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Abstract

Optimization using the L∞ norm has been becoming
an effective way to solve parameter estimation problems in
multiview geometry. But the computational cost increases
rapidly with the size of measurement data. Although some
strategies have been presented to improve the efficiency of
L∞ optimization, it is still an open issue. In the paper, we
propose a novel approach under the framework of enhanced
continuous tabu search (ECTS) for generic parameter es-
timation in multiview geometry. ECTS is an optimization
method in the domain of artificial intelligence, which has
an interesting ability of covering a wide solution space by
promoting the search far away from current solution and
consecutively decreasing the possibility of trapping in the
local minima. Taking the triangulation as an example, we
propose the corresponding ways in the key steps of ECTS,
diversification and intensification. We also present theoret-
ical proof to guarantee the global convergence of search
with probability one. Experimental results have validated
that the ECTS based approach can obtain global optimum
efficiently, especially for large scale dimension of param-
eter. Potentially, the novel ECTS based algorithm can be
applied in many applications of multiview geometry.

1. Introduction

Parameter estimation is one of the most fundamental
problems in multiview geometry. The typical measurements
of error function include algebraic distance, geometric dis-
tance, reprojection error, and Sampson error [9]. Traditional
optimization algorithms have been dominated by local opti-
mization techniques based on the L2 norm, such as Newton
or Levenberg-Marquardt iterations [9] or bundle adjustment
[20] for finding a local optimum. While some of method-
s except iterative nonlinear optimization yield closed-form
solutions, they are quite efficient and relatively easy to im-
plement. However, solving multiple view geometry prob-

lems in general is difficult due to the inherent non-convexity
and the presence of local optima.

To remedy these problems, a number of literatures have
shown that many multiview geometric problems are quasi-
convex under L∞ norm [8][13]. A particularly fruitful line
of work has been the development of methods that mini-
mize the maximal of reprojection errors (L∞ norm) across
observations, instead of the sum of squared reprojection er-
rors. It has been proven that many multiview problems have
a single local optimum under the framework of L∞ nor-
m. The existence of globally optimal solution enables it ef-
fective to use convex optimization in parameter estimation
[11]. However, this kind of algorithm is too complicated to
solve large-scale geometric problems efficiently.

Recently, researchers proposed a new strategy, that by
giving a simple sufficient condition for global optimality
that can be used to verify that a solution obtained from any
local methods is indeed global [15][17]. This algorithm
returns either a certificate of optimality for local solution
or global solution. Agarwal et al. [1] discovered that Ols-
son’s method[17] is a special case for generalized fractional
programming. Dai et al. [5] found the sequence of convex
problems are highly related and proposed a method to de-
rive a Newton-like step from any given point. The efficiency
of L∞ algorithm has been improved obviously.

All of the above mentioned algorithms are still on the
ways of traditional optimization, and fewer modern opti-
mization methods are considered to solve these problems so
far. In recent years, Tabu search (TS), a meta-heuristic opti-
mization method originally proposed by Glover [6][7], has
extensively attracted attentions of researchers. It enhances
the performance of a local search method by using memory
structures that describe the visited solutions: once a poten-
tial solution has been determined, it is marked as ‘tabu’ so
that the algorithm does not visit that possibility repeated-
ly. However, the basic TS is proposed for combinatorial
optimization problems primitively. Chelouah et al. [4] pro-
posed a variant of TS for the global continuous optimization
problems (GCOPs), called enhanced continuous tabu search
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(ECTS). This scheme divides the optimization process into
two sequential phases, namely diversification and intensifi-
cation. As a common drawback in GCOPs, meta-heuristic
approaches cannot guarantee finding the global optimum.

In this paper, we proposed a novel method under the
ECTS framework for parameter estimation in multiview ge-
ometry. The procedure takes the result of linear method
as initial estimation, and utilizes the ECTS to attain the
global optimum. In the phase of diversification, we pro-
pose a non-iterative way to obtain an initial bounding con-
vex hull that contains the global optimum. At the stage
of intensification, we propose a new approach to attain the
best neighbor set according to the characteristics of mul-
tiview geometric problems. Finally, we prove the conver-
gence of ECTS method in multiview geometry from the
viewpoint of probability. The algorithm tends to achieve
the global estimation within an arbitrary small tolerance.
For the reason, we can prove that the proposed ECTS
method converges with probability one to the global op-
timum. Comparing with L∞ algorithm[11] and its variants
or improvements[1][15][5], our method not only obtains ac-
curate estimations, but also decreases computational cost
dramatically.

2. Problem formulation

The geometric vision problems we are considering in
this paper are the ones where the reprojection error can be
written as affine functions composed with a projection, i.e.,
quotients of affine functions. These problems can be repre-
sented as (P0) based on the squared reprojection error,

min f(x) =
∑N

i=1 fi(x)

s.t. fi(x) =
∑2

j=1(a
�

ijx+ãij)
2

(b�
i
x+b̃i)2

,b�i x+ b̃i > 0 (P0)

where x ∈ R
n is the unknowns to be solved for, and

aij ,bi ∈ R
n and ãij , b̃i ∈ R are differentiated with geo-

metric problems. The constraint b�i x + b̃i > 0 reflects the
fact that the reconstructed points should be located in front
of the cameras. The dimension of the problem (P0) is n,
which is often fixed and intrinsic to particular application.
For example, n = 3 for multi-view triangulation, n = 6 for
2D affinity, n = 7 for fundamental matrix, n = 8 for planar
homography, and n = 11 for camera calibration, etc. In or-
der to facilitate the following discussions, here, we take the
N -view triangulation as an example.

Consider a set of camera matrixes Pi and correspond-
ing image points ui = (ui1, ui2)

� of x = (x1, x2, x3)
�.

The objective of triangulation is to recover x. The sim-
plest way is based on a linear algebraic method. Though
this method may seem attractive, the cost function that it
is minimized has no particular meaning and the method is
not reliable. Under the framework of L2 norm, we are led

to minimize the following cost function subject to the con-
straint of b�i x+ b̃i > 0,

f(x) =

N∑
i=1

‖ui −Pix‖
2

(P1)

After a simple expansion, (P1) could be rewritten as,

E(x) =
∑N

i=1 fi(x)

s.t. fi(x) =
∑2

j=1(a
�

ijx+ãij)
2

(b�
i
x+b̃i)2

b�i x+ b̃i > 0

(1)

where x, aij ,bi ∈ R
n and ãij , b̃i ∈ R and

aij = pij − uijpi3, ãij = p̃ij − uij p̃i3, j = 1, 2,

bi = pi3, b̃i = p̃i3, i = 1, 2, . . . , N,
(2)

where pij is the j-th row of Pi concatenated with the scaler
p̃ij .

3. ECTS in multiview geometry

ECTS is a variant of traditional tabu search for the glob-
al continuous optimization [6]. It is consisted of five stages,
including setting of parameters, diversification, search for
the most promising area, intensification, and output of the
best point found. The key stages of ECTS are diversifi-
cation and intensification. At the stage of diversification,
the algorithm scans the whole solution space and detects
the promising areas, which are likely to contain the global
minimum. The centers of these promising areas are stored
in a so-called promising list. The aim of diversification is
to determine the most promising area from the promising
list. When the diversification ends, the step of intensifica-
tion will start. It searches inside the most promising area
for a more optimal result. In this phase, the search is con-
centrated on the most promising area by making the search
domain smaller and gradually reducing the neighborhood
structure. This strategy improves the performance of the al-
gorithm and allows exploiting the most promising area with
more accuracy.

3.1. The diversification

Now, we present how to carry out the diversification for
multiview geometry problems. In order to facilitate discus-
sion, we also take the triangulation as the example. At first,
we show the way how to determine the most promising area,
which should contain the global optimum xopt. We start
with a convex hull and an initial point xinit found by linear
algebraic method. If xopt is the true global optimum of L2

norm minimization, it follows

E(xopt) = min

N∑
i=1

fi(xopt) ≤ E(xinit) = δ2, (3)
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where δ is a positive value. This means that each fi(xopt)
term is less than δ2. According to Eq.(1), Eq.(3) can be
rewritten in the following form. For each i,√

(a�i1xopt + ãi1)2 + (a�i2xopt + ãi2)2

(b�i xopt + b̃i)2
≤ δ. (4)

This means, for each i, the following two constraints are
satisfied,∣∣∣∣∣(a

�
i1xopt + ãi1)

(b�i xopt + b̃i)

∣∣∣∣∣ ≤ δ and

∣∣∣∣∣ (a
�
i2xopt + ãi2)

(b�i xopt + b̃i)

∣∣∣∣∣ ≤ δ. (5)

Notice that for N -view triangulation, we have a total
number of 4N linear constraints on the variable x, for-
mulated by multiplying both sides of the above constraints
with the depth term b�i x + b̃i > 0. We wish to ob-
tain a convex hull containing the optimal xopt. That is to
find the lower and upper boundaries xj

min, xj
max such that

xj
min ≤ xj ≤ xj

max, j = 1, . . . , n. We can formulate a
linear programming (LP) problem by linearizing the con-
straints for i = 1, . . . , N .

−(a�i1 + δb�i )x− ãi1 − δb̃i ≤ 0

(a�i1 − δb�i )x+ ãi1 − δb̃i ≤ 0

−(a�i2 + δb�i )x− ãi2 − δb̃i ≤ 0

(a�i2 − δb�i )x+ ãi2 − δb̃i ≤ 0

(6)

This process then provides an initial bounding convex
hull that contains the global optimum xopt based on the L2

norm cost function. Compared to traditional diversification
methods, the above mentioned way does not need iterative
process for the most promising area, so it is effective to
solve multiview geometry problems.

3.2. The intensification

In the classical ECTS, the intensification carries out the
following routines: generation of neighbors, selection of the
best neighbor, updating of the various lists and adjustment
of the parameters. In other words, if the current solution
converges in the local optimum, we must give the feasible
direction to enable the solution escaping from the local one.

The generic ECTS generates a specified number of
neighbors. But, when the dimensions of the vector or the
number of the constraints increase rapidly, the verification
of best neighbors is inefficient. In this paper, we propose
a new approach to attain the best neighbor set according to
the characteristics of multiview geometry problems.

The following cost function fi(x) is pseudo-convex [3],

fi(x) =

∑2
j=1(a

T
ijx+ ãij)

2

(bT
i x+ b̃i)2

(7)

It is well known that pseudo-convex function has some
nice properties, such as described in the Lemma 1[16]:

Lemma 1. Let f(x) = max
i

fi(x), x∗ solves μ∗ =

min
x∈S

f(x), S = {x|b�i x + b̃i > 0, ∀i}, if and only if there

exists λ∗ such that,

N∑
i=1

λ∗i∇fi(x
∗) = 0,

where λ∗i ≥ 0 if fi(x∗) = μ∗ and λ∗ = 0 if fi(x∗) < μ∗

for i = 1, 2, . . . , N and
∑

i λ
∗
i = 1.

The geometric interpretation of Lemma 1 is that, if none
of gradients vanish, then in each direction d there is an i
such that ∇fi(x)

�d ≥ 0, that is at least one of fi(x) does
not decrease in each direction. The Lemma 1 roughly states
that the gradient does not vanish anywhere except at the op-
timum. In the proposed method, we take the gradient of
fi(xk) (k is the iteration of ECTS) as the descent direction
and construct the candidate solution set. We generate the
component zj of z which satisfies the Gaussian distribution
with mean xj

k and standard deviation σ, j = 1, . . . , n. Ini-
tially σ = 1, when k increases, σ = d × σ (d is a factor
which is chosen from 0.997 to 0.999). If σ < 10−4, we set
σ = 10−4 fixedly. The Lemma 1 ensures that the candidate
solution set includes the solution trailing off the error, so the
better solution could be obtained through the ECTS.

Since pseudo-convex is the sufficient and necessary con-
dition for a global optimum in Lemma 1, each iteration
ensures the solution toward to the global optimum. In a
word, in our proposed approach, we can construct the most
promising area from L2 based basic method for the diver-
sification and determine the best search direction from L∞
based optimality conditions for the intensification.

3.3. The convergence analysis

Now we discuss the convergence of the proposed ECTS
algorithm. On the basis of the description in section 3.2, the
problem (P1) is a global continuous optimization problem.
It can be rewritten as,

min
x∈Ω

f(x) (P2)

where Ω = {x ∈ R
n|xj

min ≤ xj ≤ xj
max, j = 1, . . . , n}.

Essentially, the proposed method is an instance of the
memory tabu search (MTS) [10]. The MTS has the follow-
ing pipeline.

Step1: Generate an initial point x0 ∈ Ω. Set x∗0 = x0

and k = 0.
Step2: If a prescribed termination condition is satisfied,

we stop the iteration. Otherwise, we generate a random vec-
tor y by using the generator of probability density function.

Step3: If f(y) ≤ f(x∗k) then x∗k+1 = y and xk+1 = y.
Otherwise, if f(y) ≤ f(xk), then xk+1 = y, else if y

does not satisfy the tabu conditions, then xk+1 = y, else
xk+1 = xk. Go to step 2.
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In order to interpret the convergence of ECTS, we intro-
duce the following definitions [14].

Definition 1. Let {ξm} be a sequence of random vari-
ables defined on a probability space. We say that {ξm} con-
verges in probability towards a random variable ξ, if ∀ε > 0,
limm→∞ Pr{|ξm − ξ| ≥ ε} = 1, denoted as ξm

p
−→ ξ.

Definition 2. Let ξm be a sequence of random variables
defined on a probability space. We say that {ξm} converges
with probability one (or almost surely) towards a random
variable ξ (denoted as ξm

a.s.
−→ ξ), we have

P{ lim
m→∞

ξm = ξ} = 1,

or, when for any ε > 0,

P{∩∞m=1 ∪k≥m [|ξk − ξ| ≥ ε]} = 1.

Without doubt, ξm
a.s.
−→ ξ is stronger than ξm

p
−→ ξ.

Theorem 1 (Borel-Cantelli theorem). Let {An}
be a sequence of events in a probability space, and
Pk = Pr{Ak}. Then

∑∞
n=1 Pn < ∞ implies

Pr(lim supn→∞An) = Pr{∩∞n=1 ∪k≥n Ak} = 0.
If

∑∞
n=1 Pn = ∞ and An are independent, then

Pr{∩∞n=1 ∪k≥n Ak} = 1.
The Lemma 2 and Theorem 2 give the global conver-

gence property of the objective optimal value sequence in-
duced by MTS, as described in solving problem (P2). f is
supposed to have a global minimum f∗ = minx∈Ω f(x),
for any ε > 0. Let D0 = {x ∈ Ω ||f(x)− f∗| < ε} ,
D1 = Ω \D0.

Lemma 2. Solving (P2) by using MTS, we set x∗k ∈
D1. Let the probability of x∗k+1 ∈ D1 be qk+1 and the
probability of x∗k+1 ∈ Do be pk+1. If yj , j = 1, 2, . . . , n
satisfies the Gaussian distribution, then qk+1 ≤ c ∈ (0, 1).

Theorem 2. Solving (P2) by using MTS, if yj ,
j = 1, 2, . . . , n satisfies the Gaussian distribution, then
Pr{limk→∞ f(x∗k) = f∗} = 1. Namely x∗k converges
with probability one to the global optimal solution of (P2).

The proofs of Lemma 2 and Theorem 2 are given in the
Appendix of the paper. In Theorem 2, f∗ is the a global
optimum of f and y is the candidate solution in each step
of tabu search. Therefore, we could start from an initial
estimate xinit. The algorithm tends to achieve the global
estimation within an arbitrary small tolerance. For the rea-
son, we can predicate that the proposed ECTS converges in
probability one to the global optimum.

4. The algorithm

Now we summarize our framework of ECTS for estimat-
ing parameters in multiview geometry.

Input: 2D point ui in the image and camera matrix Pi,
the step size of tabu search is t = 10−4, the tolerance is
ε > 0 and K is a predefined maximal number of iteration.

Output: The global optimal solution xopt.
Step 1. Take the result of non-linear method as the initial

solution x∗0 = x0. Set k = 0 and tabu list as empty.
Step 2. Construct the convex hull Ω, which contains the

global optimization xopt, as mentioned in the section 3.1.
Step 3. If |

∑
i fi(x

∗
k+1) −

∑
i fi(x

∗
k)| < ε or k > K ,

the algorithm terminates, else continues.
Step 4. Generate the candidate set. If ∇fi(xk) > 0,

generate the candidate element z along the gradient direc-
tion ∇fi(xk). zj , the element of z, satisfies the Gaussian
distribution with mean xj

k and standard deviation σ. The
details of σ and d can be seen in section 3.2. If z ∈ Ω and
it is not in the tabu list, we put z in the candidate set S.

Step 5. For each zs, s = 1, . . . , |S|, we obtain y =
argmin

s

(max
i

fi(zs)) (based on L∞ norm).

Step 6. If max
i

fi(y) ≤ max
i

fi(x
∗
k) then x∗k+1 = y and

xk+1 = y. Otherwise, if max
i

fi(y) ≤ max
i

fi(xk) or y is

not in the tabu list, then xk+1 = y, else x∗k+1 = xk. Put
xk+1 into the tabu list.

Step 7. k = k + 1. Goto step 3.
In the step 6, we introduce a variable x∗k+1 to record the

optimal one of {xi|i = 1, . . . , k + 1}. This is the main dis-
tinction between our method and traditional TS. It is worthy
noted that, in the step 1, if the initial point is an unreliable
algebraic result or a random initial value, the iteration of
Tabu search will increase accordingly. But, the accuracy
can still be guaranteed.

5. Experimental results

We have tested the proposed method on both synthet-
ic and real scene data. At the first stage of evaluation, we
compared our method with bisection algorithm (Bisect-I)
[11] to verify the effectiveness and efficiency for moderate
scale problems, taking the triangulation and resection as ex-
amples. Then, in order to evaluate the efficiency for large
scale problems, we compare our method with some state-
of-art methods discussed in [1][5][15], taking the SfM with
known camera orientation as an example.

The synthetic data comes from the linfinity-1.01. Most of
real scene data are from VGG group2 and Notre Dame data
courtesy is from [19]. Our algorithm is coded in MATLAB.
The experimental environment is a standard PC (P8600,
6GB 64bits) and Matlab 2010a. We use Matlab profiler to
report the timings and performance comparisons. In L∞
algorithm based methods, the adopted SOCP solver is SE-
DUMI and linear programming is MOSEK. The reported
runtimes are the total time spent in optimization routines
and the time of setting up the problem is omitted.

1See http://www.maths.lth.se/matematiklth/personal/fredrik/download.html
2See http://www.robots.ox.ac.uk/˜vgg/data.html
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Figure 1. RMS error of the triangulation on varying view amount.

Figure 2. RMS error of the resection on varying point amount.

Table 1. Runtimes of the triangulation on synthetic data.

Problems
Timing (s)

Speedup
Bisect-I[11] Our ECTS

10-views 117.5779 0.4191 280.5
100-views 150.2874 3.0974 48.5
300-views 263.2977 16.2152 16.2
500-views 341.4276 25.6921 13.3
700-views 421.1711 39.8433 10.6
1000-views 482.4539 51.6829 9.3

5.1. Test on synthetic data

In this section we compare the ECTS algorithm with
Bisect-I algorithm [11]. For the moderate scale problems
we tested the algorithms on randomly generated instances
of triangulation and resection problems with different sizes.

We simulated a 3D scene with 1,000 points within a cube
and set N -views in front of the scene. The corresponding
points of synthetic image are normalized into [−1,+1] and
Gaussian noises up to 0.01 are added in randomly. In Fig-
ures 1 and 2, the RMS (Root Mean Squares) errors of tri-
angulation and resection problems with different sizes are
reported. One can see that the errors by the ECTS are s-
maller than those of Bisect-I algorithm. Kahl et al. have
pointed out that the improved bisection algorithm based on
the L∞ norm can obtain the global optimum [12]. Apart
from the expected global optimum being achieved by the
ECTS algorithm, Table 1 and 2 clearly show that the ECT-
S algorithm is more efficient than Bisect-I algorithm. The
time cost of the triangulation on synthetic data shows that
the speedup of our ECTS method decreases when the num-
ber of views increases. The main reason is that the number
of iterations in the ECTS increases with the larger number
of views. Fortunately, the view amount is rarely more than
100 for a 3D point in practical applications.

We have also validated algorithms on different Gaussian
noise level for the triangulation and resection. Figure 3 and
4 show the RMS errors of two methods with different noise

Figure 3. RMS error of triangulation with different noise levels.

Figure 4. RMS error of the resection with different noise levels.

Table 2. Runtimes of the resection on synthetic data.

Problems
Timing (s)

Speedup
Bisect-I[11] Our ECTS

10-points 4.1865 0.0583 71.8
100-points 5.4075 0.2102 25.7
300-points 9.3340 0.8087 11.5
500-points 9.6668 0.8856 10.9
700-points 14.4366 1.3857 10.4
1000-points 17.7806 1.7039 10.4

levels. The RMS errors of our ECTS method are lesser than
Bisect-I algorithm.

5.2. Test on real scene data

A. Triangulation
In the triangulation, we validated our method on two real

scene data sets. In the VGG, the Model house contains 10
views and 672 tracks, and the Wadham contains 5 views and
1331 tracks. The Dinosaur data contains 36 views of 4,983
tracks and 16,432 feature points. The Notre Dame sequence
contains 595 views of 277,877 tracks and about one million
feature points. We only tested 212 images and randomly
selected 27000 (from 160147) tracks which is probably suf-
ficient enough to give a performance indication. The ob-
tained reconstructions are shown in Figures 5 and 6. In or-
der to illustrate more intuitive comparison of reconstruction
results, Figure 7 shows the main part of the reconstructed
dino’s head, where the red crosses and blue circles are re-
construction results of Bisect-I method and the ECTS algo-
rithm respectively. One can see that most of points in 3D
space are coincident. At the edge of point clouds, recon-
struction results appear slightly inconsistent.

In paper [15], the author reported that the speedups of
Dinosaur and Notre Dame are 10.1 (3676s vs. 365s) and 7.2
(35815s vs. 4968s) respectively. From Table 3, we find it
only took 12.28s for our ECTS method to obtain the result
for Dinosaur data, while Bisect-I method spent 3199s. For
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Table 3. Performance evaluation and speedup of the triangulation.

Dataset Images 3D points
RMS error (pixels) Timing (s)

Speedup
Bisect-I[11] Our ECTS Bisect-I[11] Our ECTS

Model house 10 672 0.3930 0.3741 455.8962 2.2511 202.5
Wadham 5 1331 0.1553 0.1533 751.4879 3.1245 240.5
Dinosaur 36 4983 0.4283 0.4060 3199.8564 12.2819 261.5
Notre Dame 212 27000 0.5739 0.5488 19721.1946 150.6106 130.9

Table 4. Performance evaluation and speedup of the resection.

Dataset Images 3D points
RMS error (pixels) Timing (s)

Speedup
Bisect-I[11] Our ECTS Bisect-I[11] Our ECTS

Model house 10 672 0.1000 0.0368 18.0754 0.5111 35.4
Wadham 5 1331 0.0091 0.0084 13.6696 1.9669 6.9
Library 3 667 0.0173 0.0124 7.8832 0.3587 22.0
Oxford 11 737 0.0615 0.0305 21.4552 0.8945 24.0

the Notre Dame data set, the improvement of efficiency is
also significant, and the speedup is 130.9.

Figure 5. The reconstructed 3D points of Dinosaur.

Figure 6. The reconstructed 3D points of Notre Dame Cathedral.

B. Resection
As far as to the resection issue, we chose four public

available benchmarks from VGG data sets. The details of
average reprojection error and computational cost can be
found in Table 4.

Since it is hard to illustrate camera pose comparing with
the ground truth for University library and Oxford, we on-
ly show comparisons of camera pose estimation by Bisect-I
algorithm and our ECTS method with the ground truth for
Model house and Wadham in Figure 8 and 9 respectively.
The black rectangular pyramids illustrate the ground truth.
Figure 8(b) and 9(b) show comparisons of Bisect-I algo-
rithm and the ground truth. The green rectangular pyramids
represent the position and orientation of cameras by Bisect-
I method. In Figure8(c) and 9(c), the red rectangular pyra-
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Figure 7. The enlarged details of the reconstructed Dino’s head.

mids represent the position and principle axis of cameras
by our ECTS method. From these results we can find that
the ECTS method can achieve more accurate estimation of
camera pose than Bisect-I method, nearly approaching the
ground truth.
C. SfM with known camera orientation

Now, we present experiments on two benchmark data
sets, Dinosaur and Oxford, which are publicly available
from the Oxford VGG. The Dinosaur data set contains 36
cameras and 328 3D points [1]. The Oxford data set con-
tains 11 cameras and 737 3D-points. Since our ECTS algo-
rithm focuses on L2 norm reprojection error, we compare
it with Bisect-II, Dinkel-II, and Gugat algorithms discussed
in [1] (the source code is provided by the author).

In [1], the author pointed out that Gugat’s algorithm
is the best one comparing to others. In [5], the author
reported the experimental result of Dinosaur with 127 3D
points, which took 1.07s on L2 norm. Comparing to Gu-
gat’s algorithm (11.84s), its speedup is nearly 11 times. But
for Oxford data, the author reported that Gugat’s algorith-
m failed. In our experiments, we obtain about 3.7 and 4.8
times speedup comparing to Gugat’s algorithm.

More importantly, we carry out the ECTS algorithm and
all baseline algorithms for structure and motion recovery on
the whole data set of Dinosaur (4983 3D points, 15054 un-
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(a) Image.
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(c) Our ECTS method.

Figure 8. Comparisons of resection results of Wadham college.

(a) Image.
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(b) Bisect-I method [11].
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(c) Our ECTS method.

Figure 9. Comparisons of resection results of Model house.

Table 5. Runtimes for L2 norm reprojection error. All times are in seconds. f denotes numerical failure. Parameter settings, ε1 = 0.01,
ε2 = 0.001, σ = 1e6.

Dataset Images Points Unknowns Observations Bisect-II Dinkel-II Gugat Our ECTS

Dinosaur (Partial data) 36 328 1089 2663 12.6306 13.9046 17.4233 4.7787
Oxford 11 737 2241 4035 46.2654 45.0122 35.7344 7.4617
Dinosaur (Full data) 36 4983 15054 16432 f f f 1040.6616

knowns and 16432 observations). The RMS error of our
algorithm based on L2 norm reprojection is 0.2247 and the
runtime is 1040.66s. However, Bisect-II, Dinkel-II and Gu-
gat fail to obtain the result, encountering the problems of
out of memory. We think the key reason is that all these im-
proved algorithms solved by SeDumi can not hold the ro-
bustness when the dimension of problem is becoming large.
This has proven that the proposed ECTS algorithm is suit-
able to large scale multiview geometric problems.

We have also accomplished comparisons with the clas-
sical BA on this problem. The BA code is Vincent’s SfM
Toolbox 3. Agarwal et al. have pointed out the BA has space
complexity O(N2) and time complexity O(N3) [2]. But
traditional Tabu search applicable to SfM is only O(N2) in
each iteration [18]. In this paper, we propose to generate
the candidate set along guided directions rather than ran-
domized hyper-cube around the current solution. So time
complexity is less than O(k∗N2), where k is the number of
iteration. In experiments, k did not exceed 15. For Oxford
and whole Dinosaur data, the runtime of BA is 31.3211s
and 9900s. But our algorithm only costs 7.4617s and 1041s,
which show our method is more efficient when the scale of
problem becomes larger. At the same time, the RMS errors
of BA are 0.5217 and 0.4761 pixels and ours are 0.2267

3See http://vision.ucsd.edu/˜vrabaud/toolbox/doc/

and 0.2247 pixels for Oxford and Dinosaur respectively. It
is obvious that our method outperforms BA.

6. Discussions and conclusions

In this paper, we have demonstrated that many problem-
s of parameter estimation in multiple view geometry can
be formulated within a unified framework of enhanced con-
tinuous tabu search (ECTS), which is guaranteed to con-
verge in probability one to the global optimum theoreti-
cally. We have validated the ECTS method for multiview
geometric problems on both synthetic and real scene data,
including triangulation, resection and N -view based struc-
ture and motion recovery. Experimental results have shown
that the proposed ECTS algorithm can obtain accurate re-
sults as same as the traditional Bisect-I method. More im-
portantly, the ECTS algorithm significantly speeds up pa-
rameter estimation many times than Bisect-I method and
some state-of-art algorithms. Another encouraging result is
that the RMS error of our method is lesser than the base-
line algorithm regardless the number of images or noises.
Therefore, the proposed method can be extended to many
problems of parameter estimation in multiview geometry.
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A. Appendix: proofs of Lemma 2 and Theorem
2 in section 3.3

A.1. Proof of Lemma 2

Proof: Let xmin be a global optimal solution of (P2).
Since f is a continuous function, there exists a r > 0,
such that |f(x) − f(xmin)| < ε/2. Let Qxmin,r = {x ∈
Ω|‖x − xmin‖ ≤ r}. Obviously, Qxmin,r ⊂ D0. By as-
sumption x∗k ∈ D1, we have f(x∗k+1) ≤ f(x∗k) ≤ f(xk).

yj ∼ N(xj
k, σ

2), j = 1, . . . , n leads to the generation of

probability density function g = 1√
2πσ

exp
(yj−x

j
k
)2

2σ2 . Thus,
the acceptance probability is

A =

{
1 f(y) ≤ f(xk),
μ{Ω− ∪k

k−L(S1 ∩ S2 ∪ S3)}/μ{Ω} f(y) > f(xk),

where S1, S2 and S3 are three criteria used to determine
whether the candidate solution is tabu or not,

S1 = {y ∈ Ω |‖xk − y‖ < δ1 },
S2 = {y ∈ Ω ||f(xk)− f(y)| < δ2 },
S3 = {y ∈ Ω ||f(xk)− f(y)|/f(y) < δ3 }.

Obviously A ≤ 1. The probability of x∗k+1 ∈ Qxmin,r is

Pr{x∗k+1 ∈ Qxmin,r} = Pr{y ∈ Qxmin,r}
=

∫
Qxmin,r

(g ×A) dΩ

≤
∫
Qxmin,r

g dΩ

Since ∅ �= Qxmin,r ⊂ D0, we know 0 < Pr{x∗k+1 ∈
Qxmin,r} < 1. y is a continuously random variable
produced by the Gaussian distribution and Qxmin,r is the
closed boundary set, so that there exists P , such that P =
miny∈Qxmin,r

Pr{y ∈ Qxmin,r}. As a result of Qxmin,r ⊂
D0, we have pk+1 ≥ Pr{x∗k+1 ∈ Qxmin,r} ≥ P . Let
c = 1 − P , obviously c ∈ (0, 1). Since qk+1 + pk+1 = 1,
we have qk+1 = 1− pk+1 ≤ 1−P = c < 1. Thus, qk+1 ≤
c ∈ (0, 1). �

A.2. Proof of Theorem 2

Proof. ∀ε > 0, let qk = Pr{|f(x∗k) − f∗| ≥ ε}. If
∃j ∈ {0, 1, . . . , k} such that x∗j ∈ D0, then qk = 0. If
∀j ∈ {0, 1, . . . , k} such that x∗j /∈ D0, we set qk = P̄ . By
Lemma 2, we have

P̄k = P{x∗0 ∈ D1,x
∗
1 ∈ D1, . . . ,x

∗
k ∈ D1}

So ∞∑
k=1

Pk ≤

∞∑
k=1

ck =
c

1− c
<∞

Then by Theorem 1, we get

Pr{∩∞n=1 ∪k≥n [|f(x∗k)− f∗| ≥ ε]} = 0

According to the Definition 2, we gain the proof. �
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