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Abstract

Generating coherent synopsis for surveillance video

stream remains a formidable challenge due to the ambi-

guity and uncertainty inherent to visual observations. In

contrast to existing video synopsis approaches that rely on

visual cues alone, we propose a novel multi-source synopsis

framework capable of correlating visual data and indepen-

dent non-visual auxiliary information to better describe and

summarise subtle physical events in complex scenes. Specif-

ically, our unsupervised framework is capable of seamlessly

uncovering latent correlations among heterogeneous types

of data sources, despite the non-trivial heteroscedasticity

and dimensionality discrepancy problems. Additionally, the

proposed model is robust to partial or missing non-visual

information. We demonstrate the effectiveness of our frame-

work on two crowded public surveillance datasets.

1. Introduction

A critical task in visual surveillance is to automatically
make sense of the massive amount of video data by sum-
marising its content using higher-level intrinsic physical
events1 beyond low-level key-frame visual feature statis-
tics and/or object detection counts. In most contemporary
techniques, low-level imagery visual cues are typically ex-
ploited as the sole information source for video summari-
sation tasks [11, 17, 6, 12]. On the other hand, in complex
and cluttered public scenes there are intrinsically more in-
teresting and relevant higher-level events that can provide
a more concise and meaningful summarisation of the video
data. However, such events may not be immediately ob-
servable visually and cannot be detected reliably by visual
cues alone. In particular, surveillance visual data from pub-
lic spaces is often inaccurate and/or incomplete due to un-
controllable sources of variation, changes in illumination,
occlusion, and background clutters [8].

In the context of video surveillance, there are a num-

1Spatiotemporal combinations of human activity and/or interaction pat-
terns, e.g. gathering, or environmental state changes, e.g. raining or fire.
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Figure 1. The proposed CC-Forest discovers latent correlations
among heterogeneous visual and non-visual data sources, which
can be both inaccurate and incomplete, for video synopsis of
crowded public scenes.

ber of non-visual auxiliary information that can be used to
complement the unilateral perspective traditionally offered
by visual sources. Examples of non-visual sources include
weather report, GPS-based traffic speed data, geo-location
data, textual data from social networks, and on-line event
schedules. Despite that visual and non-visual data may
have very different characteristics and are of different na-
ture, they capture the common physical phenomenon in a
scene. This suggests that they are intrinsically correlated,
although may be mostly indirect in some latent spaces. Ef-
fectively discovering and exploiting such a latent correla-
tion space can bridge the semantic gap between low-level
imagery features and high-level semantic interpretation.

The objective of this study is to learn a model that as-
sociates both visual (e.g. optical flow at distributed phys-
ical locations) and non-visual (e.g. a college event calen-
dar) data for video interpretation and structured synopsis
(Fig. 1). The learned model can then be used for event in-
ference and ambiguity reasoning in unseen video data.

Unsupervised mining of latent association and inter-
action between heterogeneous data sources is non-trivial
due to: (1) Disparate sources significantly differ in repre-
sentation (continuous or categorical), and largely vary in
scale and covariance2. In addition, the dimension of visual
sources often exceeds that of non-visual information to a

2Also known as the heteroscedasticity problem [4].
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great extent (>2000 dimensions of visual features vs. <10
dimensions of non-visual features). Owing to this dimen-
sionality discrepancy problem, a straightforward concatena-
tion of features will result in a representation unfavourably
inclined towards the imagery information. (2) Both visual
and non-visual data in isolation can be inaccurate and in-
complete, especially in surveillance data of public spaces.
(3) Non-visual information, e.g. event time tables, may not
be necessarily available or synchronised with the visual ob-
servations. This renders models that expect full and com-
plete input representation impractical. No existing meth-
ods are readily applicable to address all the aforementioned
challenges in a unified framework.

The main contributions of our study are two-fold. Firstly,
we show that coherent and meaningful multi-source based
video synopsis can be constructed in an unsupervised man-
ner by learning collectively from heterogeneous visual and
non-visual sources. This is made possible by formulating a
novel Constrained-Clustering Forest (CC-Forest) with a re-
formulated information gain function that seamlessly han-
dles multi-heterogeneous data sources dissimilar in repre-
sentation, distribution, and dimension. Specifically, our
model naturally incorporates low-dimensional non-visual
data as constraints to high-dimensional visual data. Al-
though both visual and non-visual data in isolation can be
inaccurate and incomplete, our model is capable of uncov-
ering and subsequently exploiting the shared latent corre-
lation for video synopsis. As shown in the experiments,
combining visual and non-visual data using the proposed
method improves the accuracy in video clustering and seg-
mentation, leading towards more meaningful video synop-
sis. Secondly, the proposed approach is novel in its ability
to accommodate partial or completely missing non-visual
sources. In particular, in the model training stage, we intro-
duce a joint information gain function that is capable of dy-
namically adapting to arbitrary number of non-visual con-
straints. In model deployment, only visual input is required
for generating and inferring missing non-visual semantics,
relaxing the need for intensive and on-the-fly non-visual in-
formation mining.

We demonstrate the effectiveness of our approach on two
public surveillance videos. In particular, we demonstrate
the usefulness of our framework through generating video
synopsis enriched by plausible semantic explanation, pro-
viding structured event-based summarisation beyond object
detection counts or key-frame feature statistics.

2. Related Work
Contemporary video summarisation methods can be

broadly classified into two paradigms, keyframe-based [7,
21, 12] and object-based [18, 17, 6] methods. The
keyframe-based approaches select representative keyframes
by analysing the low-level imagery properties, e.g. object’s

motion and appearance [7, 12], motion stability of optical
flow or global colour differences [21] to generate a story-
board of still images. Object-based techniques [17, 6], on
the other hand, rely on object segmentation and tracking
to extract object-centered trajectories/tubes, and compress
those tubes to reduce spatiotemporal redundancy. Both the
above schemes utilise solely visual information and make
implicit assumptions about the completeness and accuracy
of the visual data available in extracting features or object-
centered representations. They are neither suitable nor scal-
able to complex scenes where visual data are inherently in-
complete and inaccurate, mostly the case in typical surveil-
lance videos. Our work differs significantly from these
studies in that we exploit not only visual data without ob-
ject tracking, but also non-visual sources as complementary
information in order to discover higher-level events that are
visually subtle and difficult to be detected.

Audio information and transcripts have been widely ex-
plored for finding highlights in news and broadcast pro-
grams [19, 9]. However, these studies are limited to videos
recorded in controlled environments. In addition, the com-
plementary sources are well synchronised, mostly noise
free and complete as they are extracted from the embed-
ded text metadata. In this work we solve a harder prob-
lem. Whilst surveillance videos captured from busy public
spaces are typically without auditory signals nor any syn-
chronised transcripts available, we wish to explore alterna-
tive non-visual data drawn independently elsewhere from
multiple sources, with inherent challenges of being inac-
curate and incomplete, unsynchronised to and may also be
in conflict with the observed visual data. On a different
but related topic, some works have been reported on cate-
gorising YouTube videos [22, 20]. In contrast to our prob-
lem, these studies enjoy a much wider scope of prior knowl-
edge about correlation of different sources, e.g. labelled tax-
onomy structure, annotated cross-domain sources, together
with feedback rating and user-uploaded tags for video clips.

More recently, Huang et al. [10] proposed an Affinity
Aggregation Spectral Clustering (AASC) method for inte-
grating multiple types of homogeneous information. Their
method generates independently multiple affinity matrices
via exhaustive pairwise distance computation for every pair
of samples of each data source. It suffers from unwieldy
representation given high-dimensional data inputs. Impor-
tantly, despite it seeks for the optimal weighted combination
of the affinity matrices, it does not consider dependency be-
tween different data sources in model learning. To over-
come these problems, in this work a single affinity matrix
that captures correlation between diverse types of sources
is derived from a reformulated model of clustering forest.
In comparison to [10], our model has a unique advantage in
handling missing non-visual data, as shall be demonstrated
by extensive experimental evaluations.
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3. Video Summarisation from Diverse Sources

We consider the following different sources of informa-
tion to be taken into account in a multi-source input feature
space (Fig. 2-a):
Visual features - We segment a training video into Nv ei-
ther overlapping or non-overlapping clips, each of which
has a duration of T frames. We then extract a d -dimensional
visual descriptor from the ith clip denoted by xi =
(xi,1, . . . , xi,d) ∈ R

d , i = 1, . . . , Nv .
Non-visual data - Non-visual data are collected from het-
erogeneous independent sources. We collectively represent
m types of non-visual data associated with the ith clip as
yi = (yi,1, . . . , yi,m) ∈ R

m , i = 1, . . . , Nv . Note that any
(or all) dimension(s) of yi may be missing.

To facilitate video summarisation with plausible seman-
tic explanation, we need to model latent associations be-
tween visual events in video clips and non-visual semantical
explanations from independent sources, given a large cor-
pus of video clips and non-visual data. An unsupervised so-
lution is by discovering the natural groupings/clusters from
these multiple heterogeneous data sources, so that each
cluster represents a meaningful collection of clips with co-
herent events, associated with unique distributions of non-
visual data types. Given a long unseen video, one can then
apply a nearest neighbour search in the cluster space to infer
the non-visual distribution of any clips in the unseen video.

Discovering coherent heterogeneous data groupings re-
quires the mining of multi-source correlation, which is non-
trivial (Sec. 1). A conventional clustering model such as
k-means is likely to perform poorly (see experiments in
Sec. 5), since the notion of proximity becomes less precise
when a single distance function is used for quantifying the
groupings of heterogeneous sources differing in representa-
tion, distribution, and dimension. In this paper, we address
the problem of multi-source correlation and grouping via a
joint optimisation of individual information gains from dif-
ferent sources, rather than using a ‘hard’ distance metric
for quantification. This naturally isolates the very different
characteristics of different sources, thus mitigating the het-
eroscedastic and dimension discrepancy problems.

A decision forest [3, 23], particularly the clustering for-
est [1, 13], appears to be a viable solution since its model
learning is based on unsupervised information gain optimi-
sation. Nevertheless, the conventional clustering forest is
not well suited to solving our problem since it expects a full
concatenated representation of visual + non-visual sources
as input during both the model training and deployment
stage. This does not conform to the assumption of only vi-
sual data being available during the model deployment for
unseen video synopsis. Moreover, in conventional forests,
due to the variable selection mechanism, there is no princi-
pled way to ensure equal contributions from both visual and
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Figure 2. Training steps for learning a multi-source synopsis model.

non-visual sources in the node splitting process.
To overcome the limitations of the conventional clus-

tering forest, we develop a new constrained clustering for-
est (CC-Forest) by reformulating its optimisation objective
function. Figure 2 depicts an overview of the training pro-
cess of our model.

3.1. Learning Correlation via Information Gain

The proposed CC-Forest, which consists of Tc decision
trees (Fig 2-b), is trained similar to a pseudo two-class clas-
sification forest [13]. This involves an iterative node split-
ting procedure that optimises each internal node j via

θ∗
j = argmaxθj∈T ΔI, (1)

with a greedy search strategy, where θj ∈ T denote the
parameters of a test function at the jth split node, and ΔI
refers to information gain computed as the Gini impurity
decrease [2].

In a conventional clustering forest, the information gain
ΔI is defined as

ΔI = Ip −
nl

np
Il −

nr

np
Ir, (2)

where p, l and r refer to a splitting node, the left and right
child node; n denotes the number of samples at a node, with
np = nl + nr.

The main difference of CC-Forest with respect to the
conventional model is that instead of taking a forcefully
concatenated visual + non-visual vector as input, it exploits
the non-visual information as correlational constraints to
guide the tree formation, whilst still using visual features
as splitting-variables to grow constrained clustering trees.
Specifically, we define a new information gain for node
splitting as follow

ΔI = αv
ΔIv
Iv0︸ ︷︷ ︸

visual

+
m∑
i=1

αi
ΔIi
Ii0︸ ︷︷ ︸

non-visual

+αt
ΔIt
It0︸ ︷︷ ︸

temporal

. (3)
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Each term in Eqn. (3) is explained as follows:
Visual term - ΔIv denotes the information gain in visual
domain. It has a similar derivation as ΔI in Eqn. (2), but it
is no longer the only factor affecting the node information
gain.
Non-visual term - This is a new term we introduce. Specifi-
cally, ΔIi denotes the information gain in the ith non-visual
data. This new term plays a critical role in that the node
splitting is no longer solely dependent on visual data. In-
stead the mixed information gain in Eqn. (3) encourages
data separation not only in the visual domain, but also in
the non-visual domains. It is this re-formulation of joint
information gain optimisation that provides a chance for as-
sociating multiple heterogeneous data sources, and simulta-
neously balancing the influence exerted by both visual and
non-visual information on node splitting.
Temporal term - We also add a temporal smoothness gain
ΔIt to encourage temporally adjacent video clips to be
grouped together. The information gain of each source is
normalised by its initial Gini impurity, denoted by Iv0, Ii0,
and It0, respectively.
Coping with partial/missing non-visual data - We in-
troduce a new adaptive weighting mechanism to dynam-
ically deal with the inevitable partial/missing non-visual
data. Specifically, the coefficients αv , αi, and αt refer to the
source weights, with αv +

∑m
i=1 αi + αt = 1. When there

are no missing non-visual data, we assume the visual, non-
visual, and temporal terms carry equally useful information,
we thus set αv = 0.5, and αt = αi = 1−αv

m+1 , with m the
number of non-visual sources. In the case of partial/missing
non-visual information, suppose the missing proportion of
the ith non-visual type in a tree is δi, we reduce its weight
from αi to αi−δiαi. The total reduced weight

∑
i δiαi will

then be distributed evenly to the weights corresponding to
all individual sources to ensure αv +

∑m
i=1 αi + αt = 1.

This linear adaptive weighting method produces satisfac-
tory performance in our experiments.

3.2. Multi-Source Latent Cluster Discovery

The multi-source feature space is high-dimensional (>
2000 dimensions). This makes learning data structure by
clustering computationally difficult. To this end, we con-
sider spectral clustering on manifold to discover latent clus-
ters in a lower dimensional space (Fig 2-c).

Spectral clustering [24] groups data using eigenvectors
of an affinity matrix derived from the data. The learned
CC-Forest offers an effective way to derive the required
affinity matrix. Specifically, each individual tree within the
CC-Forest partitions the training samples at its leaves l(x):
R

d → L ⊂ N, where l represents a leaf index and L refers
to the set of all leaves in a given tree. For each clustering
tree, we first compute a tree-level Nv × Nv affinity matrix

At with elements defined as At
i,j = exp−distt(xi,xj) with

distt(xi,xj) =

{
0 if l(xi) = l(xj),
+∞ otherwise. (4)

We assign the maximum affinity (affinity=1, distance=0) to
points xi and xj if they fall into the same leaf node, and the
minimum affinity (affinity=0, distance=+∞) otherwise. By
averaging all tree-level affinity matrices we obtain a smooth
matrix as A = 1

Tc

∑Tc

t=1 A
t, with Ai,i = 0.

Subsequently, we symmetrically normalise A to obtain
S = D− 1

2AD− 1
2 where D denotes a diagonal matrix with

elements Di,i =
∑

j Ai,j . Given S, we perform spectral-
clustering to discover the latent clusters of training clips
with the number of clusters automatically determined [24].
Each training clip xi is then assigned to a cluster ci ∈ C,
with C the set of all clusters. The learned clusters group
similar clips both visually and semantically, each associated
with a unique distribution of each non-visual data (Fig. 2-
d). We denote the distribution of the ith non-visual data
type of the cluster c as p(yi|c) ∝

∑
xj∈Xc

p(yi|xj), where
Xc represents the set of training samples in c.

3.3. Structure-Driven Non-Visual Tag Inference

To summarise a long unseen video with high-level inter-
pretation, we need to first infer semantic contents of each
clip x∗ in the video. To complete such a task we can exploit
the non-visual distributions associated with each cluster dis-
covered (Sec. 3.2). A straightforward way to compute the
tag distribution p(yi|x∗) of x∗ is to search for its nearest
cluster c∗ ∈ C, and let p(yi|x∗) = p(yi|c∗). However, we
found this hard cluster assignment strategy susceptible to
outliers in C. To mitigate this problem, we propose a more
robust approach utilising the CC-Forest tree structures for
soft cluster assignment (Fig. 3).

First, we trace the leaf lt(x∗) of each tree that x∗ falls
into (Fig. 3-a). Second, we retrieve the training samples
{xi} associated with lt(x

∗) and their cluster membership
Ct = {ci} ⊂ C. Third, within each leaf lt(x∗) we search
for the nearest cluster c∗t of x∗ against the centroids of Ct

rather than C (Fig. 3-b), with:

c∗t = argminc∈Ct
||x∗ − μc||, (5)

with μc the centroid of the cluster c, estimated as μc =
1

|Xc|
∑

xi∈Xc
xi, where Xc represents the set of training

samples in c.
Once c∗t is found, we retrieve the associated tag distribu-

tion p(yi|c∗t ). To achieve a smooth prediction, we average
all p(yi|c = c∗t ) obtained from individual trees as (Fig. 3-c):

p(yi|x∗) =
1

Tc

∑Tc

t=1
p(yi|c∗t ). (6)

A tag of the ith non-visual data type is computed as

ŷi = argmaxyi
[p(yi|x∗)] . (7)
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With the above steps, we can estimate ŷi for i = 1, . . . ,m.
In Sec.5.2, we shall show examples on using the proposed
tag inference method (Fig. 3) for generating video synopsis
enriched by non-visual semantic labels.
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Figure 3. Structure-driven non-visual tag inference: (a) Channel an un-
seen clip x∗ into individual trees; (b) Estimate the nearest clusters of x∗
within the leaves it falls into: hollow circles denote clusters; (c) Compute
the tag distributions by averaging tree-level predictions.

4. Experimental Settings
Datasets - We conducted experiments on two datasets col-
lected from publicly accessible webcams that feature an
outdoor and an indoor scene respectively: (1) the TImes
Square Intersection (TISI) dataset3, and (2) the Educational
Resource Centre (ERCe) dataset4. There are a total of 7324
video clips spanning over 14 days in the TISI dataset, whilst
a total of 13817 clips were collected across a period of
two months in the ERCe dataset. Each clip has a dura-
tion of 20 seconds. The details of the datasets and train-
ing/deployment partitions are given in Table 1. Example
frames are shown in Fig. 4.

The TISI dataset is challenging due to severe inter-object
occlusion, complex behaviour patterns, and large illumina-
tion variations caused by both natural and artificial light
sources at different day time. The ERCe dataset is non-
trivial due to a wide range of physical events involved that
are characterised by large changes in environmental setup,
participants, crowdedness, and intricate activity patterns.

Resolution FPS # Training Clip # Test Clip
TISI 550 × 960 10 5819 1505
ERCe 480 × 640 5 9387 4430

Table 1. Details of datasets.
Visual and non-visual sources - We extracted a variety of
visual features from each video clip: (a) colour features in-
cluding RGB and HSV; (b) local texture features based on

3http://www.eecs.qmul.ac.uk/˜xz303/downloads_
qmul_TISI_dataset.html

4http://www.eecs.qmul.ac.uk/˜xz303/downloads_
qmul_ERCe_dataset.html

(a)� (b)�

Figure 4. Example views of the (a) TISI and (b) ERCe datasets.

Local Binary Pattern (LBP) [15]; (c) optical flow; (d) holis-
tic features of the scene based on GIST [16]; and (e) person
and vehicle (only on the TISI dataset) detections [5].

We collected 10 types of non-visual sources for the TISI
dataset: (a) weather data extracted from the WorldWeath-
erOnline5 including 9 elements: temperature, weather type,
wind speed, wind direction, precipitation, humidity, visi-
bility, pressure, and cloud cover; (b) traffic data from the
Google Maps with 4 levels of traffic speed: very slow, slow,
moderate, and fast. For the ERCe dataset, we collected data
from multiple independent on-line sources about the time
table of events including: No Scheduled Event (No Schd.
Event), Cleaning, Career Fair, Forum on Gun Control and
Gun Violence (Gun Forum), Group Studying, Scholarship
Competition (Schlr. Comp.), Accommodative Service (Ac-
com. Service), Student Orientation (Stud. Orient.).

Note that other visual features and non-visual data types
can be considered without altering the training and infer-
ence methods of our model as the CC-Forest can cope with
different families of visual features as well as distinct types
of non-visual sources.
Baselines - We compare the proposed model Visual + Non-
Visual + CC-Forest (VNV-CC-Forest) with: (1) VO-Forest -
a conventional forest [1] trained with visual features alone,
to demonstrate the benefits from using non-visual sources 6.
(2) VNV-Kmeans - k-means using both visual and non-
visual sources, to highlight the heteroscedastic and dimen-
sionality discrepancy problem caused by heterogeneous vi-
sual and non-visual data. (3) VNV-AASC - a state-of-the-art
multi-modal spectral clustering method [10] learned with
both visual and non-visual data, to demonstrate the superi-
ority of VNV-CC-Forest in handling diverse data represen-
tations and correlating multiple sources through joint infor-
mation gain optimisation. (5) VPNV(R)-CC-Forest - a vari-
ation of our model but with R% of training samples having
arbitrary number of partial non-visual types, to evaluate the
robustness of our model in coping with partial/missing non-
visual data.
Implementation details - The clustering forest size Tc was
set to 1000. The depth of each tree is automatically deter-
mined by setting the size of the leaf node φ, which we fixed
to 2 throughout our experiments. We used a linear data sep-
aration [3] as the test function for node splitting. We set the

5http://www.worldweatheronline.com/
6Since non-visual data is not available for test clips, so evaluating a

forest that takes only non-visual inputs is not possible.
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same number of clusters across all methods for a fair com-
parison. This cluster number was discovered automatically
using the method presented in [24] (see Sec 3.2).

5. Evaluations
5.1. Multi-Source Latent Cluster Discovery

For validating the effectiveness of different clustering
models for multi-source clustering in order to provide more
coherent video content grouping (Sec. 3.2), and to im-
prove the accuracy in non-visual tag inference (Sec. 3.3),
we compared the quality of clusters discovered by different
methods. We quantitively measured the mean entropy [25]
(lower is better) of non-visual distributions p(y|c) associ-
ated with clusters to evaluate how coherent video contents
are grouped, with an assumption that all methods have ac-
cess to all non-visual data during the entropy computation.

Dataset TISI ERCe
p(y|c) Traffic Speed Weather Events
VO-Forest 0.8675 1.0676 0.0616
VNV-Kmeans 0.9197 1.4994 1.2519
VNV-AASC 0.7217 0.7039 0.0691
VNV-CC-Forest 0.7262 0.6071 0.0024
VPNV10-CC-Forest 0.7190 0.6261 0.0024
VPNV20-CC-Forest 0.7283 0.6497 0.0090

Table 2. Quantitative comparison on cluster purity using mean entropy.

It is evident from Table 2 that the proposed VNV-

CC-Forest model achieves the best cluster purity on both
datasets. Despite that there are gradual degradations in clus-
tering quality when we increased the non-visual data miss-
ing proportion, overall the VNV-CC-Forest model copes
well with partial/missing non-visual data. Inferior perfor-
mance of VO-Forest to VNV-CC-Forest suggests the impor-
tance of learning from auxiliary non-visual sources. Nev-
ertheless, not all methods perform equally well when learn-
ing from the same visual and non-visual sources: the k-
means and AASC perform much poorer in comparison to
CC-Forest. The results suggest the proposed joint informa-
tion gain criterion (Eqn. (3)) is more effective in handling
heterogeneous data than conventional clustering models.

For qualitative comparison, we show some examples us-
ing the TISI dataset for detecting ‘sunny’ weather (Fig. 5).
It is evident that only the VNV-CC-Forest is able to pro-
vide coherent video grouping, with only slight decrease
in clustering purity given partial/missing non-visual data.
Other methods including VNV-AASC result in a large clus-
ter either leaving out some relevant ones or including many
non-relevant clips, with most of them were under the influ-
ence of strong artificial lighting sources. These non-relevant
clips are visually ‘close’ to sunny weather, but semantically
not. The VNV-CC-Forest model avoids this mistake by cor-
relating both visual and non-visual sources in an informa-
tion theoretic sense.

VNV-Kmeans
(14/75)

VNV-AASC  
(372/1324)

VO-Forest 
(43/45)

VNV-CC-
Forest 

(58/58)
VPNV10-CC-

Forest
(50/73)

VPNV20-CC-
Forest

(29/31)

Figure 5. Qualitative comparison on cluster quality between different methods on
the TISI dataset. A key frame of each video clip is shown. (X/Y) in the brackets - X
refers to the number of clips with sunny weather as shown in the images in the first
two columns. Y is the total number of clips in a cluster. The frames inside the red
boxes refer to those inconsistent clips in a cluster.

(%) VO-
Forest

VNV-
Kmeans

VNV-
AASC

VNV-
CC-
Forest

VPNV10-
CC-
Forest

VPNV20-
CC-
Forest

Traffic 27.62 37.80 36.13 35.77 37.99 38.05
Weather 50.65 43.14 44.37 61.05 55.99 54.97

Table 3. Comparison of tagging accuracy on the TISI Dataset.

VNV-
Kmeans

Sunny
Cloudy

Rainy

VO-
Forest

VNV-CC-
Forest

VPNV10-
CC-Forest

VPNV20-
CC-Forest

VNV-
AASC

Figure 6. Weather tagging confusion matrices on the TISI Dataset.

5.2. Contextually-Rich Multi-Source Synopsis

Generating video synopsis with semantically meaningful
contextual labels requires accurate tag prediction (Sec. 3.3).
In this experiment we compared the performance of dif-
ferent methods in inferring tag labels given unseen video
clips extracted from long video streams. For quantitative
evaluation, we manually annotated three different weathers
(sunny, cloudy and rainy) and four traffic speeds on all the
TISI test clips, as well as eight event categories on all the
ERCe test clips. Note that in the deployment phase the input
to all models consists of only visual data.

Correlating and tagging video by weather and traffic
conditions - Video synopsis by tagging weather and traffic
conditions was tested using the TISI outdoor dataset. It is
observed that performance of different methods (Table 3)
is largely in line with their performance in multi-source
clustering (Sec. 5.1). Further comparisons of their confu-
sion matrices on weather conditions tagging are provided in
Fig. 6. It is worth pointing out that VNV-CC-Forest not only
outperforms other baselines in isolating the sunny weather,
but also performs well in distinguishing the visually am-
biguous cloudy and rainy weathers. In contrast, both VNV-

Kmeans and VNV-AASC mistake most of ‘rainy’ scenes as
either ‘sunny’ or ‘cloudy’, as they can be visually similar.
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Figure 8. A synopsis with a multi-scale overview of weather+traffic changes over multiple days. Black bold prints = failure predictions.

(%) VO-
Forest

VNV-
Kmeans

VNV-
AASC

VNV-
CC-
Forest

VPNV10-
CC-
Forest

VPNV20-
CC-
Forest

No Schd. Event 79.48 87.91 48.51 55.98 47.96 55.57
Cleaning 39.50 19.33 45.80 41.28 46.64 46.22
Career Fair 94.41 59.38 79.77 100.0 100.0 100.0
Gun Forum 74.82 44.30 84.93 83.82 85.29 85.29
Group Studying 92.97 46.25 96.88 97.66 97.66 95.78
Schlr Comp. 82.74 16.71 89.40 99.46 99.73 99.59
Accom. Service 0.00 0.00 21.15 37.26 37.26 37.02
Stud. Orient. 60.94 9.77 38.87 88.09 92.38 88.09
Average 65.61 35.45 63.16 75.69 75.87 75.95

Table 4. Comparison of tagging accuracy on the ERCe dataset.

No Schd. Event
Cleaning

Career Fair
Gun Forum

Group Studying

Accom. Service
Stud. Orient.

Schlr Comp.

VO-Forest VNV-Kmeans VNV-AASC

VPNV10-CC-Forest VPNV20-CC-ForestVNV-CC-Forest

No Schd. Event
Cleaning

Career Fair
Gun Forum

Group Studying

Accom. Service
Stud. Orient.

Schlr Comp.

Figure 7. Tag inference confusion matrices on the ERCe dataset.
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Figure 9. Summarisation of some key events taking place during the first
two months of a new semester on a university campus. The top-left corner
numbers in each window are month-date whilst the bottom-right numbers
are the hours on a day.

Correlating and tagging video by semantic events -
Video synopsis by correlating and tagging higher-level se-
mantic events was tested using the ERCe dataset. The re-
sults and the associated confusion matrices are given in Ta-
ble 4 and Fig. 7 respectively. By VO-Forest, poor results
are observed especially on ‘Accom. Service’ event, which
involves only subtle activity patterns, i.e. students visiting

particular rooms located at the first floor. It is evident that
using visual information alone is not sufficient to discover
such type of event without the support of additional non-
visual sources (the semantic gap problem).

Due to the typically high dimension of visual sources in
comparison to non-visual sources, the latter is often over-
whelmed by the former in representation. VNV-Kmeans

severely suffers from this problem as most event predictions
are biased to the ‘No Schd.’ event that is more common
and frequent visually. This suggests that the conventional
distance-based clustering is poor in coping with the inher-
ent heteroscedasticity and dimension discrepancy problems
in modelling heterogeneous multi-source independent data.
VNV-AASC attempts to circumvent this problem by seek-
ing for an optimal weighted combination of affinity ma-
trices derived independently from different data sources.
However this is proved challenging, particularly when each
source is inherently noisy and ambiguous, leading to an in-
accurate combined affinity. In contrast, the proposed VNV-

CC-Forest correlates different sources via a joint informa-
tion gain criterion to effectively alleviate the heteroscedas-
ticity and dimension discrepancy problem, leading to more
robust and accurate tagging performance. Again, it is
observed that VPNV(10/20)-CC-Forest performed compa-
rably to VNV-CC-Forest, further validating the robust-
ness of VNV-CC-Forest in tackling partial/missing non-
visual data with the proposed adaptive weighting mech-
anism (Sec. 3.1). Occasionally VPNV(10/20)-CC-Forest

even slightly outperforms VNV-CC-Forest. We observed
that this can be caused by noisy non-visual information.
Therefore the missing of some noisy information leads to
better results in a few cases.

After inferring the non-visual semantics for the unseen
clips, one can readily generate various types of concise
video synopsis with enriched contextual interpretation or
relevant high-level physical events, using a similar strategy
as [14]. We show two examples here. In Fig. 8 we show
a synopsis with a multi-scale overview of weather changes
and traffic condition over multiple days. Some failure tag-
ging cases are indicated in bold print. In Fig. 9 we depict
a synopsis highlighting some of the key events taking place
during the first two months of a new semester in a university
campus.
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5.3. Further Analysis

The superior performance of VNV-CC-Forest can be bet-
ter explained by examining more closely the capability of
CC-Forest in uncovering and exploiting the intrinsic asso-
ciation among different visual sources and more critically
among visual and non-visual auxiliary sources. This in-
direct correlation among multi-heterogeneous data sources
results in well-structured decision trees, subsequently lead-
ing to more consistent clusters and more accurate seman-
tics inference. We show an example here. It is intuitive
that vehicle and person counts should correlate in a busy
scene like TISI. Our CC-Forest discovered this correlation
(see Fig. 10-a), so the less reliable vehicle detection from
distance against a cluttered background, could enjoy a la-
tent support from the more reliable person detection in re-
gions 5-16 close to the camera view. Moreover, visual
sources also benefited from the correlational support from
non-visual information through the cross-source optimisa-
tion of individual information gains (Eqn. (3)). For exam-
ple, in Fig. 10-b, it is evident that the unreliable vehicle de-
tection at far view-field (region 1) is well supported by the
traffic-speed non-visual data.
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(b) Vehicle detection and traffic speed.

Figure 10. The latent correlations among heterogeneous visual and mul-
tiple non-visual sources discovered on the TISI dataset.

6. Conclusion
We have presented a novel unsupervised method for

generating contextually-rich and semantically-meaningful
video synopsis by correlating visual features and inde-
pendent sources of non-visual information. The proposed
model, which is learned based on a joint information gain
criterion for learning latent correlations among different in-
dependent data sources, naturally copes with diverse types
of data with different representation, distribution, and di-
mension. Crucially, it is robust to partial and missing non-
visual data. Experimental results have demonstrated that
combining both visual and non-visual sources facilitates
more accurate video event clustering with richer semanti-
cal interpretation and video tagging than using visual in-
formation alone. The usefulness of the proposed model is
not limited to video summarisation, and can be explored for
other tasks such as multi-source video retrieval and index-
ing. In addition, the semantic tag distributions inferred by
the model can be exploited as the prior for other surveil-

lance tasks such as social role and/or identity inference. Fu-
ture work include how to generalise a learned model to new
scenes that are different from the training environments.

References
[1] L. Breiman. Random forests. ML, 45(1):5–32, 2001. 3, 5
[2] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and

regression trees. Chapman & Hall/CRC, 1984. 3
[3] A. Criminisi and J. Shotton. Decision forests: A unified framework

for classification, regression, density estimation, manifold learning
and semi-supervised learning. Foundations and Trends R© in Com-

puter Graphics and Vision, 7(2-3):81–227, 2012. 3, 5
[4] R. Duin and M. Loog. Linear dimensionality reduction via a het-

eroscedastic extension of LDA: the Chernoff criterion. TPAMI,
26(6):732 –739, 2004. 1

[5] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-based
models. TPAMI, 32(9):1627–1645, 2010. 5

[6] S. Feng, Z. Lei, D. Yi, and S. Z. Li. Online content-aware video
condensation. In CVPR, pages 2082–2087, 2012. 1, 2

[7] D. Goldman, B. Curless, D. Salesin, and S. Seitz. Schematic sto-
ryboards for video editing and visualization. In SIGGRAPH, vol-
ume 25, pages 862–871, 2006. 2

[8] S. Gong, C. C. Loy, and T. Xiang. Security and surveillance. In
Visual Analysis of Humans, pages 455–472. Springer, 2011. 1

[9] Y. Gong. Summarizing audiovisual contents of a video program.
EURASIP J. Appl. Signal Process., 2003:160–169, 2003. 2

[10] H.-C. Huang, Y.-Y. Chuang, and C.-S. Chen. Affinity aggregation
for spectral clustering. In CVPR, pages 773–780, 2012. 2, 5

[11] H. Kang, X. Chen, Y. Matsushita, and X. Tang. Space-time video
montage. In CVPR, pages 1331–1338, 2006. 1

[12] Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people
and objects for egocentric video summarization. In CVPR, pages
1346–1353, 2012. 1, 2

[13] B. Liu, Y. Xia, and P. S. Yu. Clustering through decision tree con-
struction. In CIKM, pages 20–29, 2000. 3

[14] Y.-F. Ma, L. Lu, H.-J. Zhang, and M. Li. A user attention model for
video summarization. In ACM MM, pages 533–542, 2002. 7

[15] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns.
TPAMI, 24(7):971–987, 2002. 5

[16] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. IJCV, 42:145–175, 2001. 5

[17] Y. Pritch, A. Rav-Acha, and S. Peleg. Nonchronological video syn-
opsis and indexing. TPAMI, 30(11):1971–1984, 2008. 1, 2

[18] A. Rav-Acha, Y. Pritch, and S. Peleg. Making a long video short:
Dynamic video synopsis. In CVPR, pages 435–441, 2006. 2

[19] C. Taskiran, Z. Pizlo, A. Amir, D. Ponceleon, and E. Delp. Auto-
mated video program summarization using speech transcripts. TMM,
8(4):775 –791, 2006. 2

[20] G. Toderici, H. Aradhye, M. Pasca, L. Sbaiz, and J. Yagnik. Finding
meaning on YouTube: Tag recommendation and category discovery.
In CVPR, pages 3447–3454, 2010. 2

[21] B. T. Truong and S. Venkatesh. Video abstraction: A systematic
review and classification. ACM TOMCCAP, 3(1):3, 2007. 2

[22] Z. Wang, M. Zhao, Y. Song, S. Kumar, and B. Li. YouTubeCat:
Learning to categorize wild web videos. In CVPR, pages 879–886,
2010. 2

[23] H. Yang and I. Patras. Sieving regression forest votes for facial fea-
ture detection in the wild. In ICCV, 2013. 3

[24] L. Zelnik-manor and P. Perona. Self-tuning spectral clustering. In
NIPS, pages 1601–1608, 2004. 4, 6

[25] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of
selected criterion functions for document clustering. ML, 55(3):311–
331, 2004. 6

88


