
Low-Rank Sparse Coding for Image Classification

Tianzhu Zhang1,4,5, Bernard Ghanem1,2, Si Liu3, Changsheng Xu4, Narendra Ahuja1,5
1 Advanced Digital Sciences Center of Illinois, Singapore

2 King Abdullah University of Science and Technology, Saudi Arabia
3 National University of Singapore, Singapore

4 Institute of Automation, Chinese Academy of Sciences, P. R. China
5 University of Illinois at Urbana-Champaign, Urbana, IL USA

Abstract

In this paper, we propose a low-rank sparse coding
(LRSC) method that exploits local structure information a-
mong features in an image for the purpose of image-level
classification. LRSC represents densely sampled SIFT de-
scriptors, in a spatial neighborhood, collectively as low-
rank, sparse linear combinations of codewords. As such, it
casts the feature coding problem as a low-rank matrix learn-
ing problem, which is different from previous methods that
encode features independently. This LRSC has a number of
attractive properties. (1) It encourages sparsity in feature
codes, locality in codebook construction, and low-rankness
for spatial consistency. (2) LRSC encodes local features
jointly by considering their low-rank structure information,
and is computationally attractive. We evaluate the LRSC by
comparing its performance on a set of challenging bench-
marks with that of 7 popular coding and other state-of-the-
art methods. Our experiments show that by representing lo-
cal features jointly, LRSC not only outperforms the state-of-
the-art in classification accuracy but also improves the time
complexity of methods that use a similar sparse linear repre-
sentation model for feature coding [36].

1. Introduction
The bag-of-words (BoW) model is one of the most pop-

ular models for feature design. It has been successfully
applied to classical computer vision applications, includ-
ing scene classification [22], image-level object recogni-
tion [9, 13], and action recognition [23]. The convention-
al BoW pipeline for classification consists of five stages:
feature extraction and description, codebook design, feature
coding, feature pooling, and classifier construction. Recent-
ly, different approaches have been proposed to improve the
generative property of BoW, that helps it accurately represent
images as well as its discriminative power for classification.
Despite remarkable progress in this field, there exists signifi-
cant room for improvement, especially in how local features
are encoded in an image.

Given an image, features, such as SIFT [27], HOG [7] and
SURF [2], can be densely extracted and encoded with a code-
book constructed using K-means clustering. Recently, many
different feature coding methods have been proposed includ-
ing hard-assignment coding (HC) [22], soft-assignment cod-
ing (SC∗) [33], localized soft-assignment coding (LSC) [25],
sparse coding (SCSPM) [36], locality-constrainted linear
coding (LLC) [18], Laplacian sparse coding (LScSPM) [11],
salient coding (SC) [15], and locality-constrained and spa-
tially regularized coding (LCSRC) [31]. After computing
codes for local features, they need to be pooled together to
form equal sized feature vectors each representing one im-
age in a dataset. Popular pooling methods include average
pooling (e.g. histogram) and max-pooling [36]. To include
the spatial layout of local features in an image, Spatial Pyra-
mid Matching (SPM) [22] is usually performed to obtain an
image-level representation that can be used to discriminate
different categories of objects, scenes, or actions. Using this
BoW representation, images can be classified using a pletho-
ra of discriminative models such as SVM or Boosting.

Recent work shows that given a visual codebook, the
method of encoding local features has significant impact
on classification performance. The earliest method is
hard-assignment coding (vector quantization) [22], a voting
scheme that is simple yet highly sensitive to the selection of
codebook. A more robust voting approach is soft-assignment
coding [33], which assigns a code coefficient for a particular
local feature to each visual word according to their pairwise
distance. To improve hard and soft-assignment coding, s-
parsity is enforced on local feature codes via sparse learning
techniques [36]. However, sparse coding is time consuming
and usually leads to non-consistent codes [18, 11], i.e. local
features with similar descriptors tend to have different sparse
codes. To alleviate inconsistency, authors in [37] introduce
another coding property, called locality, which encourages
that visual words used to represent a local feature be simi-
lar to the feature’s descriptor itself. This is usually ensured
by constructing a feature’s codebook from its nearest neigh-
bors in the universal codebook. In fact, several implementa-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.42

281

Figure 1. Observing the sparse low-rank property of feature descriptors in natural images. (a) Image segmented into superpixels; (b) All SIFT descriptors
densely sampled in (a) concatentated in matrix form; (d) SIFT descriptors from the local region depicted in red color in (a); From Figure (b), we see that SIFT
descriptors in the image tend to be sparse and low-rank. This observation holds over thousands of natural images, where the histogram of the rank of their SIFT
descriptors is shown in (c). Clearly, the average rank (68) in an image is much smaller than its maximum (128), where each image usually contains thousands
of SIFT features. Moreover, this observation transfers locally to superpixels within the image. The histogram of the rank of SIFT descriptors in each superpixel
in (a) is plotted in (e). Again, the average rank (18) is smaller than the average number (30) of SIFT features in each superpixel.

tions of locality have been proposed in [18, 25, 15], where
each descriptor is coded on locally selected bases. The work
in [15] rebrands the locality property as codebook ‘saliency’.
However, all the aforementioned coding schemes encode lo-
cal features independently. In Laplacian sparse coding [11],
a global similarity between local features is considered to
constrain sparsity; however, this method is not only compu-
tationally infeasible for large sets of features, but it also dis-
regards the relationship between sparse codes and the spatial
layout (or context) of their corresponding features. The prop-
erty of spatial consistency encourages local features, which
are spatially close in an image, to have similar sparse codes
and similar supports. The latter implication encourages code
consistency among features and suggests that the same visual
words represent each local feature in a spatial neighborhood.
Very little work has exploited this property in feature coding.
In fact, only recently, the spatial layout of local features has
been used to select ‘optimal’ visual words for each feature
in an image [31]. This optimal selection is formulated as a
labeling problem with a pairwise multi-label MRF energy to
be minimized. Despite its awareness of spatial layout, the
spatial consistency property is only invoked in the codebook
selection process, which is done independently from the cod-
ing itself. Although features in a spatial neighborhood are
encouraged to have the same set of visual words represent-
ing them, their sparse codes are not directly encouraged to be
similar or have similar supports w.r.t their ‘optimal’ bases.

As stated before, maintaining spatial consistency among
feature codes enables a more faithful representation of an
image and has been shown to improve classification perfor-
mance. However, many conceivable ways of enforcing such
consistency exist. They tend to stem from empirical observa-
tions made about spatial relationships between local features
in natural images. In fact, we observe that descriptors of de-
tected SIFT points in the same image are not independent
and do exhibit a dependency relationship. Figure 1 shows an
example of this observation. In Figure 1(b), all SIFT descrip-

tors (∈ R
128) in the image are concatenated in matrix form.

This matrix tends to be sparse and low-rank (refer to Fig-
ure 1(d)). In Figure 1(c), we plot the histogram of the rank of
this SIFT matrix over thousands of natural images, each con-
taining thousands of dense SIFT features. As can be expect-
ed, the average rank of this matrix (68) is much smaller than
its maximum possible rank (128). This low-rank sparsity ob-
servation is more obvious locally within the same image. By
dividing the image into superpixels as shown in Figure 1(a),
we observe that the matrix of descriptors for SIFT points in a
particular superpixel (denoted in red) is also sparse and low-
rank as shown in Figure 1(d). In Figure 1(e), we plot the
histogram of the rank of SIFT matrices over all superpixels
in the image. Clearly, the average rank (18) is much smaller
than the average number of SIFT features (30) in each super-
pixel. Similar observations are also made in [20].

Inspired by the observation and prior work on feature cod-
ing, we propose a low-rank sparse coding (LRSC) method
that encourages both sparsity and spatial consistency in the
coding step of the BoW model. Here, the joint coding of fea-
tures in a local region is viewed as a low-rank sparse learning
problem. Unlike previous methods, we exploit similarities a-
mong local features lying in the same spatial neighborhood
and, therefore, seek an accurate joint representation of these
local features w.r.t. a codebook that satisfies the locality
property. In LRSC, the codes of local features are sparse and
low-rank, which encourages that only a few (but the same)
visual words are used to represent all features in a local re-
gion. As opposed to sparse coding based image classifica-
tion methods [36, 18] that handle local features independent-
ly, our use of sparse low-rank learning realizes the benefits
of a sparse feature representation, while respecting the un-
derlying spatial relationship among local features. Feature
codes are computed by solving a sparse low-rank optimiza-
tion problem, which comprises a sequence of closed form
update steps made possible by the Inexact Augmented La-
grange Multiplier (IALM) that guarantees fast convergence.

282

Contributions: The contributions of this work are three-
fold. (1) We propose a low-rank sparse learning method for
feature coding, which is a robust sparse coding method that
mines correlations among different local features to obtain
better coding results than learning each feature individual-
ly. To the best of our knowledge, this is the first work to
exploit low-rank sparse learning in feature coding. (2) We
show that popular sparse coding methods [36, 18] are a spe-
cial case of our LRSC formulation. (3) We learn local feature
codes jointly with an efficient IALM method. As a result,
LRSC outperforms state-of-the-art coding methods in gener-
al, while remaining computationally attractive.

2. Related Work
In this section, we survey commonly used coding

schemes. Let �bi ∈ R
d denote a visual word in the codebook,

where d is the dimensionality of a local feature. The total

number of visual words is n. Matrix B =
[
�b1, �b2, · · · , �bn

]
denotes a visual codebook or a set of basis vectors. Let
�xi ∈ R

d be the ith local feature in an image. Let �zi ∈ R
n be

the code of �xi, with zij being the coefficient w.r.t. word �bj .

Hard-assignment coding (HC) [22]: For a local feature �xi,
there is one and only one nonzero coding coefficient. It cor-
responds to the nearest visual word subject to a predefined
distance. When we adopt Euclidean distance,

zij =

⎧⎨
⎩ 1 if j = argmin

j=1,...,n

∥∥∥�xi − �bj

∥∥∥2

2

0 otherwise

Soft-assignment coding (SC∗) [33]: The j-th coding coeffi-
cient represents the degree of membership of a local feature
�xi to the jth visual word, where α is the smoothing factor
controlling the softness of the assignment. Note that all n
visual words are used in computing zij.

zij =
exp(−α‖�xi − �bj‖22)∑n
k=1 exp(−α‖�xi − �bk‖22)

Localized soft-assignment coding (LSC) [25]: The basic
idea is to adopt the k visual words in the neighborhood of a
local feature to refine the soft-assignment coding [33].

zij =
exp(−α‖�xi − �bj‖22)∑n
k=1 exp(−α‖�xi − �bk‖22)

, �bk ∈ Nk(�xi)

Sparse coding (SCSPM) [36]: It represents a local feature
�xi by a linear combination of a sparse set of basis vectors
in the codebook. The coefficient vector �zi is obtained by
solving an �1-norm regularized problem,

�zi = argmin ‖�xi −B�zi‖22 + λ‖�zi‖1

Locality-constrained linear coding (LLC) [18]: Unlike s-
parse coding, LLC enforces codebook locality instead of s-
parsity. This leads to smaller coefficients for basis vectors

farther away from �xi. The code �zi is computed by solving
the following regularized least-squares program,

�zi = argmin
1T�zi=1

‖�xi −B�zi‖22 + λ ‖di � �zi‖22

where di = exp(dist(�xi,B)/δ), dist(�xi,B) =

(dist(�xi, �b1), dist(�xi, �b2), . . . , dist(�xi, �bn))
T , and

dist(�xi, �bj) denotes the �2 distance between �xi and

each �bj . δ is used for adjusting the weight decay speed for
the locality adaptor. In [18], an approximation is proposed
to improve its computational efficiency.

Laplacian sparse coding (LScSPM) [11]: It is the first
method that improves the consistency of sparse coding, by
encouraging similar local features in the dataset to have sim-
ilar sparse codes. This is done by adding a graph regular-
ization term to the LASSO. Codebook learning and sparse
coding are done iteratively.

(B,Z) = argmin
B,Z

‖X−BZ‖22 + λ
∑

i ‖�zi‖1 + βtr(ZLZT)

s.t. ‖�bj‖2 ≤ 1, ∀ j = 1, . . . , n

Here, L is the Laplacian of the graph that encodes the re-
lationship between local features. Due to the extremely large
number of features in a dataset, constructing the Laplacian
matrix and learning sparse codes simultaneously is compu-
tationally infeasible. Some heuristic measures are taken to
moderately improve its computational complexity.

Salient coding (SC) [15]: This is an alternative to sparse
coding. It exploits codebook locality by setting the code to

a “saliency” degree based on the nearest codebook bases �bj

to �xi. Here, ϕ(.) is a monotonically decreasing function and

{�̂bm}m=1,...,k is the set of k-nearest bases to �xi.

zi,j = 1− ϕ

⎛
⎝ ‖�xi − �bj‖22

1
k−1

∑k
m �=j ‖�xi − �̂bm‖22

⎞
⎠

Locality-constrained and spatially regularized coding
(LCSRC) [31]: The spatial layout of local features in the
same image is used to select “optimal” bases for each local
feature. It assumes that local feature �xp should have similar
bases as its nearest neighbors �xq . This is done by solving a
pairwise multi-label MRF problem. Once bases are selected
for local features, their codes can be computed by using any
of the previous coding methods.

Most of the aforementioned coding schemes (except for
LScSPM) produce feature codes independently. Although
LScSPM [11] adopts a global similarity between local fea-
tures, it ignores local spatial contextual information [16, 39,
40] and is computationally expensive. LCSRC [31] makes
use of the spatial layout of local features in the same image.
However, it only does so to constrain codebook selection.
It fails to directly enforce consistency on codes themselves.

283

To the best of our knowledge, the proposed low-rank sparse
coding (LRSC) method is the first to introduce spatial con-
sistency and joint feature coding explicitly in the coding step
of the BoW model. In the next section, we provide a detailed
description of LRSC coding.

3. Low-Rank Sparse Coding (LRSC)
Here, we give a detailed description of our local feature

coding method that makes use of low-rank sparse learning.

3.1. Low-Rank Sparse Representation
As seen in Figure 1, SIFT descriptors tend to be collec-

tively sparse and low-rank across natural images and specif-
ically in spatial neighborhoods of the same image. However,
many existing methods [22, 36, 18, 25, 15] ignore this infor-
mation and encode features independently. In this paper, we
formulate local feature coding as a low-rank sparse learning
problem, which encourages sparsity and low-rankness local-
ly among features in the image. Since the low-rank sparsity
property is more evident locally, we apply low-rank sparse
learning to code features in the same region of an image, by
dividing an image into homogeneous superpixels. Without
loss of generality, we use the SLIC segmentation algorith-
m [1]. We divide each image into around 150 coherent su-
perpixels. The details and effects of segmentation will be
discussed in Section 5.1. Note that the solution is general
and not tied to any specific image segmentation algorithm.

Following many coding methods [22, 36, 18, 25, 15],
LRSC densely samples SIFT features in an image. Each
region contains n local features, whose observations (SIFT
descriptors) are concatentated in matrix form as: X =
[�x1, �x2, · · · , �xn]. Each column is a local feature point in
R

d, where d = 128 usually. Given a codebook, D =[
�d1, �d2, · · · , �dm

]
, in the noiseless case, each local feature

�xi is represented as a linear combination �zi of elements
forming the codebook D, such that X = DZ.

We base the formulation of LRSC on the following obser-
vations. (a) Because features are densely sampled in a local
region, they tend to have similar descriptors, as exemplified
in Figure 1. Consequently, their representations w.r.t. to D
should also be similar. Therefore, the resulting representa-
tion matrix Z is expected to be low-rank. More formally, we
see that since D is an overcomplete full rank matrix, then
rank(DZ) is equal to rank(Z). Therefore, if rank(X) is low
(as shown in Figure 1), then rank(Z) should also be low too
(as shown in Figure 2). (b) For an overcomplete dictionary
D, linear feature representations w.r.t. D tend to be sparse.
In other words, only a few elements of D are required to
reliably represent a local feature �xi or equivalently only a
few nonzero coefficients exist in its representation �zi. In fac-
t, sparse feature coding has been shown to be quite helpful
in image classification [36, 26, 18]. We combine (a) and
(b) to formulate the problem mathematically in Eq 1, whose

Figure 2. A feature coding example in a local region. (a) Image partition
results; (b) All SIFT descriptors in the local region depicted in red in (a);
(c) and (d) are coding results produced by SCSPM [36] and LRSC. From
(c), we see that the local features have inconsistent codes, i.e. their features
are similar but their codes and the supports of their codes are not. This is
because SCSPM solves the coding problem for each feature independent-
ly. However, the codes learnt by LRSC are jointly sparse, i.e. a few (but
the same) visual words are used to represent all the local features together,
which renders the codes consistent and more robust to noise. The dictionary
is obtained by using the locality property.

solution is described in Section 4. The nuclear norm ‖Z‖∗
and the sparsity inducing �1 norm ‖Z‖1,1 =

∑n
i=1 ‖�zi‖1 are

convex approximations to the rank function and �0 norm, re-
spectively. λ1 and λ2 quantify the tradeoff between sparsity
and low-rankness in the feature codes.

min
Z

1

2
‖X−DZ‖2F + λ1‖Z‖∗ + λ2‖Z‖1,1 (1)

3.2. Discussion
As stated earlier, many feature coding schemes exist in the

literature. In HC [22] and SC∗ [33], different voting schemes
are adopted to obtain �zi for each local feature. SCSPM [36]
improves upon these methods by enforcing sparsity in �zi.
However, solving an �1 problem for each local feature inde-
pendently is computationally expensive, especially for large
codebooks. In LLC [18], LSC [25], and SC [15], locality in
codebook selection is adopted and better performance is ob-
tained. In LScSPM [11], a global similarity among features
is adopted to consider the relationship among feature points
in feature space. However, it incurs a significantly high com-
putation cost and ignores spatial relationships between fea-
tures in the same image. Recently, spatial consistency has
been successfully adopted by LCSRC [31] for feature cod-
ing. It ignores the fact that features in a local region not on-
ly have similar codebooks, but also similar representation-
s. Clearly, features with similar bases coded independent-
ly may have different representations. The LRSC method
we propose here is aimed at simultaneously achieving all
three properties for image classification: sparsity, locality,
and spatial consistency. In Figure 2, we show an example
of how LRSC compares with traditional sparse coding (SC-
SPM) [36]. Clearly, the columns of Z generated by LRSC
are jointly sparse, i.e. a few (but the same) visual words are
used to represent all the local features. This exemplifies how
both the sparsity and low-rank properties are satisfied under
LRSC. This is not the case for SCSPM, which is known to
produce inconsistent codes, especially for features present in

284

the same spatial neighborhood. The following three observa-
tions explain how LRSC is related to other coding schemes.

• Sparsity: When λ2 �= 0, LRSC leads to sparse codes.
When λ1 = 0 (i.e. spatial consistency is not consid-
ered), our method degenerates into SCSPM.

• Locality: When encoding features in a local region, we
adopt locality in selecting the codebook D. Similar to
LLC and LSC, we construct D from elements in the u-
niversal codebook that are nearest to each local feature.

• Spatial Consistency: By enforcing the low-rank proper-
ty in a local region, spatial information is encoded and
features are constrained to have similar codes. In com-
parison, LCSRC [31] incorporates spatial consistency
in selecting an ‘optimal’ codebook for each feature sep-
arately and then computes feature codes independently
in the image. Using this method, there is no direct guar-
antee that features in a local region have similar codes.

4. Optimization
In Eq (1), the cost function has two convex and non-

smooth regularizers (sparse ‖.‖1 regularizer or low-rank ‖.‖∗
regularizer), which makes solving it efficiently non-trivial.
In order to handle these two regularizers independently, we
introduce two slack variables and add two equality con-
straints as in Eq (2).

min
Z1−3

1

2
‖X−DZ3‖2F + λ1‖Z1‖∗ + λ2‖Z2‖1,1 (2)

such that: Z3 = Z1; Z3 = Z2

This transformed problem can be minimized using
the conventional Inexact Augmented Lagrange Multiplier
(IALM) method that has attractive quadratic convergence
properties and is extensively used in matrix rank minimiza-
tion problems [29]. IALM is an iterative method that aug-
ments the Lagrangian function with quadratic penalty terms.
This allows closed form updates for each of the variables.
The updates are closed form due to the identities in Eq
(3,4), where Sλ(Aij) = sign(Aij)max(0, |Aij | − λ) is the
soft-thresholding operator and Jλ (A) = UASλ (ΣA)V

T
A

is the singular value soft-thresholding operator with A =
UAΣAV

T
A being the SVD of A.

X∗ = argmin ‖X−A‖2F + 2λ‖X‖1,1 = Sλ(A) (3)

X∗ = argmin ‖X−A‖2F + 2λ‖X‖∗ = Jλ(A) (4)

By introducing augmented lagrange multipliers to incor-
porate the equality constraints into the cost function, we ob-
tain the Lagrangian function in Eq (5) that we show, in what
follows, can be minimized through a sequence of simple
closed form update operations.

L(Z1−3) =
1

2
‖X−DZ3‖2F + λ1‖Z1‖∗ + λ2‖Z2‖1,1

+tr
[
YT

1 (Z3 − Z1)
]
+

u1

2
‖Z3 − Z1‖2F

+tr
[
YT

2 (Z3 − Z2)
]
+

u2

2
‖Z3 − Z2‖2F (5)

Y1 and Y2 are lagrange multipliers, and u1 > 0 and u2 > 0
are two penalty parameters. The above problem can by
minimized by either exact or inexact ALM algorithms [24].
For efficiency, we choose the inexact ALM. Its convergence
properties can be proven similar to those in [24]. In fact,
IALM is an iterative algorithm that solves for each variable
in a blockwise coordinate descent fashion. In other word-
s, each iteration of IALM involves updating each variable
one-at-a-time, with the other variables fixed to their most re-
cent values. Consequently, we obtain four update steps cor-
responding to the four sets of variables we need to optimize
for. Note that all steps have closed form solutions.

Step 1: [Update Z1] This requires solving the following
problem as shown in Eq (6).

Z∗1 = argmin
Z1

λ1

u1
‖Z1‖∗ +

1

2
‖Z1 − (Z3 +

1

u1
Y1)‖2F

⇒ Z∗1 = Jλ1
u1

(Z3 +
1
u1
Y1) (6)

Step 2: [Update Z2] This is done by solving Eq (7).

Z∗2 = argmin
Z2

λ2

u2
‖Z2‖1,1 +

1

2
‖Z2 − (Z3 +

1

u2
Y2)‖2F

⇒ Z∗2 = Sλ2
u2

(Z3 +
1
u2
Y2) (7)

Step 3: [Update Z3] This is done by solving Eq (8),
whose solution is shown in Eq (9).

Z∗3 = argmin
Z3

1

2
‖X−DZ3‖2F + tr[Yt

1(Z3 − Z1)]

+
u1

2
‖Z3 − Z1‖2F + tr[Yt

2(Z3 − Z2)] +
u2

2
‖Z3 − Z2‖2F

(8)

⇒ Z∗3 =
(
DTD+ u1I+ u2I

)−1
G , (9)

where G = DTX−Y1 −Y2 + u1Z1 + u2Z2.
Step 4: [Update Multipliers] They are updated in Eq

(10), where ρ > 1 is a user-defined constant.{
Y1 = Y1 + u1(Z3 − Z1);Y2 = Y2 + u2(Z3 − Z2)

u1 = ρu1; u2 = ρu2

(10)

Computational Complexity: The convergence of IALM
algorithm is reached when the change in objective function
or solution Z is below a user-defined threshold ε = 10−3.

285

Empirically, we find that our IALM algorithm is insensitive
to a large range of ε values. In our implementation, u1 = u2.
The computational bottleneck of LRSC lies in the SVD of
matrix Z in Step 1. Since Z is low-rank and rectangular,
its SVD can be computed efficiently with time complexity
O (mnr), where r is its rank such that r ≤ √

min(m,n).
Because r is usually small compared to m and n and the
matrix inversion in Step 3 can be done by the eigenvalue de-
composition of DTD only one time at the start of the opti-
mization, the overall computational complexity of LRSC is
O (

m3 +mnε−0.5
)
, where the number of IALM iterations

is O (
ε−0.5

)
. In comparison, SCSPM solves n �1 minimiza-

tion (LASSO) problems independently and thus has a time
complexity of O(m2nd), which is signficantly slower than
our coding method. In practise, we observe that LRSC is
usually about 4 times faster than SCSPM.

5. Experimental Results
In this section, we experimentally assess the generality of

our LRSC method by evaluating its performance on two d-
ifferent tasks: scene classification and objection recognition.
The effectiveness and efficiency of LRSC are validated by a
comparison with 7 popular coding methods and other state-
of-the-art approaches where applicable.

Datasets: For the two tasks, LRSC is evaluated on four
well known benchmarks, intensively used in the literature:
Scene-13 [10], Caltech-101 [9], Caltech-256 [13], and UIUC
8-Sport [23].

Baseline Methods: We compare LRSC to two types of
image classification methods in the literature: (1) methods
relevant to feature coding that use the same BoW pipeline
for image classification but only differ in how coding is per-
formed and (2) other well-known classification methods that
do not necessarily conform to the BoW pipeline. Direct e-
valuation of LRSC is made by comparing it to methods of
type (1), since all stages of the BoW pipeline (e.g. fea-
ture extraction and classification) are kept the same and only
the coding stage is varied. For completeness, we compare
the performance of LRSC against that of type (2) method-
s, even though the feature, representation, and classification
schemes used there are quite different. We include 7 recent
and state-of-the-art type (1) methods, which are denoted as:
HC [22], LSC [25], SCSPM [36], LLC [18], LScSPM [11],
SC [15], and LCSRC [31]. On UIUC 8-Sport, Scene-15,
and Caltech-101, the baseline results for these methods are
borrowed from [31]. On the other data sets, we implement
these methods using publicly available source codes or bina-
ries provided by the authors and run them with default pa-
rameters. For each dataset, we also include state-of-the-art
type (2) methods and report their results.

Implementation Details: For fair comparison with type
(1) methods, we fix all stages of the BoW classification
pipeline except for the feature coding stage. As reference, we
follow the experimental setup in [31] for all our experiments.

Table 1. Classification accuracies on the UIUC 8-Sport data set.
Methods Accuracies (%) Methods Accuracies (%)

HC [22] 79.98± 1.67 LScSPM [11] 85.31± 0.51

SCSPM [36] 82.74± 1.46 SC [15] 85.44± 1.54

LLC [18] 81.77± 1.51 LCSRC [31] 87.23± 1.14

LSC [25] 82.79± 2.01 LRSC 88.17 ± 0.85

For completeness, we briefly describe this setup next. (1) Im-
age resize: Similar to previous methods [36, 25, 18, 11, 31],
images are downsized to no more than 300 × 300 pixels for
Scene-13, Caltech-101, and Caltech-256, and 400×400 pix-
els for UIUC 8-Sport, respectively. (2) Dense local features:
SIFT descriptors [27] with dimension d = 128 are extract-
ed from 16 × 16 pixel patches densely sampled from each
image on a grid with a 4 pixel stepsize. (3) Codebook: The
universal codebook is obtained using K-means on a random-
ly selected subset of SIFT descriptors (200K) in the training
set. As in [31], the codebook size depends on the size of
the dataset: 1024 for Scene-13, Caltech-101, and UIUC 8-
Sport and 4096 for Caltech-256. As discussed in [36, 18, 6],
increasing the codebook size can improve the performance.
Due to the locality property of the dictionary discussed in
Section 3.2, our algorithm will incur a slightly higher com-
putational cost to find the nearest neighbors in codebook for
each feature point. Therefore, our algorithm can retain a
good performance level even for large codebook sizes. For
a fair comparison, we adopt the setup of [31]. (4) Local re-
gion: SLIC segmentation [1] is adopted to segment images
into multiple superpixels. SLIC has three parameters: Min-
RegionSize, regionSize, and regularizer, which are set to be
100, 24, and 1, respectively. The details are discussed in
Section 5.1. (5) Pooling: Max-pooling is performed. To
include spatial layout information, SPM [22] with 3 levels:
1 × 1 , 2 × 2 and 4 × 4 is adopted. The weight for each
layel is the same. (6) Classifier: a one-vs-all linear SVM
classifier is used, since it has been shown to achieve state-
of-the-art classification performance when paired with max-
pooling [36, 25, 18, 31].

5.1. UIUC 8-Sport Data Set
UIUC 8-Sport [23] contains 1792 images and 8 cate-

gories for image-based event classification. These 8 cate-
gories are badminton, bocce, croquet, polo, rock climbing,
rowing, sailing and snow boarding, and the size of each cat-
egory ranges from 137 to 250. Following the standard set-
ting for this data set, we use 10 random splits of the data,
we randomly select 70 training images and 60 test images
for each category. The classification accuracy is reported in
Table 1, which shows the average (and standard deviation)
results of the state-of-the-art coding approaches and the pro-
posed LRSC method. As we can see, SCSPM is much better
than the classic HC method, which shows sparsity is helpful
for image classification. In LLC, LSC, and SC, adding local-
ity can also improve the classification accuracy. Results of
LScSPM show that the relationships among features in their
d−dimensional feature space improves classification further.

286

Table 2. The influence of image partition to LRSC.
Partition 20× 20 30× 30 40× 40

Accuracies (%) 86.2 ± 0.81 88.17 ± 0.85 87.3 ± 0.91

In LCSRC and our LRSC, adding local spatial information
improves classification accuracy significantly as compared
to the first six methods, and our LRSC has a moderate im-
provement over the state-of-the-art feature coding methods.
Compared with other state-of-the-art non-coding methods as
shown in Table 1, our LRSC is much better than GIST [28]
(63.88), [19] (83.54±1.13), [23] (73.4), [30] (86.25), and has
about 2% improvement compared with the latest work [30].

Since our LRSC is used to encode features in local regions
(superpixels), we now study the influence of image partition
on LRSC by comparing its performance under different par-
tition settings. In this work, we adopt the SLIC approach
[1] to segment images into multiple homogeneous patches
(superpixels). As for SLIC parameters, MinRegionSize and
regularizer are set to 100 and 1, respectively. For compar-
ison, we vary regionSize (nominal size of the superpixels)
between three values: 20, 30, and 40. The corresponding re-
sults are reported in Table 2. There is only a slight difference
among the three settings. Following the best result, we set
regionSize to 30. Clearly, optimizing the selection of parti-
tion parameters for each task and dataset will improve LRSC
performance. However, we leave this for future work.

In Table 3, the runtime for all coding methods on the same
image is reported. For one 300 × 400 image with 108 seg-
ments, 6984 SIFT descriptors are extracted. When all fea-
tures are coded with a 1024 codebook, LRSC is computa-
tionally much faster than SCSPM [36] because our LRSC
encodes local features jointly, which is much more efficient
than SCSPM encoding features independently (6984 �1 mini-
mization problems). LRSC is also comparable with HC [22],
SC [15], LLC [18], and LSC [25], which do not perform
expensive optimization operations. We could not compare
against the runtime of LScSPM and LCSRC because their
source codes were not available. But, we expect LRSC to
be faster, since LCSRC need solve an expensive multi-label
MRF problem. All experiments are done using MATLAB on
a 2.66GHZ Intel Core2 Duo PC with 18GB RAM.

5.2. Scene-13 Data Set
Scene-13 [10] consists of 3859 images each belonging to

one of 13 categories, which contain 200 to 400 images each.
The categories vary from outdoor scenes like mountain and
forest to indoor environments like living room and kitchen.
Following the standard setup, we use 10 random splits of
the data, while considering 100 random images per class for

Table 3. Runtime of different coding methods on a 300 × 400 image with 6984
SIFT descriptors. The codebook is 1024, and the number of superpixels is 108.

Methods Time (seconds) Methods Time (seconds)

HC [22] 1.66 LScSPM [11] -

SCSPM [36] 8.27 SC [15] 1.73
LLC [18] 1.65 LCSRC [31] -

LSC [25] 1.71 LRSC 2.33

Table 4. Classification accuracies on the Scene-13 data set.
Methods Accuracies (%) Methods Accuracies (%)

HC [22] 77.20± 0.41 LScSPM [11] -

SCSPM [36] 83.14± 0.45 SC [15] 82.11± 0.34

LLC [18] 83.25± 0.36 LCSRC [31] -

LSC [25] 83.33± 0.44 LRSC 85.13 ± 0.53

training and the rest for testing. The comparative results are
shown in Table 4. LRSC performs best among all the feature
coding methods and has about 2% improvement. Compared
with other state-of-the-art methods [19, 10, 4], LRSC per-
forms much better ([19] (83.54 ± 1.13), [10] (65.2) and has
about 2% improvement.

5.3. Caltech-101 Data Set
Caltech-101 [9] contains 9144 images in 101 classes in-

cluding animals, vehicles, flowers, etc, with high shape vari-
ability. The number of images per category varies from 31
to 800. Following the standard experimental setting, we use
10 random splits of the data, while considering 30 random
images per class for training and the rest for testing. The av-
erage classification rates are reported in Table 5. From these
results, we see that LRSC performs best among the existing
methods. As compared to the sparse coding methods SC-
SPM and LLC, LRSC’s performance is much better, since
it makes a 3% improvement. It also registers about 2% im-
provement over LCSRC. As such, we conclude that exploit-
ing spatial consistency directly in the coding stage improves
classification performances by 3% on average. We could not
compare against LScSPM because its source code was not
available. We also compare our results to the state of art
using one type of descriptors on Caltech-101. Our LRSC
is better than [3] (70.4), [17] (69.6), [38] (66.2 ± 0.5), [5]
(75.1 ± 0.9), and is comparable to [5] (75.7 ± 1.1), which
adopts kernel SVM as the classifier. In [6] (77.3 ± 0.6),
and [8] (80.3 ± 1.2), they adopt macrofeatures, cross-
validation to tune parameters, and kernel SVM, respective-
ly, and show much better performance than our LRSC. Note
that better performance has been reported with multiple de-
scriptor types (e.g., methods using multiple kernel learning
have achieved 77.7% ± 0.3 [12], 78.0% ± 0.3 [14, 34], and
84.3% [35]), or subcategory learning (83% [32]).

5.4. Caltech-256 Data Set
Caltech-256 [13] contains 256 categories as well as a

background class. The number of images is 29780 with
much higher intra-class variability and higher object location
variability as compared to Caltech-101, in which the objects
are often in the center of image. Clearly, Caltech-256 is a
very challenging data set for object recognition. Following

Table 5. Classification accuracies on the Caltech-101 data set.
Methods Accuracies (%) Methods Accuracies (%)

HC [22] 69.43± 0.52 LScSPM [11] -

SCSPM [36] 72.20± 1.30 SC [15] 69.55± 0.83

LLC [18] 71.67± 0.86 LCSRC [31] 73.23± 0.81

LSC [25] 72.58± 1.08 LRSC 75.02 ± 0.74

287

Table 6. Classification accuracies on the Caltech-256 data set.
Methods Accuracies (%) Methods Accuracies (%)

HC [22] 21.82± 0.22 LScSPM [11] 35.74± 0.10

SCSPM [36] 34.02± 0.35 SC [15] 34.60± 0.27

LLC [18] 37.41± 0.21 LCSRC [31] -

LSC [25] 38.15± 0.26 LRSC 41.04 ± 0.23

the standard experimental setting, we use 10 random splits
of the data, while considering 30 random images per class
for training and the rest for testing and list the average clas-
sification rates in Table 6. From this table, we see that our
LRSC method outperforms the other coding methods on this
data set, and makes about 3% improvement. Compared with
other state-of-the-art methods, our LRSC is also much better
than [21] (36.3), [8] (38.1± 0.6) and [3](1 desc) (37.0), and
is is also comparable to Boureau et al. [6] (41.7 ± 0.8) with
macrofeatures and cross-validation. In addition, NBNN (5
desc) [3] (42.0) and Todorovic et al. [32] (49.5) show much
better performance due to the use of multiple features.

6. Conclusion
In this paper, we present a new coding technique for local

features that employs low-rank sparse learning. This method
exploits sparsity in individual codes, locality in codebook s-
election, and low-rankness in constraining sparse codes be-
longing to the same spatial neighborhood. Although the se-
lection of spatial neighborhoods (superpixels) might not be
optimal, our extensive results show that our method improves
upon the state-of-the-art and increases classification accura-
cy on several benchmarks. For future work, we will sys-
tematically study how image partition can be combined with
low-rank sparse coding in one unified framework.

Acknowledgment
This study is supported by the research grant for the Hu-

man Sixth Sense Programme at the Advanced Digital Sci-
ences Center from Singapore’s Agency for Science, Tech-
nology and Research (A∗STAR). Narendra Ahuja was sup-
ported, in part, by the Office of Naval Research under grant
N00014-12-1-0259.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic super-

pixels. In Technical report, EPFL, 2010.

[2] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In
ECCV, 2006.

[3] O. Boiman, I. Rehovot, E. Shechtman, and M. Irani. In defense of nearest-
neighbor based image classification. In CVPR, 2008.

[4] A. Bosch, A. Zisserman, and X. Muñoz. Scene classification via plsa. In ECCV,
2006.

[5] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for
recognition. In CVPR, 2010.

[6] Y.-L. Boureau, N. L. Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the locals:
multi-way local pooling for image recognition. In ICCV, 2011.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In CVPR, 2005.

[8] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object cate-
gorization. In ICCV, 2011.

[9] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories. In CVIU, 2007.

[10] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural
scene categories. In CVPR, 2005.

[11] S. Gao, I. Tsang, L. Chia, and P. Zhao. Local features are not lonely - laplacian
sparse coding for image classification. In CVPR, 2010.

[12] P. Gehler and S. Nowozin. On feature combination formulticlass object classifi-
cation. In ICCV, 2009.

[13] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. In
techreport, 2007.

[14] http://www.robots.ox.ac.uk/ vgg/software/MKL/.

[15] Y. Huang, K. Huang, Y. Yu, and T. Tan. Salient coding for image classification.
In CVPR, 2011.

[16] A. Hyvarinen and P. O. Hoyer. A two-layer sparse coding model learns simple
and complex cell receptive fields and topography from natural images. Vision
Research, 41(18):2413–23, 2001.

[17] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. In
CVPR, 2008.

[18] J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained
linear coding for image classification. In CVPR, 2010.

[19] J.Wu and J. Rehg. Beyond the euclidean distance: Creating effective visual code-
books using the histogram intersection kernel. In ICCV, 2009.

[20] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local
image descriptors. In CVPR, 2004.

[21] J. Kim and G. K. Asymmetric region-to-image matching for comparing images
with generic object categories. In CVPR, 2010.

[22] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, 2006.

[23] L. J. Li and L. Fei-Fei. What, where and who? classifying events by scene and
object recognition. In ICCV, 2007.

[24] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimiza-
tion algorithms for exact recovery of a corrupted low-rank matrix. In Technical
Report UILU-ENG-09-2214, UIUC, August 2009.

[25] L. Liu, L. Wang, and X. Liu. In defense of softassignment coding. In ICCV,
2011.

[26] S. Liu, J. Feng, Z. Song, T. Zhang, H. Lu, C. Xu, and S. Yan. Hi, magic closet,
tell me what to wear! In ACM Multimedia, 2012.

[27] D. G. Lowe. Distinctive image features from scaleinvariant keypoints. In IJCV,
2004.

[28] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope. IJCV, 42(1):145–175, 2001.

[29] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. RASL: Robust Alignment by
Sparse and Low-rank Decomposition for Linearly Correlated Images. TPAMI (to
appear), 2011.

[30] F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes.
In ECCV, 2012.

[31] A. Shabou and H. Le-Borgne. Locality-constrained and spatially regularized
coding for scene categorization. In CVPR, 2012.

[32] S. Todorovic and N. Ahuja. Learning subcategory relevances for category recog-
nition. In CVPR, 2008.

[33] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. M. Smeulders.
Kernel codebooks for scene categorization. In ECCV, 2008.

[34] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object
detection. In ICCV, 2009.

[35] J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao. Group-sensitive multiple kernel
learning for object categorization. In ICCV, 2009.

[36] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using
sparse coding for image classification. In CVPR, 2009.

[37] K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding.
In NIPS, 2009.

[38] H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest
neighbor classification for visual category recognition. In CVPR, 2006.

[39] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Low-rank sparse learning for robust
visual tracking. In European Conference on Computer Vision, pages 1–14, 2012.

[40] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust visual tracking via struc-
tured multi-task sparse learning. International Journal of Computer Vision,
101(2):367–383, 2013.

288

