gt
s0−h

t‖2−2
(

w
t−Gt

s0−h
t
)⊤

G
t
CF̃µt

γ

)

.

4.4. A Comment on Scale Factor

When solving for C and F̃ we have only constrained C

to be symmetric. Therefore, we could consider any sym-

metric and invertible matrix A such that CF̃ = CAA
−1

F̃.

A new compliance matrix CA would still be symmetric and

would yield the same solution for the shape reconstruction

in Eq. (9) and reprojection in Eq. (10). That is, the values of

C and F̃ are retrieved up to a scale factor matrix. A similar

ambiguity is produced between F̃ and γt.

Nevertheless, the up to scale compliance matrix C, be-

sides yielding a correct solution to the NRSfM problem, it

is also sufficient to model the full physical space. We can

therefore use C to generate, up to scale, any deformation

u applying a given force vector f . And vice-versa, we can

obtain an scaled force field to produce a specific displace-

ment. This kind of physical relations, are of course, not

possible with previous low-rank shape and trajectory ap-

proaches. What is not possible with the compliance matrix

we retrieve, though, is to directly estimate the ground truth
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Space: Shape Trajectory Shape-Trajectory Force
P
P

P
P
P

P
PP

Seq.

Met.
EM-PPCA [39] EM-LDS [39] MP [28] SPM [14] EM-PND [22] PTA [6] CSF2 [20] KSTA [19] EM-PFS

Jacky [39] 1.80(5) 2.79(2) 2.74(5) 1.82(7) 1.41 2.69(3) 1.93(5) 2.12(4) 1.80(7)

Face [28] 7.30(9) 6.67(2) 3.77(7) 2.67(9) 25.79 5.79(2) 6.34(5) 6.14(8) 2.85(5)

Flag 4.22(12) 6.34(3) 10.72(3) 7.84(5) 4.11 8.12(6) 7.96(2) 7.74(2) 5.29(12)

Walking [39] 11.11(10) 27.29(2) 17.51(3) 8.02(6) 3.90 23.60(2) 6.39(5) 6.36(5) 8.54(11)

Average error: 6.11 10.77 8.69 5.09 8.80 10.05 5.66 5.59 4.62

Table 3. Quantitative comparison on Mocap videos. We report e3D[%] for shape basis methods EM-PPCA [39], EM-LDS [39], MP [28]

and SPM [14]; for EM-PND [22]; for the trajectory basis method PTA [6]; for shape-trajectory basis methods CSF2 [20] and KSTA [19];

and for our force basis approach denoted as EM-PFS. We have chosen the basis rank (in brackets) that gave the lowest e3D error.

values of the inherent physical parameters (e.g., Poisson’s

ratio or Young’s modulus) that constitute the true stiffness

matrix. For this to be possible we should perform a calibra-

tion and estimate the actual scale factor matrix, in the same

line as [21] did for very specific force sensors.

4.5. Dealing with Missing Data

Unlike other methods [12, 14], our approach can easily

incorporate an strategy to handle incomplete measurements

due to occlusions or outliers. To achieve this, during theM -

step of EM algorithm, we just need to optimize the expected

log-likelihoood of the 2D location ŵ
t
i of the missing points.

Since we are using a global model, we can infer their value,

despite not being available. In particular we set them to:

ŵ
t
i ← R

t(s0,i + (CF̃µt
γ
)i) + t

t. (17)

4.6. Initialization

The optimization of Eq. (13) is a highly non-linear prob-

lem involving a large number of parameters. For this,

it is important not to initialize them completely at ran-

dom. In particular, we initialize the rigid motion parame-

ters {Rt, tt} and s0 considering the scene does not deform,

and we apply rigid factorization [25] as standard practice

in NRSfM techniques. Regarding the compliance matrix C,

we do not use any physical prior, and initially set it to the

identity matrix. The force basis F̃ is initialized through a

coarse-to-fine approach, in which a noise-free version of

Eq. (10), where all parameters except F̃ are given, is first

solved for one force-mode, then for two modes, and so on

until estimating the Q initial modes. Once all these param-

eters are set, the starting value of σ2 is directly computed

from Eq. (16). Finally, when dealing with missing data we

assume that both the camera motion and 3D shape deforma-

tion are smooth over time, and obtain an initial estimation

of the missing tracks ŵ
t
i by imposing smooth trajectories,

as done in [20].

5. Experimental Evaluation

We now present our experimental results for different

types of sequences including articulated and non-rigid mo-

tion (see videos in the supplemental material). We provide

both qualitative and quantitative results, where we compare

our approach against state-of-the-art methods, using several

mocap datasets with 3D ground truth. For these datasets

we report the standard 3D reconstruction error, computed

as e3D = 1
T

∑T

t=1
‖st−s

t

GT
‖
F

‖st
GT

‖
F

, where ‖ · ‖F denotes the

Frobenius norm, st is the estimated 3D reconstruction and

s
t
GT is the corresponding 3D ground truth. e3D is computed

after aligning the estimated 3D shape with the 3D ground

truth using Procrustes analysis over all T frames.

5.1. Motion Capture Data

The standard way to compare NRSfM approaches is

through a number of datasets with ground truth, acquired

using mocap systems. We consider the following ones: the

face deformation sequences Jacky and Face, from [39] and

[28], respectively; Walking for articulated motion from [39],

and a sparse version of Flag waving in the wind [42].

We compare our approach, denoted EM-PFS (for

Expectation-Maximization on Probabilistic Force Space)

against eight other methods, which use low-rank models on

both shape and trajectory spaces. Among the shape space

methods we consider: EM-PPCA [39], EM-LDS [39], the

Metric Projections (MP) [28], the block matrix approach

for SPM [14] and EM-PND [22]. Regarding the trajectory-

based ones, we evaluate the DCT-based 3D point trajectory

(PTA) [6]. As shape-trajectory methods we consider Col-

umn Space Fitting (CSF2) [20] and the Kernel Shape Tra-

jectory Approach (KSTA) [19]. The parameters of these

methods were set in accordance with their original pa-

pers. In our approach, the only parameter that needs to

be manually set is the number Q of modes of the low-rank

force space. There is no other parameter nor regularization

weight that needs to be tuned.

The mean 3D reconstruction errors are summarized in

Table 3. Observe that our approach consistently performs

either the best or among the best in all sequences, and in

average is the one with smaller error. In particular note that

we slightly outperform SPM [14] and KSTA [19], which are

acknowledged to be at the top of the state-of-the-art in low-

rank based models. And most importantly, we do not only

solve for the NRSfM problem, but we additionally provide

an estimation of the full elastic model of the object.
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Figure 2. Actress sequence. Top: 2D tracking data (green circles)

and reprojection (red dots) of the reconstructed 3D shape. Mid-

dle: Camera and side-views of the reconstructed shapes. Bottom:

Same views using EM-PND [22].

Figure 3. Beating heart sequence. Top: See caption of Fig. 2.

Middle: Reconstructed 3D shape, color code such that reddish

areas indicate larger displacements. Bottom: Reconstructed 3D

shape, using the original texture. Best viewed in color.

5.2. Real Videos

We have also evaluated our approach on several real se-

quences, which despite not having ground truth, allow a

qualitative evaluation in different real-world scenarios and

under the presence of structured occlusions, where other ap-

proaches are prone to fail [14].

First, we process the actress sequence, with 102 frames

showing a woman talking and moving her head. The point

tracks were provided by [7]. Figure 2 shows the 3D recon-

struction, appropriately rotated according to the estimated

pose. We also show the results of the EM-PND [22], known

to be very accurate except for situations like this sequence,

in which the camera rotation is small.

For the beating heart sequence, of 79 frames and ac-

quired during bypass surgery2, we use the outlier-free point

tracks of [18], computed using optical flow. Figure 3 shows

the 3D reconstruction we obtain, where one of the main

challenges is that the movement of the camera is very small.

This especially penalizes trajectory-based methods. The

color-coded reconstructions, representing the amount of de-

formation, show that we can recover the rhythmic deforma-

tions of the heart, while learning its elastic model.

2Sequence available from: http://hamlyn.doc.ic.ac.uk/vision

Figure 4. Back sequence. Top: See caption of Fig. 2. Bottom:

Side view of the reconstructed shape.

Figure 5. ASL sequence. Top: See caption of Fig. 2. Bottom:

Camera frame and side-views of the reconstructed 3D shape. Blue

circles correspond to missing points. Best viewed in color.

Figure 4 shows the reconstruction of the back of a per-

son. Point tracks are obtained from [32]. Again, one of the

difficulties of this sequence is to deal with small camera mo-

tions, which our approach handles without much difficulty.

Finally, we have also processed an ASL sequence of an

American Sign Language (ASL), consisting of a person

moving the head while talking and hand gesturing. The goal

is to reconstruct the face which, in some frames is partially

occluded by the hand or by the own face rotation. The se-

quence, from [20], has 114 frames and 11.5% of missing

data. Fig. 5 shows two views per frame of the estimated 3D

shape. Note that even when occlusions appear, our model

provides a correct estimation for the occluded shape. While

this reconstruction is very similar to that obtained by [20],

SPM [14], our closer competitor in the mocap data experi-

ments of Table 3, is not able to handle missing data.

5.3. Elastic Model Estimation

The distinguishing contribution of our approach is that

besides estimating the shape and camera trajectory, we pro-

vide an estimation of the elastic model of the object C, and

a low-rank force space F̃ (with the corresponding force co-

efficients Γ). Additionally, as discussed in Sect. 3.3, once

we have estimated these parameters, we can directly com-

pute the equivalence between the force, shape and trajec-

tory spaces. Concretely, the low-rank shape space has been

shown to be S̃ = CF̃, and the low-rank trajectory space

T̃ = Γ. In Fig. 6 we plot these equivalences for the ex-

ample of the actress sequence introduced previously. On
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Figure 6. Spaces comparison. Equivalence between the force,

shape and trajectory spaces using the actress sequence, with rank

Q = 5. Top: Modes in the force space. Middle: Modes in the

shape space. Bottom: Modes in the trajectory space.

top we plot the first five force modes, as vectors overlay-

ing the shape at rest. Observe that the larger magnitudes of

the modes concentrate around the mouth, which is the part

of the face undergoing larger deformations. On the cen-

ter, we plot the equivalent shape basis we retrieve. Again,

although it is difficult to appreciate from non-overlapping

images, note the subtle differences between the configura-

tion of each mode, and again, particularly around the area

of the mouth. The bottom-most plot, depicts the first five

trajectory modes, with size equal to the sequence length.

The theoretical modes used in the trajectory-based methods

correspond to the sinusoidal functions of a DCT. Note that

the first mode we estimate from our force-space, quite re-

sembles such a function.

In Fig. 7 we demonstrate that the compliance matrix we

estimate allows recovering the full physical space. For in-

stance the four face configurations we plot on the left are

produced by applying specific forces f and computing the

resulting deformations u via the relation u = Cf . Each

face corresponds to the product of the compliance matrix,

shown in the center of the figure, by one of the force vec-

tors f1, f2, f3, f4 depicted on the right, plus the shape at rest.

Observe that with this force model we can generate shape

configurations (e.g., winking one or two eyes, mouth wide

open) that would be hard or impossible to obtain using low-

rank shape and trajectory spaces unless similar shapes are

explicitly observed (in shape-based methods) or they use

a very large number of modes (in trajectory-based meth-

ods). In contrast, using the physical space we propose, we

can produce these shapes even when they have not been ob-

served and directly from the elastic model we have learned.

Additionally, note how the forces f1, f2, f3, f4 necessary to

produce these shape configurations are smooth (their color

coded components do not abruptly change). This would

not happen if we had used a random symmetric compli-
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Figure 7. Full physical space estimation for the actress se-

quence. Once the compliance matrix is learned, we can define

any shape in the full physical space. Left: Four shapes obtained

from the estimated C. Center: Recovered C. Right: f1, f2, f3, f4,

are the forces necessary to obtain the shape configurations on the

left from C, the estimated compliance matrix. f r
1, f

r
2, f

r
3, f

r
4, are the

forces necessary to obtain the same shape configurations, but from

a random symmetric compliance matrix. Best viewed in color.

ance matrix. This matrix would also solve allow minimiz-

ing Eq. (13), but the resulting forces f r
1, f

r
2, f

r
3, f

r
4 would not

be quite realistic. We plot these forces, on the rightmost

of Fig. 7. Note how their values evidence sharp changes,

indicating that a random compliance matrix would not ap-

propriately model the underlying physics of the object.

6. Conclusions

In this paper we have formulated the NRSfM problem us-

ing a new low-rank force model. From only 2D point tracks,

besides recovering shape and camera motion, this approach

also provides an estimation of an elastic model of the object,

allowing for rich physical interpretations of the dynamics

in terms of force and displacement. Additionally, we have

shown the connections of our force-model to the shape and

trajectory-based spaces used so far. The results demonstrate

that the proposed technique is applicable to a wide variety

of real-world deformations and materials, without requiring

any prior knowledge about the physical or geometric ob-

ject properties. We obtain state-of-the-art performance in

reconstruction accuracy, while also providing an estimation

of the object elastic model. Yet, this model is recovered up

to scale. In the future, we plan to retrieve the true elastic

model by including certain constraints into our optimiza-

tion. By doing this from just a monocular video would be a

major step in engineering mechanics, which usually rely on

complex laboratory procedures for obtaining such models.
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