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Abstract

Although graph matching is a fundamental problem in
pattern recognition, and has drawn broad interest from
many fields, the problem of learning graph matching has
not received much attention. In this paper, we redefine the
learning of graph matching as a model learning problem. In
addition to conventional training of matching parameters,
our approach modifies the graph structure and attributes to
generate a graphical model. In this way, the model learning
is oriented toward both matching and recognition perfor-
mance, and can proceed in an unsupervised1 fashion. Ex-
periments demonstrate that our approach outperforms con-
ventional methods for learning graph matching.

1. Introduction
Attributed graph matching is a fundamental problem

ranging across broad fields in computer vision and data min-

ing, and numerous approaches have been proposed for the

problem of graph matching optimization [22]. Even so, the

literature on learning graph matching remains limited, de-

spite the demonstrated power of learning techniques in this

area. The few pioneering studies of learning graph match-

ing mainly aimed to train matching parameters, so as to

obtain correct matching assignments for mapping from a

graph template to a number of relatively large target graphs.

In this research, we approach the learning of graph

matching from the perspective of category modeling. Our

aim is to incrementally modify the graph template to pro-

duce a graphical model representing the general structural

knowledge of the targets objects in target graphs, and not

merely train matching parameters. Therefore, this research

is of great significance for object knowledge mining from

cluttered scenes.

In so doing, we also aim to transform the conventional

concept of learning for graph matching to learning based
on graph matching for both object matching and recogni-
tion. Here, object recognition refers to determining whether

a graph contains the target object, based on the trained mod-

el. We call the graphs that contain target objects positive

Figure 1. Concept extension from pure attributed graph matching

(a) to the proposed learning of graph matching (c). Different from

conventional learning of graph matching (b), our method aims to

modify the initial graph template into a graphical model, so as

to achieve good performance in both matching and recognition.

Thus, this research establishes a bridge between the learning of

graph matching and the category modeling from cluttered scenes.

graphs, and those that do not negative graphs. This idea for

learning gives consideration to both matching performance

and recognition performance.

The goal of this paper can be described as follows. Giv-

en an initial graph template and a number of positive and

negative graphs for training, we aim to 1) learn matching

parameters in an unsupervised1 fashion, 2) incrementally

refine the local and pairwise attributes of the graph tem-

plate, and simultaneously 3) modify the structure of the

graph template by eliminating incorrect or redundant parts,

thus generating a model that achieves good performance in

both matching and recognition.

To perform estimates of both matching parameters and

model attributes, our work extends the unsupervised1 learn-

ing of graph matching proposed by Leordeanu et al. [17].

Meanwhile, our approach to structural modification of the

graph template uses a novel technique based on the mecha-

1In the context of learning graph matching, the term “unsuper-

vised” [17] refers to the ability to learn the model without manually spec-

ifying each individual matching assignment within the graphs, rather than

the labeling of positive and negative graphs.
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nism of object recognition.

The contributions of this paper can be summarized as

follows. We redefine the learning of graph matching as a

category modeling problem that is oriented toward not only

conventional matching performance, but also object recog-

nition. It includes the estimation of matching parameters,

attributes, and graphical structure. In particular, this is the

first attempt to use negative graphs in the learning of graph

matching, to the best of our knowledge.

2. Related work
Most conventional algorithms for the learning of graph

matching are supervised1 methods that require detailed la-

beling of each template node’s matching assignment in each

positive graph for training. [5], [25], and [16] used large-

margin methods [26], non-linear inverse optimization [4],

and smoothing-based techniques to train matching parame-

ters in a supervised fashion, respectively. Compared to su-

pervised methods, the unsupervised1 method [17] does not

require a large amount of node-level labeling. Thus, it is

closer to our approach and resembles, at least philosoph-

ically, our idea of category knowledge mining from clut-

tered scenes. Indeed, we can derive another type of super-

vised learning from [17] as a compromise, greatly reducing

manual interactions by applying object-level labeling, and

thereby supporting fairer comparison.

All studies mentioned above are focused on training

matching parameters for good matching performance. By

contrast, our approach emphasizes ont only the matching

rate, but also the recognition performance of the trained,

matching-based model. In addition to training the matching

parameters, we modify the model (graph template) structure

and estimate model attributes.

Then, we give an in-depth discussion on the structural

modification, which is the main part of the learning process.

To be exact, if we simplify the problem by only considering

the matching between two graphs, the structural modifica-

tion is related to the progressive graph matching [6] pro-

posed by Cho et al., which made a great contribution to the

selection of reliable nodes and edges for a more efficien-

t matching. If we do not limit our discussion within the

range of general-form graph matching, this problem is also

related to category modeling for recognition [18], the mod-

el training for the Hough-style matching [27], and common

object extraction from two images based on maximal clique

mining [28, 31], such as [29, 19]. Most methods for object

extraction from multiple images [23, 30, 33, 7, 20] related

to clique mining uses a combination of two-image match-

ing results. [13] extracted object models from images based

on page-rank mechanisms. [12, 10, 11, 24] aim to learn the

maximal frequent subgraph among several graphs with dis-

tinct node or edge labels. Above all, most of these methods

mentioned above limit their interests to the geometric con-

sistency and similarity of local patches. As thus, they usu-

ally need additional data constraints. E.g. [18, 27] require

there is no roll rotations for matching, and object extraction

methods usually require the local features in images to be

distinguishing enough to determine a set of potential image

matching assignments during the preprocessing.

In contrast, by emphasizing a general algorithm for

learning graph matching, our approach remains free of such

constraints. We formulate the learning problem strictly un-

der a common paradigm of graph matching based on var-

ious local and pairwise attributes, and so are able to ap-

ply our method to cluttered scenes containing target objects

with different scales, textures, and rotations simply by de-

signing a set of suitable attributes. Nevertheless, we still

compare our recognition-oriented structural modification s-

trategy with strategies of the related studies in experiments.

3. Preliminary: graph matching problem
The objective of graph matching is to find correspon-

dences between a graph template (the category model)

G = (V,E, FV , FE) and an attributed graph G′ =
(V ′, E′, FV ′ , FE′). V and E denote the node set and the

edge set of G, respectively. FV and FE denote the at-

tribute sets for local and pairwise attributes. Let G have

nv nodes, V = {1, 2, ..., nv}, and G′ have nv′ nodes,

V ′={1, 2, ..., nv′}. Each node i ∈ V of G has nU unary at-

tributes (f
(k)
i ∈ FV, k=1, 2, ..., nU ) and each edge (i, j)∈

E has nP pairwise attributes (f
(l)
ij ∈ FE, l = 1, 2, ..., nP ).

The matching assignments between G and G′ are represent-

ed by a binary matching matrix Y ∈ {0, 1}nv×nv′ . If node

i ∈ V matches node i′ ∈ V ′, then Yi,i′ = 1, otherwise

Yi,i′ = 0. In fact, we use a column-wise vectorized replica

of Y, denoted by y ∈ {0, 1}nvnv′ . yii′ in y corresponds

to Yi,i′ in Y. Thus, we obtain a typical form [15, 6, 17] of

attributed graph matching as follows:

ŷ = argmax
y

C(y|G,G′), C(y|G,G′) = yTMy

s.t. ∀i ∈ V,
∑
i′∈V ′

yii′ ≤ 1, ∀i′ ∈ V ′,
∑
i∈V

yii′ ≤ 1
(1)

This is a quadratic assignment problem, where C(x|G,G′)
is the function measuring the matching compatibility be-

tween G and G′. M is a (nvnv′)-by-(nvnv′) compatibil-

ity matrix containing non-negative elements. In most cas-

es [15, 6], the matching compatibility Mii′,jj′ can be repre-

sented as a function of attribute distances as follows.

Mii′,jj′=

{
ΦP (dii′,jj′ |wP ), (i, j) ∈ E, (i′, j′) ∈ E′

0, Otherwise

Mii′,ii′=ΦU (dii′ |wU ), i ∈ V, i′ ∈ V ′
(2)

where ΦU (dii′ |wU ) is set on the diagonal of M and mea-

sures the unary compatibility for a node pair of i ∈ V and
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i′ ∈ V ′; the non-diagonal element of M, ΦP (dii′,jj′ |wP ),
measures the pairwise compatibility for an edge pair of

(i, j) ∈ E and (i′, j′) ∈ E′.

We define dii′ =[d
(1)
ii′ , d

(2)
ii′ , ..., d

(nU )
ii′ ]T as the Euclidean

distances of the unary attributes, d
(k)
ii′ = ‖f (k)

i − f
(k)
i′ ‖.

Whereas dii′,jj′ = [d
(1)
ii′,jj′ , d

(2)
ii′,jj′ , ..., d

(nP )
ii′,jj′ ]

T denote the

Euclidean distances of the pairwise attributes, d
(l)
ii′,jj′ =

‖f (l)
ij − f

(l)
i′j′‖. wU = [wU

1 , w
U
2 , ..., w

U
nU ]

T and wP =

[wP
1 , w

P
2 , ..., w

P
nP ]

T denote the weights for each unary and

pairwise attribute, respectively.
As in [17], without loss of generality, we transform (2)

to absorb the unary compatibilities into the pairwise com-
patibilities and leave zeros on the diagonal, achieving better
performance.

Mii′,jj′=

{
Φ(dii′,djj′,dii′,jj′|wU,wP ), (i, j)∈E, (i′, j′)∈E′
0, Otherwise

(3)

Note that when the structure of the graph template G is
not well segmented and needs further modification, it is

meaningful to bring in a dummy choice—none—for the

matching assignments of nodes in G. Without an accurate

structure, G may have some redundant nodes that should be

matched to none. Thus, we re-write (1) and (3) as:

x̂ = argmax
x

C′(x|G,G′)

C′(x|G,G′) =
∑

i,j∈V ∪{none}
cij(xi, xj |G,G′)

cij(xi, xj |G,G′) =

⎧⎪⎨
⎪⎩

Mixi,jxj , xi �= xj ∈ V ′

−∞, xi = xj ∈ V ′
λ(1TM1)
n2
vn

2
v′

, xi orxj = none

(4)

where xi indicates the matching assignment of node i ∈ V ,

and xi = i′ ∈ V ′ if and only if yii′ = 1. λ is the parameter

weighting for the matching compatibility of none. The set-

ting of none reduces incorrect matching and eases the bias

learning problem that commonly afflicts the unsupervised

learning of graph matching (which will be explained later).

The maximization of the compatibility function

C′(x|G,G′) can be achieved using various graph matching

optimization techniques, and we choose TRW-S [14] here.

4. Learning of graph matching
Given an initial graph template G=(V,E,FV ,FE), a set

of N+ positive graphs PG={G+
k |k=1, 2, ..., N+}, G+

k =
(V +

k ,E+
k ,FV +

k
,FE+

k
), and a set of N− negative graphs,

NG= {G−l |l= 1, 2, ..., N−}, G−l = (V −l ,E−l ,FV −l
,FE−l

),

the objective for learning graph matching is to estimate an

induced subgraph of G, G̃ = (Ṽ ,Ẽ,FṼ ,FẼ), Ṽ ⊆ V, Ẽ ⊆
E, as the category model, simultaneously training match-

ing parameters {wU ,wP } and modifying model attributes

{FṼ ,FẼ}, so as to achieve good matching performance in

Algorithm 1 Learning of graph matching

Input: An initial graph template G∗; a set of N+ positive

graphs, PG; a set of N− negative graphs, NG; the itera-

tion number T for the estimation of matching parameters

and attributes; a threshold τ .

Output: The category model G̃.

Set initial leave-one-out (LOO) classification accuracy as

Ã = 1 and node reliability of G as ∀i∈V, R̃i = −∞.

repeat
1. Initialize the category model G = G∗ and the

weights for unary and pairwise attributes wU =1nU×1,

wP =1nP×1.

for iteration = 1 to T do
2.1. Use the current G to predict the matching as-

signments to G+
k , X̂, based on (4).

2.2. With X̂, update the matching parameters

wU,wP and attributes FV ,FE of G, based on (7).

end for
3. Match the current G to graphs in PG and NG based

on (4)2 and obtain X̂ and X̊.

4. Given X̂ and X̊, train the classifier with the normal

vectorW and a new LOO accuracy A, based on (10).

5. If A < Ã and mini R̃i > τ then break.
6. GivenW , update node reliability R̃i, based on (11).

Update G̃ = G and Ã = A.

7. Eliminate node i∗ = argmini∈V Ri from G∗ and set

it as the induced subgraph G∗ ← G∗(V \{i∗}).
until nv = 2

positive graphs in PG and high recognition accuracy among

graphs in PG and NG.

4.1. Parameter and attribute estimation

For the matching between the current G and G+
k based

on (1), let the principal eigenvector of M be ak. According

to [15], its element akii′ can be taken as the confidence val-

ue of the corresponding assignment between node i ∈ V
and node i′ ∈ V +

k . Leordeanu et al. [17] proposed to

increase the elements corresponding to the correct assign-

ments. Meanwhile, as ‖ak‖ is normalized to 1, the ele-

ments for incorrect assignments will decrease, thus achiev-

ing greater reliability in matching.
To reduce the large computation, an approximate prin-

cipal eigenvector is calculated as ak = Mn1√
(Mn1)T (Mn1)

.

Thus, the partial derivative of ak is computed as follows:

(ak)′=
(Mn1)′‖Mn1‖ − ((Mn1)T (Mn1)′)Mn1/‖Mn1‖

‖Mn1‖2
(Mn1)′ = M′(Mn−11) +M(Mn−11)′ (5)

Here, we choose n = 10, as in [17].

The benchmark method for unsupervised learning of

graph matching [17] proposed by Leordeanu et al. focus-
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es exclusively on learning matching parameters. We ex-

tend this method to include the learning of model attributes

{wU ,wP , FV , FE}, which is similar to [32]. The objective

is to maximize the following function:

G(wU,wP,FV ,FE)=
N+∑
k=1

∑
i∈V

x̂k
i
�=none

akix̂k
i
(wU,wP,FV ,FE) (6)

where x̂k = {x̂k
i ∈ V +

k |i ∈ V } is the predicted assign-

ments between the current G and G+
k based on (4).

As shown in Algorithm 1, we can achieve the maxi-

mization of G(wU,wP,FV ,FE) iteratively. In each iteration,

we use the current G to predict the matching assignments

x̂k, k = 1, 2..., N+, and then modify the matching parame-

ters wU,wP and attributes FV ,FE via gradient ascent:

wU
k ← wU

k + ζ
∑N+

k′=1

∑
i′∈V

x̂k′
i′ �=none

∂ak′
i′x̂k′

i′
(wU,wP,FV ,FE)

∂wU
k

wP
l ← wP

l + ζ
∑N+

k′=1

∑
i′∈V

x̂k′
i′ �=none

∂ak′
i′x̂k′

i′
(wU,wP,FV ,FE)

∂wP
l

(7)

f
(k)
i ← f

(k)
i + ζ

∑N+

k′=1

∑
i′∈V

x̂k′
i′ �=none

∂ak′
i′x̂k′

i′
(wU,wP,FV ,FE)

∂f
(k)
i

f
(l)
ij ← f

(l)
ij + ζ

∑N+

k′=1

∑
i′∈V

x̂k′
i′ �=none

∂ak′
i′x̂k′

i′
(wU,wP,FV ,FE)

∂f
(l)
ij

4.2. Structural modification

In this subsection, we use the matching results of the cur-

rent G to train a classifier for object recognition. In order to

train the model for good recognition performance, we pro-

pose a new method that uses the parameters of the classifier

to guide the structural modification of G.

There are a variety of approaches to classification based

on graph matching [9, 21], and we will obtain different clas-

sification performances by applying different classifiers to

different feature. In order to achieve a natural connection

between the structural modification of G and the classifi-

cation mechanism, we select the linear-SVM classifier and

attribute distances as our target features.

Feature extraction: Let X̂ = {x̂k|k = 1, 2..., N+}
and X̊ = {̊xl|l = 1, 2..., N−} denote a set of predicted

assignments matching to positive graphs G+
k ∈ PG and a

set of predicted assignments matching to negative graphs

G−l ∈NG, based on graph matching2. Thus, according to

(3), dix̂k
i

indicates the distance of the unary attributes for

matching node i ∈ V to node x̂k
i in positive graph G+

k .

di̊xl
i

is for the matching to negative graph G−l . Similarly,

dix̂k
i ,jx̂

k
j

and di̊xl
i,jx̊

l
j

are for pairwise attribute distances.

2Note that graph matching based on (4) is applied by setting λ = −∞
in (4) to avoid x̂k

i or x̂l
i = none.

Features for object recognition are generated from these

attribute distances. We define the feature vector to recog-

nize the matching between G and G+
k as follows:

F̂k = [ûk
1 , p̂

k
1 , û

k
2 , p̂

k
2 , ..., û

k
nv
, p̂k

nv
]T

ûk
i =dT

ix̂k
i
, p̂k

i =
∑

j:j �=i
dT
ix̂k

i ,jx̂
k
j
/
∑

j:(i,j)∈E

(x̂k
i
,x̂k

j
)∈E

+
k

1 (8)

For the matching between nodes i∈V and x̂k
j ∈V +

k , ûk
i and

p̂k
i , (i = 1, 2, ..., nv ∈ V ), are two nU -dimension and nP -

dimension vectors for node i ∈ V , indicating the distance

of the nU unary attributes and the marginal penalty for the

distance of the pairwise attributes, respectively.

Similarly, the feature vector for the matching between G
and G−l is represented as

F̊ l = [̊ul
1, p̊

l
1, ů

l
2, p̊

l
2, ..., ů

l
nv
, p̊l

nv
]T (9)

Both F̂k and F̊ l are vectors with nv(n
U +nP ) dimensions.

Classification for object recognition: We train a

linear-SVM classifier for object recognition as follows.

min
W,ξ,b

{1

2
‖W‖2 + C

N++N−∑
k=1

ξk

}
,

s.t. ∀k=1, 2, ..., N+,W·F̂k−b≥1−ξk, ξk≥0;

∀k=1, 2, ..., N−,−(W·F̊k−b)≥1−ξk+N+, ξk+N+≥0

(10)

where W = [μ1,ρ1,μ1,ρ1, ...,μnv
,ρnv

]T represent the

normal vector to the hyperplane. μi is a nU -dimension vec-

tor and corresponds to the weights for the nU unary attribute

distances in ûk
i and ůl

i. ρi is a nP -dimension vector for

pairwise attribute distances in p̂k
i and p̊l

i.

Classifier-guided structural modification: Here, we

combine graph matching and the SVM-based classifica-

tion to identify reliable and unreliable nodes in G, as fol-

lows. Clearly, G should be better matched to positive graphs

G+
k ∈ PG than negative ones G−l ∈ NG. In other words,

attribute distances for matching to positive graphs (i.e. ûk
i

and p̂k
i ) should be less than those for matching to negative

graphs (̊ul
i and p̊l

i), when node i is a reliable node in G.

Consequently, the weights of node i (i.e. μi and ρi) should

be negative, according to (10).

Therefore, we use the following metric to evaluate the

reliability of node i ∈ V :

Ri = −
√
nv

‖W‖
[ nU∑
j=1

μ
(j)
i +

nP∑
j=1

ρ
(j)
i

]
(11)

where μ
(j)
i , ρ

(j)
i are the j-th elements of μi,ρi. Ri is nor-

malized by
√
nv

‖W‖ to make it invariable to size changes of G.

We perform structural modification iteratively. In each

iteration, after the estimation of matching parameters and

attributes (see Section 4.1), we eliminate the node with the
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Figure 2. Attributed graph based on line segments of object edges

lowest reliability i∗ = argmini∈V Ri from the template,

and use this induced subgraph of the template to retrain a

new model, thereby replacing current model. Meanwhile,

we calculate the classification accuracy in a leave-one-out

(LOO) cross validation for each of the models. The stop-

ping condition is that Ri∗ is greater than a threshold τ and

the elimination of node i∗ would decrease the LOO accura-

cy. Please see Algorithm 1 for details.

5. Experiments
The proposed method is especially useful in the field

of computer vision, enabling the discovery of general ob-

ject structures for image matching when the target objects

are randomly placed in cluttered scenes. To evaluate our

method in this regard, we designed two category modeling

experiments, one using ordinary RGB images and the other

using RGBD images captured by a Kinect device [1].

We used the category dataset of Kinect RGBD images,

published in [32] as a standard RGBD object dataset orient-

ed to graph matching3. Four largest categories—notebook
PC, drink box, basket, and bucket—in this dataset contained

enough RGBD objects and were chosen to construct both

the positive and the negative graph sets for training. These

images depicted cluttered scenes containing target objects

with different textures and rotations, and the both experi-

ments were performed on these scenes.

We compared the proposed method with other approach-

es to learning graph matching and various common strate-

gies in object extraction4.

5.1. Category modeling from RGB & RGBD images

In cluttered scenes, objects in the same category usual-

ly contain a variety of textures, and may be positioned at

various rotations. Considering the need for robustness with

respect to texture variations, we applied two graphical mod-

els proposed in [32], each of which uses [2] to extract ob-

ject edges and then discretizes continuous edges into line

segments to produce the graph nodes (see Fig. 2). The two

models use different attributes to represent objects in RG-

B and RGBD images, respectively. In this subsection, we

3This is one of the largest RGBD object datasets, and fits the require-

ments of graph matching well. http://sites.google.com/site/quanshizhang
4Please see Section “Related work” for more discussion.
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B
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Figure 3. Notation for local and pairwise attributes

briefly introduce these attributes. Please refer to [32] for

more details.

Experiment 1: For category modeling from ordinary

RGB images, one local attribute (nU = 1) and three pair-

wise attributes (nP = 3) are designed, as illustrated in

Fig. 3. The local attribute is the HOG features [8] of two

local patches collected at line segment terminals of node i,

denoted by f
(1)
i = [�A

i , �
B
i ]. The first of the three pairwise

attributes between nodes i and j is the angle between their

line segments, denoted by f
(1)
ij = θ2Dij . For the edge (i, j),

we define the centerline as the line connecting the centers of

the line segments of i and j. The second pairwise attribute

describes the angles between the centerline and the node

line segments, denoted by f
(2)
ij = [θcenteri , θcenterj ], where

θcenteri is the angle between the line segment of i and the

centerline. The third pairwise attribute represents relative

segment lengths, and is denoted by f
(3)
ij = 1

lcenter
[l2Di , l2Dj ],

where l2Di and lcenter are the lengths of the line segment of

i and the centerline, respectively.

Experiment 2: For category modeling from RGBD im-

ages, two local attributes (nU = 2) and three pairwise at-

tributes (nP = 3) are designed (see Fig. 3). The first local

attribute is the HOG same feature used in Experiment 1.

The second is given by f
(2)
i = log l3Di , where l3Di is the

spatial length of the line segment of node i. The first of the

three pairwise attributes, f
(1)
ij = θ3Dij , denotes the spatial

angle between the line segments of nodes i and j in the 3D

space. We then measure the centerline in a local 3D coordi-

nate system independent of the global object rotation, as the

relative spatial translation between two nodes, denoted by

cij . Based on this, the second and third pairwise attributes,

f
(2)
ij = ‖cij‖ and f

(3)
ij = cij/‖cij‖, represent the length

and local orientation of the centerline, respectively.

5.2. Experiments and quantitative evaluations
For both two experiments, we used the following com-

patibility function, corresponding to (3).

Φ(dii′ ,djj′ ,dii′,jj′ |wU ,wP )

= exp
(
−(wU )Td2

ii′−(wU )Td2
jj′−(wP )Td2

ii′,jj′
) (12)

There is, in fact, a fair variety of compatibility function-

s (e.g. exp(−wTd) and α/(β + wTd)). Note that our

proposed method is not limited to the particular compatibil-
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Figure 4. Object detection performance in RGBD images. We only show depth images corresponding to the first column.

Figure 5. Process of node elimination. The bottom-right number

indicates the model node number.

ity function used in these experiments. Any compatibility

function that can be cast into the form of (2) or (3) will do.

We set the iteration number as T = 5 and the parameter

for matching to none as λ = 5. The iteration number T
is a general setting for [17] and is applied to all competing

techniques of [17], so as to ensure fair comparison.

Cross validation and evaluation metrics: Each label-

ing of the target object in a given RGB or RGBD image

can produce an initial graph template and begin an individ-

ual model learning process. We labeled the images for a

given category in sequence to begin multiple learning pro-

cesses. In each of these processes, the remaining (i.e. unla-

beled) images of this category were used to generate posi-

tive graphs. We then randomly selected the same number of

images from other categories to generate negative graphs.

We used 2/3 and 1/3 of these graphs for training and test-

ing in this learning process, respectively. The end result is

a set of models for the evaluation of the category.

We used the average matching rate (AMR) to evaluate

the matching performance in positive graphs. AMR is wide-

ly used to evaluate the learning of graph matching [17, 16].

The matching rate of each individual matching result in-

dicates the proportion of model nodes that are correctly

matched to the target object. AMR represents the average

of individual matching rates across all matching results pro-

duced by the trained models. Similarly, the average recog-
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Figure 6. Average model size learned by using different thresholds

of τ . (a) For 2D models learned from RBD images and (b) for 3D

models learned from RGBD images.

nition accuracy (ARA) (i.e. the average value for recogni-

tion accuracy in the cross validation) was used to evaluate

model-based recognition performance among both positive

and negative graphs.

Competing methods: In the first step of the evaluation,

we compared our method to several competing approaches

to the learning of graph matching across both experiments.

First, we performed graph matching without training, de-

noted by MA, to establish a baseline. MA uses TRW-S [14]

to match the initial graph template to the target objects in

images. Second, as the benchmark method for unsuper-

vised learning of graph matching, we used [17] proposed by

Leordeanu et al., which does not modify model structure,

but rather iteratively train the attribute weights for match-

ing, i.e. wU and wP . Two competing approaches were ob-

tained by applying spectral techniques [15] (LS) and TRW-

S [14] (LT), respectively, to solve the matching optimization

of (4). Third, we designed a framework that iteratively es-

timates matching parameters wU ,wP and model attributes

FV , FE according to techniques presented in Section 4.1,

but did not perform structural modification (WM). The final

competing technique involved supervised learning of graph

matching (SU) based on [17]. SU required to label target

objects in positive graphs and regarded matching assign-

ments mapped onto target objects as correct ones.

In the second step of the evaluation, we compared the

performances of the proposed method using different struc-

tural modification strategies. The first strategy, (CB), is

based on the matching compatibility/penalty, and has been
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Category Category modeling from ordinary RGB images Category modeling from RGBD images

MA LS LT WM SU Oursavg MA LS LT WM SU Oursavg

M
at

ch
in

g Notebook PC 56.05 46.40 48.83 49.93 52.90 50.74 62.02 57.40 61.94 61.91 67.71 67.79
Drink box 56.15 49.46 51.24 58.55 52.70 89.11 59.11 55.66 57.91 62.41 60.68 88.25
Basket 55.28 50.25 50.97 59.60 51.68 81.33 60.88 56.99 59.59 66.10 61.52 88.61
Bucket 58.02 54.74 56.39 61.76 56.80 86.85 61.13 59.15 60.51 64.41 61.90 89.36

R
ec

o
g
n
it

io
n Notebook PC 67.63 67.36 66.60 77.07 67.98 75.21 75.41 70.94 72.11 82.78 76.79 81.51

Drink box 72.74 69.73 68.75 82.47 72.05 89.53 80.09 76.33 78.36 87.73 78.65 93.42
Basket 63.95 67.13 67.01 74.94 66.32 76.39 73.09 70.66 74.59 86.11 71.88 87.71
Bucket 80.90 78.96 77.83 86.12 78.54 89.07 75.52 78.34 77.18 84.63 77.36 87.97

Table 1. Comparison of average matching rates and average recognition accuracy.

Methods Average recognition accuracy Average matching rate

Notebook Drink box Basket Bucket Notebook Drink box Basket Bucket

T
h
e

av
er

ag
e

p
er

fo
rm

an
ce

R
G

B

im
ag

es Ours+CBavg 60.96 81.72 72.51 85.58 37.90 87.75 82.56 88.11
Ours+WBavg 75.36 87.38 73.87 88.18 49.12 82.89 74.20 84.50

Oursavg 75.21 89.53 76.39 89.07 50.74 89.11 81.33 86.85

R
G

B
D

im
ag

es Ours+CBavg 76.46 85.80 85.67 86.48 63.71 88.06 93.44 90.62
Ours+WBavg 80.63 90.64 86.51 86.77 65.12 84.75 87.69 86.89

Oursavg 81.51 93.42 87.71 87.97 67.79 88.25 88.61 89.36

T
h
e

b
es

t

p
er

fo
rm

an
ce

R
G

B

im
ag

es Ours+CBbest 76.17 85.76 78.94 89.01 50.39 90.72 85.45 89.78

Ours+WBbest 80.03 87.91 77.84 89.67 51.71 86.81 76.09 86.29

Oursbest 82.16 90.45 82.52 91.81 56.12 94.10 84.37 90.22

R
G

B
D

im
ag

es Ours+CBbest 84.92 91.32 89.77 88.56 74.40 93.07 96.16 91.34
Ours+WBbest 84.78 91.78 89.06 88.57 67.74 89.59 90.40 89.64

Oursbest 88.57 94.85 92.01 90.63 76.92 93.02 92.40 90.69

Table 2. Comparison of different structural modification strategies that can be used in the proposed learning framework.

widely used by [10, 30, 29]. CB eliminates the node with

the lowest average compatibility by replacing (11) with

Ri =
∑

k

∑
j∈V cij(x̂

k
i , x̂

k
j |G,G+

k )/nv . The second s-

trategy [3], (WB), is oriented toward linear SVM, and uses

weights W for feature selection. WB eliminates the node

with the smallest weight amplitude by replacing (11) with

Ri = ‖[μi,ρi]
T ‖. Note that for this step of the evaluation,

all learning components expect the above structural modifi-

cation strategies are fixed.

Comparison details: Since our method can obtain dif-

ferent models by setting different values of τ for structural

modification, we set τ to be 0, 0.2, 0.4, ..., 2 during train-

ing. This produced different matching and recognition per-

formances, i.e. different AMRs and ARAs. Fig. 6 shows

the changes in model size according to τ , and Fig. 5 illus-

trates the models in the node elimination process. Larger

values of τ indicate stricter structural constraints and lead

to smaller models.

We used the average/best performance among all set-

tings of τ (i.e. the average/largest values for AMR

and ARA) to evaluate the proposed method, denoted by

Oursavg/Oursbest. To ensure a fair comparison, for each

given τ , CB and WB were allowed to eliminate nodes until

they obtained models with the same size as that produced

by Ours. Similar to Oursavg/Oursbest, CBavg/CBbest and

WBavg/WBbest correspond to the average/best performance

among all setting of τ . For the comparison of recognition

performance, we trained the proposed classifiers using the

matching results produced by the competing methods.

Fig. 4 illustrates the object detection performances, and

Table 1 and Table 2 list quantitative comparison. Be-

cause the competing methods for learning graph matching

(MA,LS,LT,WM,SU) do not have the ability to refine the

topological structure of the graph template, they are sensi-

tive to the bias of the initially labeled graph template (in-

cluding biased attributes and redundant nodes), especial-

ly for the unsupervised methods LS,LT,and WM. This bias

may produce matching errors, which, in turn, increase the

bias in the unsupervised model learning, thus propagating

into a significant model bias. In contrast, our method mod-

ifies biased structure in early iterations by eliminating bad-

ly matched parts, thereby reducing the prevalence of biased

matching in later iterations. As a result, our method exhibits

better performance.

6. Conclusions

In this paper, we proposed an algorithm for the learn-

ing of graph matching. This method trains the structure and

attributes of the graph template, as well as matching param-

eters, to obtain a graphical model. By including negative

graphs in the learning process, we orient the model learning

toward both object matching and recognition. Experiments

show that our approach outperforms competing methods.

Our strategy for structural modification is based on

the recognition mechanisms between positive and negative
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graphs, and exhibits better performance than convention-

al structural modification strategies based only on positive

graphs. As the proposed strategy iteratively corrected errors

in the topological structure of the initial graph template, it

reduced the bias learning problem, which so afflicted pio-

neering work in the field.
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