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Abstract

We present an approach to reconstruction of detailed
scene geometry from range video. Range data produced by
commodity handheld cameras suffers from high-frequency
errors and low-frequency distortion. Our approach deals
with both sources of error by reconstructing locally smooth
scene fragments and letting these fragments deform in or-
der to align to each other. We develop a volumetric regis-
tration formulation that leverages the smoothness of the de-
formation to make optimization practical for large scenes.
Experimental results demonstrate that our approach sub-
stantially increases the fidelity of complex scene geometry
reconstructed with commodity handheld cameras.

1. Introduction
Enabling the reconstruction of detailed surface geome-

try from image data is one of the central goals of computer

vision. Substantial progress on dense scene reconstruction

from photographs and video sequences has been made, de-

spite the ambiguity of photometric cues [20, 26, 21, 6, 15,

17]. When direct information on the surface geometry of the

scene is given in the form of range data, we can expect to

do even better. The recent commercialization of consumer-

grade range cameras promises to enable almost anyone to

reliably create detailed three-dimensional models of their

environments [27, 16, 7, 35].

Obtaining a detailed three-dimensional model of an ob-

ject or an environment from range images is difficult in part

due to the high-frequency noise and quantization artifacts

in the data [11, 27]. This difficulty can be addressed to

a significant extent by integrating a large number of range

images. Notably, Newcombe et al. [16], building on work

on range image integration [2], real-time range scanning

[23], and monocular SLAM [3, 4, 12] showed that regis-

tering each input image to a growing volumetric model can

average out high-frequency error and produce smooth re-

constructions of objects and small scenes. These ideas have

subsequently been extended to larger environments [34, 35].

A related source of difficulty is the substantial low-

frequency distortion present in range images produced by
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Figure 1. Rodin’s “The Gates of Hell,” reconstructed from range

data acquired with a handheld consumer-grade camera. The sculp-

ture is 4 meters wide and 6 meters high.

consumer-grade sensors [27, 11, 8]. Even with careful cal-

ibration, non-trivial distortion remains. This may not lead

to noticeable artifacts if the scanned objects are relatively

small or if the scanned surfaces do not contain fine-scale

details. However, for sufficiently large and complex scenes

this distortion leads to clearly visible artifacts in the recon-

structed geometry (Figure 2).
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(a) Extended KinectFusion (b) Zhou and Koltun (c) Our approach

Figure 2. Reconstructions produced by different approaches on the stone wall sequence from Zhou and Koltun [35]. The top row shows

results with original data from the sensor, the bottom row shows results with data that was processed by the calibration approach of Te-

ichman et al. [31], which reduces low-frequency distortion. (a) Extended KinectFusion [22] is unable to produce a globally consistent

reconstruction due to drift. (b) The approach of Zhou and Koltun [35] is restricted to rigid alignment and is unable to correct the incon-

sistencies in trajectory fragments acquired at different times and from different points of view. (c) Our approach uses elastic registration

to align corresponding areas on different fragments, producing clean results on both original and calibrated data; the results are virtually

identical in the two conditions, indicating that our approach can successfully deal with substantial low-frequency distortion in the input.

Current techniques for dense scene reconstruction from

consumer-grade range video cast the problem in terms of

trajectory estimation [16, 7, 34, 35]. The implicit assump-

tion is that once a sufficiently accurate estimate for the cam-

era trajectory is obtained, the range images can be inte-

grated to yield a clean model of the scene’s geometry. The

difficulty is that for sufficiently complex scenes and cam-

era trajectories there may not be any estimate for the trajec-

tory that yields an artifact-free reconstruction with rigidly

aligned images, due to the low-frequency distortion in the

input. Rigidly aligning the images along a camera path is

not always sufficient to resolve the inconsistencies produced

by distortions in the sensor.

In this work, we introduce a scene reconstruction ap-

proach that is based on non-rigid alignment. Our guiding

observation is that we can reliably obtain geometry that is

locally accurate. Specifically, we partition the input stream

into small fragments of k frames each. Frame-to-model reg-

istration [16] is used to reconstruct the surfaces imaged in

each fragment, integrating out high-frequency error. Since

the low-frequency distortion introduced by the sensor is in-

trinsically stationary and since the fragments are temporally

brief, each fragment is internally consistent. The problem

is that fragments that were acquired from substantially dif-

ferent points of view are in general not mutually consistent.

Our approach allows the fragments to subtly bend to resolve

these extrinsic inconsistencies. This is done by optimizing

a global objective that maximizes alignment between over-

lapping fragments while minimizing elastic strain energy to

protect local detail.

Non-rigid registration has a long history in medi-

cal imaging and computer vision, resulting in sophisti-

cated techniques for aligning two-dimensional contours and

three-dimensional shapes [19, 9, 33, 14, 10]. These tech-

niques primarily aim to align two or more reasonably com-

plete representatives from an object class. Our work aims to

reconstruct spatially extended scenes from a large number

of range images, each of which covers only a small part of

the scene. Real-world scenes can have detailed geometric

features at multiple scales. Our approach was thus designed
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to preserve surface detail while operating on a scale that

has rarely been addressed with non-rigid registration tech-

niques.

The closest work to ours is due to Brown and

Rusinkiewicz, who used non-rigid alignment to produce

precise object models from 3D scans [1]. We adopt the

basic idea of employing non-rigid deformation to preserve

surface detail, but develop a different formulation that is

more appropriate to our setting. Specifically, the approach

of Brown and Rusinkiewicz is based on detecting and align-

ing keypoints, and propagating this sparse alignment us-

ing thin-plate splines. This approach can be problematic

because keypoint-based correspondences are imperfect in

practice and the spline interpolation is insensitive to surface

detail outside the keypoints. We formulate an optimization

objective that integrates alignment and regularization con-

straints that densely cover all surfaces in the scene. Since

our input is a temporally dense stream of range data, we can

establish correspondences directly on dense geometry with-

out singling out keypoints. This enables the formulation of

a regularization objective that reliably preserves surface de-

tail throughout the scene.

Figures 1 and 2 illustrate the benefits of elastic registra-

tion. Our approach produces clean reconstructions of large

scenes. Since the high-frequency noise is integrated out

by individual fragments and the low-frequency distortion

is resolved when the fragments are registered to each other,

detailed surface geometry is cleanly reconstructed through-

out the scene. We demonstrate the effectiveness of the pre-

sented approach on a variety of real-world scenes and com-

plex synthetic models.

2. Overview
Fragment construction. We exploit the fact that while

online reconstruction methods are unstable over long

ranges, they are quite accurate in the local regime. Given an

RGB-D scan as input, we partition it into k-frame segments

(we use k=50 or k=100) and use the frame-to-model reg-

istration and integration pipeline developed by Newcombe

et al. [16] to reconstruct a locally precise surface fragment

from each such trajectory segment. Each fragment is a tri-

angular mesh with the vertex set Pi = {p} and the edge set

Gi ⊂ P2
i .

Initial alignment. The purpose of initial alignment is to

establish dense correspondences between fragments that

cover overlapping parts of the scene. To initialize this pro-

cess, we assume that a rough initial alignment between the

fragments in an extrinsic coordinate frame (“scene frame”)

can be obtained. While prior work relied on manual initial

alignment [1], we found that an off-the-shelf SLAM system

[5] was sufficient for our purposes. Given the rough local-

ization, we identify pairs of overlapping fragments. To this

end, we test every pair of fragments and attempt to align

it using ICP starting with the relative pose provided by the

rough initialization. If ICP converges with stable correspon-

dences over a sufficiently large area (more than 20% of one

of the fragments), we retain the correspondences. Consider

such a pair of fragments (Pi,Pj). The set of correspon-

dences obtained by ICP that fall below a reasonable global

threshold (3cm in all our experiments) are denoted by Ki,j .

These correspondence sets, established over many pairs of

overlapping fragments, are used in the next stage to define

the alignment objective.

Elastic registration. Given the correspondences ex-

tracted in the preceding stage, we define an optimization

objective that combines an alignment term and a regular-

ization term. The alignment term minimizes the distances

between corresponding points on different fragments. The

regularization term preserves the shape of each fragment by

minimizing the elastic strain energy produced by the defor-

mation. A natural formulation of this objective is described

in Section 3.1. Unfortunately, this formulation is compu-

tationally infeasible for the problems we are dealing with.

It also deals poorly with fragments that have multiple con-

nected components, which are commonly encountered in

complex scenes. We therefore develop an alternative for-

mulation, described in Section 3.2, that resolves these dif-

ficulties. The objective is optimized using an iterative least

squares scheme, described in Section 3.3.

Integration. Volumetric integration [2] is used to merge

the fragments and to obtain the complete scene model.

3. Elastic Registration
We begin in Section 3.1 by providing a natural point-

based formulation of the problem. This is used to introduce

the basic structure of optimization objective. After moti-

vating the objective and clarifying the deficiencies of the

initial approach, we develop a volumetric formulation that

addresses these issues in Section 3.2. The optimization pro-

cedure is described in Section 3.3.

3.1. Point-based Registration

Our input is a set of fragments, each parameterized in its

own coordinate system. Our objective is to find a mapping

T that maps each point set Pi to an isomorphic point set

P′
i, such that all sets P′

i are parameterized in a common co-

ordinate frame and are aligned to form a global model of the

scanned scene. Let P =
⋃
Pi be the set of all input points

and let P′ =
⋃

P′
i be the corresponding output set. The

desired mapping T should minimize the distance between

corresponding point pairs Ki,j for all i, j while preserving

the detailed geometry of each fragment. We compute T by
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minimizing an energy function of the form

E(T) = Ea(T) + Er(T), (1)

where Ea is the alignment term and Er is the elastic regu-

larization term.

The alignment term Ea(T) measures the alignment of

all corresponding pairs. We use the point-to-plane distance,

which has well-known benefits for surface registration [24]:

Ea(T) =
∑
i,j

∑
(p,q)∈Ki,j

‖(p′ − q′) ·N′
p‖2. (2)

In our notation, p′ = T(p) and N′
p is the normal of P′

i

at p′. Ki,j = ∅ if no correspondences between Pi and Pj

were established.

The regularizer Er(T) measures the elastic strain energy

for all fragments [32]. In principle, we want to measure the

change in the first two fundamental forms of each surface

due to the mapping T:

∑
i

∫
Ωi

ks‖I′i − Ii‖2 + kb‖II′i − IIi‖2dudv, (3)

where Ii, I
′
i and IIi, II

′
i are the first and second fundamental

forms of Pi,P
′
i, respectively, and ks and kb are stiffness

parameters. For mild low-frequency deformations, which

are the kinds of deformations induced by optical distortion,

(3) can be approximated as follows:

Er(T) =
∑
i

∑
p∈Pi

∑
q∈N (p)

‖(q′ − p′)−R′
p(q− p)‖2, (4)

where N (p) is the set of neighbors of p in Gi, and R′
p

is a rotation transform that maps the local tangent frame

of p to the local tangent frame of p′ [28, 30]. R′
p thus

represents the local rotational effect of T at p. The in-

tuition behind this formulation is that R′
p corrects for the

rotation induced by T, so the linear least-squares term

‖(q′ − p′)−R′
p(q− p)‖2 penalizes distortion induced by

T over the edge (p,q). Since R′
p is used to rotationally

align q − p with q′ − p′, this linear term conveniently pe-

nalizes both stretching and bending of Pi at (p,q).
If the transformed normal N′

p and the tangent frame ro-

tation R′
p are known, both Ea(T) and Er(T) are linear

least-squares objectives that can in principle be solved ef-

ficiently. Of course, neither N′
p nor R′

p are known in ad-

vance because both depend on the transform T, which is

being optimized. However, this suggests an iterative opti-

mization scheme. In each step, we fix N′
p and R′

p and solve

for T (specifically, for the point set P′ that minimizes (1)).

We then compute an updated estimate for the local normal

and tangent frame at each point p′ ∈ P′ and repeat.

Since each step involves simply solving a linear least

squares problem, we can expect this procedure to be ef-

ficient. While in principle it is, the scale of our scenes

makes it impractical. For example, the scene shown in Fig-

ure 1 contains 370 fragments with a total of 66.5 million

points, yielding a linear system with 199 million variables

and 7.8 trillion non-zero entries in the matrix. Furthermore,

the point-based formulation does not control for distortion

induced by changes in the relative pose of disconnected sur-

faces within fragments. In Section 3.2, we reformulate the

registration objective to address these issues.

3.2. Volumetric Registration

The guiding observation behind the reformulation is that

the unknown transform T is assumed to be smooth (low-

frequency) over the domain of each fragment. This func-

tion can thus be evaluated at a small number of samples and

reconstructed by interpolation. We thus embed each frag-

ment Pi in a coarse control lattice Vi. The mapping T is

defined for V =
⋃
Vi and is applied to P by interpolation.

Specifically, let the set of vertices in Vi be {vi,l}. Each

point p ∈ Pi can be represented as a linear combination of

vertices from Vi:

p =
∑
l

cl(p)vi,l,

where {cl(p)} are interpolation coefficients precomputed

from a set of basis functions centered at the corresponding

control points [25]. These coefficients remain constant dur-

ing the optimization. The point p′ = T(p) is reconstructed

from the transformed control points v′ = T(v) by the same

interpolation:

p′ =
∑
l

cl(p)v
′
i,l. (5)

The optimization objective (1) is redefined for V. To this

end, we need to reformulate each objective term on V′ in-

stead of P′. This is a simple application of Equation 5. Let’s

consider the alignment term first. To formulate Ea(V
′),

we simply substitute (5) into (2). This yields a linear least-

squares problem on V′.
To reformulate the regularization term Er(T) and also

address the potential issues due to discontinuities within

fragments, we define this term directly on the control lat-

tice:

Er(V
′) =

∑
i

∑
v∈Vi

∑
u∈Nv

‖(u′ − v′)−R′
v(u− v)‖2. (6)

3.3. Optimization

If {N′
p} and {R′

v} are fixed, the overall objective

E(V′) = Ea(V
′) + Er(V

′) is a quadratic function of V′:

E(V′) = ‖AV′ − b‖2, (7)

which can be minimized by solving a linear system:

(A�A)V′ = A�b. (8)
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Figure 3. The sparse structure of matrix A�A. The non-zero

blocks are shown as black dots in the left image. The internal

sparsity of different blocks is visualized on the right. This matrix

is for the sculpture in Figure 1.

The matrix A�A is a block matrix with blocks of size

m×m, where m/3 is the number of vertices in each control

lattice. The regularization term Er only leads to non-zero

entries in the main diagonal blocks of A�A. The align-

ment term Ea leads to non-zero values in the main diag-

onal blocks and in blocks that correspond to overlapping

fragment pairs for which correspondences were established

during the initial alignment stage. (That is, pairs i, j for

whichKi,j �= ∅.) For large scenes, each fragment will over-

lap with a constant number of fragments on average and the

matrix A�A will be sparse, as illustrated in Figure 3. In ad-

dition, Ea associates control points that jointly participate

in determining the position of a point p′, as specified in (5).

Given that the basis function anchored at each control point

has only local support, each non-zero block in the matrix is

internally sparse, as illustrated in Figure 3. To reduce the

scale of the problem further we use trilinear interpolation,

which associates a lattice vertex only with points in its eight

neighboring cells.

The optimization is initialized using the rough rigid

alignment computed in the initial alignment stage (Section

2). We estimate the normals {N′
p} and tangent frame rota-

tions {R′
v} for this initial configuration. We then proceed

with a variant of the iterative optimization scheme outlined

in Section 3.1. In each step, we solve the linear system (8).

Since A�A is sparse and symmetric positive definite, we

use sparse Cholesky factorization.

Since updating {R′
v} only affects the right hand side

of (8), the linear system can be solved again after such an

update using the same factorization of the left hand size.

On the other hand, an updated estimate for {N′
p} changes

A�A and calls for recomputing the Cholesky factorization.

We thus update the estimated normals only once per 10 it-

erations. We perform 50 iterations in total.

4. Experiments
Figures 1, 2, and 4 show the results of our approach on

three real-world scenes. We use an Asus Xtion Pro Live

camera, which streams VGA-resolution depth and color im-

ages at 30 fps. We try to scan as much surface detail as pos-

sible in order to evaluate the quality of the reconstruction.

A typical scan lasts for 2 to 20 minutes, along a compli-

cated camera trajectory with numerous loop closures. Dur-

ing scanning, the operator could see the color and depth

images captured by the sensor in real time, but no preview

of the reconstruction was shown.

To evaluate our approach on independently acquired

data, we compare our results to three alternatives on

the challenging “fr3/long office household” scene from the

RGB-D SLAM benchmark [29]. The results are shown in

Figure 5. Our approach creates a globally consistent scene

with high-fidelity local details, while Extended KinectFu-

sion suffers from lack of loop closure and the rigid registra-

tion approach of Zhou and Koltun breaks some local regions

due to unresolved residual distortion. We also compare to

a reconstruction produced by a hypothetical approach that

integrates along the motion-captured camera trajectory pro-

vided by the benchmark. Despite having access to a motion-

captured camera trajectory, this hypothetical approach pro-

duces results that are similar to those of Zhou and Koltun.

This can be attributed to two potential causes: the approach

is limited to rigid alignment and does not resolve the low-

frequency distortion in the data, and the sensor noise of the

motion capture system.

To further identify the error source and to make quantita-

tive evaluations, we synthesize range video sequences using

synthetic 3D models and use these models as ground truth

geometry to evaluate the reconstruction quality. To synthe-

size these sequences, we navigate a virtual camera around

each synthetic model and produce perfect range images at

full frame rate using a standard rendering pipeline. These

images are then combined with two error models to simulate

the data produced by real-world range cameras. The two er-

ror models we use aim to simulate the factory-calibrated

data produced by PrimeSense sensors and idealized data

with no low-frequency distortion. To produce the idealized

data, we process the perfect synthetic depth images using

the quantization model described by Konolige and Mihe-

lich [13] and introduce sensor noise following the model

of Nguyen et al. [18]. To produce the simulated factory-

calibrated data, we add a model of low-frequency distortion

estimated on a real PrimeSense sensor using the calibration

approach of Teichman et al. [31].

The results of the synthetic evaluation are shown in Fig-

ure 6. The results are obtained by computing the point-to-

plane distance from points in the reconstructed model to the

ground truth shape, after initial alignment by standard rigid

registration. We compare our approach to three alternatives:

477



Figure 4. Reconstruction of a sitting area.

Extended KinectFusion [22], Zhou and Koltun [35], and in-

tegration of the simulated depth images along the ground

truth trajectory. The last alternative is of course inacces-

sible in practice since the precise camera trajectory is not

known, but it is instructive as an experimental condition that

isolates reconstruction errors caused by distortion in the in-

put images from reconstruction errors caused by drift in the

estimated camera pose.

The results indicate that our approach outperforms both

prior approaches (Extended KinectFusion and Zhou and

Koltun) with both types of data. For idealized data with no

low-frequency distortion, the idealized approach that uses

the ground-truth trajectory performs extremely well and

outperforms our approach. For simulated factory-calibrated

data, our approach sometimes outperforms the idealized ap-

proach. This is because the idealized approach is limited to

rigid alignment. Although it benefits from perfect camera

localization, the real-world distortion in the data causes in-

consistencies between input images that are too large to be

eliminated by volumetric integration. Our approach uses

nonrigid alignment to resolve these inconsistencies.

5. Conclusion

We presented an approach for dense scene reconstruction

from range video produced by consumer-grade cameras.

Our approach partitions the video sequence into segments,

uses frame-to-model integration to reconstruct locally pre-

cise scene fragments from each segment, establishes dense

correspondences between overlapping fragments, and op-

timizes a global objective that aligns the fragments. The

optimization can subtly deform the fragments, thus correct-

ing inconsistencies caused by low-frequency distortion in

the input images.

The approach relies on a number of components that can

fail, causing the approach to fail. Current consumer-grade

range cameras can fail in the presence of translucent sur-

faces or direct sunlight. Frame-to-model integration can fail

due to jerky camera movement. The SLAM system that we

rely on can fail without distinctive and stable visual fea-

tures. Improving the robustness of these components is a

valuable research direction.
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(a) (b) (c) (d)

Figure 6. Evaluation with synthetic data. (a) Extended KinectFusion, (b) Zhou and Koltun, (c) volumetric integration along the ground-

truth camera trajectory, and (d) our approach. The plots on the right show distributions of point-to-plane error between the reconstructed

shapes and the true shape. (I) and (II) use an idealized error model with no low-frequency distortion. (III) and (IV) use the full error model

with low-frequency distortion estimated on a real PrimeSense sensor.

Model
Size

(L×W×H)
# of

fragments
Data

collection
Fragment
creation

RGB-D
SLAM

Initial
alignment

Elastic reg-
istration

Integration Total time
Triangle

count

Figure 1 4×2×6 370 21m 1h 2m 8h 34m 25h 36m 19h 42m 57m 56h 12m 5,489,745

Figure 2 7×2.5×3.2 54
2m 7m 23m 50m 57m 6m 2h 25m 3,720,310

2m 7m 23m 57m 59m 6m 2h 34m 3,754,826

Figure 4 5×4.5×1.3 130 7m 24m 2h 12m 6h 27m 7h 30m 23m 17h 3m 3,128,245

Figure 5 4.5×3×1.4 50 - 7m 13m 2h 8m 51m 4m 3h 23m 2,594,934

Figure 6.I 3.5×3.6×5 69 - 10m - 3h 56m 1h 8m 6m 5h 20m 4,710,726

Figure 6.II 4.6×2.7×5 57 - 8m - 2h 56m 50m 6m 4h 6,182,782

Figure 6.III 3.5×3.6×5 69 - 10m - 4h 26m 1h10m 8m 5h 54m 5,115,442

Figure 6.IV 4.6×2.7×5 57 - 8m - 2h 18m 29m 8m 3h 3m 7,795,335

Table 1. Statistics for the experiments. Length in meters. Running times are measured on a workstation with an Intel i7 3.2GHz CPU,

24GB of RAM, and an NVIDIA GeForce GTX 690 graphics card.
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