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Abstract

We propose an adaptive subgradient descent method to
efficiently learn the parameters of CRF models for image
parsing. To balance the learning efficiency and perfor-
mance of the learned CRF models, the parameter learn-
ing is iteratively carried out by solving a convex optimiza-
tion problem in each iteration, which integrates a proximal
term to preserve the previously learned information and the
large margin preference to distinguish bad labeling and the
ground truth labeling. A solution of subgradient descent up-
dating form is derived for the convex optimization problem,
with an adaptively determined updating step-size. Besides,
to deal with partially labeled training data, we propose a
new objective constraint modeling both the labeled and un-
labeled parts in the partially labeled training data for the
parameter learning of CRF models. The superior learning
efficiency of the proposed method is verified by the experi-
ment results on two public datasets. We also demonstrate
the powerfulness of our method for handling partially la-
beled training data.

1. Introduction
The Conditional Random Field [19] (CRF) offers a pow-

erful probabilistic formulation for image parsing problems.

It has been demonstrated in previous works [18, 11, 16] that

integration of different types of cues in a CRF model can

significantly improve the parsing accuracy, like the smooth-

ness preference and global consistency. However, how to

properly combine multiple types of information in a CRF

model to achieve excellent parsing performance still re-

mains an open question. For this reason, the parameter

learning of CRF models for image parsing tasks has re-

ceived increasing attention recently.

Considerable progress on the parameter learning of CRF

models has been made in the past few years. However, the

parameter learning of CRF models for the image parsing

tasks still remains a challenging problem for several rea-

sons. First, as the CRF models used in many image parsing

problems are of large scale and include expressive inter-

variable interactions, the computational challenges make

the parameter learning of CRF models difficult. Given a

large number of training images, the learning efficiency

would become a critical issue. Second, partially labeled

training data could cause the failure of some learning meth-

ods, which is common in image parsing. For example, it has

been found that the learned parameters involved in the pair-

wise smoothness potential are forced to tend toward zeros

when using partially labeled training data [25].

In this paper, we propose an adaptive subgradient de-

scent method that iteratively learns the parameters of CRF

models for image parsing. The parameter learning is itera-

tively carried out by solving a convex optimization problem

in each iteration. The solution for the convex optimiza-

tion problem gives a subgradient descent updating form

with an adaptively determined updating step-size which can

well balance the learning efficiency and performance of the

learned CRF models. Meanwhile, to deal with partially la-

beled training images that are common in various image

parsing tasks, a new objective constraint for the parame-

ter learning of CRF models is proposed, which models both

the labeled and unlabeled parts of partially labeled training

images.

1.1. Related work

The parameter learning of CRF models is an active re-

search topic, and investigated in many previous works [7,

27, 23, 20, 12, 2, 21, 15, 9]. Most current methods for the

parameter learning of CRF models can be broadly classi-

fied into two categories: maximum likelihood-based meth-

ods [19, 17] and max-margin methods [7, 27, 23, 12]. En

exhaustive review of the literature is beyond the scope of

this paper, and the following review will mainly focus on

the max-margin methods in which the parameter learning

of CRF models is formulated as a structure learning prob-

lem based on the max-margin formulation. Naturally, the

max-margin methods for general structure learning can be

used for the parameter learning of CRF models, such as the

1-slack and n-slack StructSVM(structural SVM) [27, 12],

M3N(max-margin markov network) [7] and Projected Sub-

gradient [23]. The 1-slack StructSVM [12] method is an im-
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proved version of the n-slack StructSVM, shown to be sub-

stantially faster than the n-slack StructSVM and the Struc-

tured SMO method proposed in the M3N [7]. The subgra-

dient method [23] is another popular solution for structure

learning problems, which is usually efficient and easy to

implement.

Based on the subgradient method, recent works on the

parameter learning of CRF models [15, 24] adopt differ-

ent decomposition techniques. In [15], a dual decompo-

sition approach for the random field optimization is com-

bined with the max-margin formulation for the parameter

learning of random field models, which reduces the training

of a complex high order MRF (Markov Random Field) to

the parallel training of a series of simple slave MRFs that

are much easier to handle. In [24], a decomposed learn-

ing method which performs efficient learning by restricting

the inference step to a limited part of the structured out-

put spaces is proposed. As the updating step-sizes for the

subgradient descent in these methods [23, 15, 24] are pre-

defined and oblivious to the characteristics of the data be-

ing observed, to balance the learning efficiency and perfor-

mance of the learned models, the updating step-sizes need

to be carefully chosen. Inappropriate updating step-sizes

could lead to bad performance of the learned CRF models or

slow convergence. This motivates us to improve the subgra-

dient method for the parameter learning of CRF models by

adaptively tuning the subgradient descent, termed as adap-
tive subgradient descent in this paper. The Polyak step-

size [22] is a possible solution, if the optimal value of the

objective function for the optimization problem is known

or can be estimated. However, for the parameter learning

problem of CRF models, the optimal value of the objective

function is unknown , and how to estimate it is also unclear.

Another important but less discussed issue in the previ-

ous max-margin methods for the parameter learning of CRF

models is related to partially labeled training data, which

is common in image parsing tasks. To deal with the par-

tially labeled training data, a maximum likelihood-based

method which approximates the partition function with the

Bethe free energy function is proposed in [28], with some

limitations of the Bethe approximation discussed in [10].

It has been observed that different treatments of the par-

tially labeled data could lead to quite different performance.

To deal with the partially labeled training data, we intro-

duce latent variables in the CRF models, inspired by the

work [29, 15].

2. Learning CRF to Parse Images
Random field models are widely used to formulate vari-

ous image parsing problems. These models are defined by

an undirected graph G = 〈V , E〉, with V and E denoting

nodes and edges in the graph. One discrete random variable

is associated with each node, which may take a value from

a set of labels L = {l1, l2, · · · , lL}. Given observation x,

the joint conditional distribution of the label assignment y
and x, P (y|x) can be expressed as:

P (y|x) = 1

Z
exp(−

∑
c∈C

Ψc(xc,yc)) (1)

The graph G consists of a set of cliques C, and each clique

c ∈ C is associated with a label assignment yc which is a

subset of y. Z =
∑

y′ exp(−
∑

c∈C Ψc(xc,y
′
c)) is the par-

tition function, a normalization term. The label prediction

is usually obtained by solving the following MAP (max a

posterior) inference problem:

y∗ = argmax
y∈L

logP (y|x) = argmin
y∈L

E(x,y) (2)

with the energy function E(x,y) =
∑

c∈C Ψc(xc,yc).

2.1. Max-margin formulation

First, we briefly review a well studied simple model to

organize the interaction between the parameters and fea-

tures in the energy function: the linear model that assumes

the potentials can be expressed as the following linear form:

Ψc(xc,yc) = wc · f(xc,yc) (3)

where wc is the parameters, and f(xc,yc) is the fea-

ture vector for a clique c. This linear model has been

widely used in the structure learning methods, like the

StructSVM [27, 12] and Projected Subgradient [23]. Based

on this linear model, the parameter learning of CRF mod-

els can be cast as a typical structure learning problem, with

the corresponding energy functions for the CRF models ex-

pressed as:

E(x,y) = w · Φ(x,y) =
∑
c∈C

wc · f(xc,yc) (4)

In the following, we review the widely used max-margin

formulation for the parameter learning of CRF models:

1-slack and n-slack StructSVM Given a training set

{(xn,yn)}Nn=1, using the n-slack StructSVM [27], the

learning problem can be formulated as [26]:

argmin
w

1

2
‖w‖2 + λ

N∑
n=1

ξn ,s.t. ∀n = 1, 2, · · · , N, ∀ŷn (5)

E(xn,yn)− E(xn, ŷn) + Δ(yn, ŷn) ≤ ξn, ξn ≥ 0

xn is the observation, yn, ŷn are the ground truth label

and predicted label, Δ(yn, ŷn) is the loss function. Sim-

ilarly, using the 1-slack reformulation proposed in the 1-

slack StructSVM [12], the learning problem can be formu-

lated as:

argmin
w

1

2
‖w‖2 + λξ (6)

s.t. ∀ŷ,H(w;x∗,y∗, ŷ) ≤ ξ, ξ ≥ 0
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whereH(w;x∗,y∗, ŷ)

= w · [Φ(x∗,y∗)− Φ(x∗, ŷ)] + Δ(y∗, ŷ) (7)

=
N∑

n=1

w · [Φ(xn,yn)− Φ(xn, ŷn)] +

N∑
n=1

Δ(yn, ŷn)

The objective constraint in the 1-slack StructSVM is ob-

tained by merging the objective constraints for each sample

of the training set {(xn,yn)}Nn=1 in the n-slack StructSVM,

with x∗ = ∪xn, y∗ = ∪yn and ŷ = ∪ŷn. The 1-slack and n-

slack StructSVM methods iteratively update the parameters

to be learned by the cutting plane algorithm. In each iter-

ation, they need to solve a a quadratic program (QP) prob-

lem, and the size of constraints in the QP problem linearly

increases with the number of iterations.

Unconstrained max-margin formulation An uncon-

strained formulation of (5) is adopted in [23], which uses

the projected subgradient method to minimize the follow-

ing regularized objective function:

ρ(w) =
1

2
‖w‖2 + λR(w) (8)

R(w) = max
ŷ
H(w;x∗,y∗, ŷ) (9)

where R(w) is the empirical risk. The parameters to be

learned are iteratively updated by:

wt+1 = P[wt − αtgw] (10)

where gw is the subgradient of the convex function (8), P
is the projection operator and αt is the predefined step-size

that needs to be chosen carefully. Inappropriate updating

step-size could lead to bad performance of the learned CRF

models or slow convergence.

3. Adaptive Subgradient Descent Learning
In this section, we propose an adaptive subgradient de-

scent algorithm for the parameter learning of CRF models,

as described in the algorithm 1. It is motivated by apply-

ing the idea proposed in the proximal bundle method [13]

that uses proximal functions to control the learning rate to

the subgradient methods in which the learning rate is sub-

tly controlled by the predefined step-sizes. In each iter-

ation, the parameter updating is carried out by solving a

convex optimization problem which integrates a proximal

term to preserve the previously learned information and the

large margin preference to distinguish bad labeling and the

ground truth labeling. The solution for the convex optimiza-

tion problem gives a subgradient descent update form with

an adaptively determined updating step-size for the parame-

ter learning, which well balances the learning efficiency and

performance of the learned CRF models. A typical training

process of using the proposed algorithm to train CRF mod-

els for image parsing is shown in Figure 1.

3.1. Adaptive subgradient descent algorithm

In each iteration of the algorithm 1, the adaptive subgra-

dient descent updating is carried out by solving the follow-

ing convex optimization problem which has a subgradient-

based solution with an adaptively determined step-size:

wt+1 = argmin
w

1

2
‖w −wt‖2 + Cξ (11)

s.t. ξ ≥ 0 ,H(w;x∗,y∗, ŷt) ≤ ξ and w 
 0

On the one hand, the updated wt+1 is expected to distin-

guish bad labeling and the ground truth labeling y∗ with a

sufficiently large margin and thus progress is made. There-

fore, an objective constraint same as that in the 1-slack

StructSVM is used in the optimization problem (11):

H(w;x∗,y∗, ŷt) ≤ ξ (12)

ŷt is the merged labeling configuration that most violates

the constraint (12) for the current parameter wt. On the

other hand, a proximal term that forces the learned param-

eter wt+1 to stay as close as possible to wt is inserted into

the objective function of (11), so that the previous learned

information can be preserved.

Algorithm 1 Adaptive Subgradient Descent Algorithm

1: Input: training set {(xi,yi)}Ni=1

2: x∗ = ∪xi , y∗ = ∪yi, initialize w = w1

3: for all t = 1, 2, · · · ,M do
4: ŷt = argmaxŷ∈LH(wt;x

∗,y∗, ŷ)
5: C = κ/

√
t

6: wt+1 = argminw
1
2‖w −wt‖2 + Cξ

s.t. ξ ≥ 0 ,H(w;x∗,y∗, ŷt) ≤ ξ and w 
 0
7: end for
8: Output: wf = argminwt∈{wt}Mt=1

H(wt;x
∗,y∗, ŷt)

In addition to the objective constraint (12), we add one

more constraint that the parameters to be learned are non-

negative, similar to the previous work [26]. The parameters

in the CRF models are required to be non-negative in many

CRF-based image parsing methods, so that different poten-

tials in the energy function can be weighted properly by the

parameters, and some efficient MAP inference algorithms

on CRF models can be applied, like the widely used graph

cut algorithm [5]. For the inference in the fourth step of

the algorithm 1, we use the α-expansion algorithm [5]. To

assure the α-expansion algorithm can be applied to find the

most violated labeling configuration in the fourth step, we

adopt the Hamming loss for the loss function Δ(y∗, ŷ) in-

volved in (12) as [26] did. Next, we solve the optimization

problem (11) by using standard tools from convex analy-

sis [4].
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3.1.1 Subgradient-based solution

Let [d1, d2, · · · , dK ] = Φ(x,y∗) − Φ(x, ŷt), wt =
[wt

1, w
t
2, · · · , wt

K ], where K is the number of parameters to

be learned in the CRF models. We also assume that the en-

tries of [d1, d2, · · · , dK ] are sorted with the ascending order

of {wt
i/di, i = 1, 2, · · · ,K}. Then, we have:

Theorem 3.1 The subgradient-based solution for the opti-
mization problem (11) is:

wt+1
i =

{
wt

i − αtdi if wt
i − αtdi ≥ 0;

0 otherwise (13)

αt = max
α
L(α), 0 ≤ α ≤ C (14)

where [d1, d2, · · · , dK ] is the subgradient of the empirical
risk (9). The optimization problem (14) is a Lagrangian
dual problem of the optimization problem (11), where

L(α) = −1

2

n∑
i=1

(αdi − wt
i)

2 − 1

2
F(α) + αΔ(y∗, ŷt) (15)

F(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑K
i=n+1(αdi − wt

i)
2 α ∈ [0,

wt
n+1

dn+1
];∑K

i=n+2(αdi − wt
i)

2 α ∈ [
wt

n+1

dn+1
,
wt

n+2

dn+2
];

· · · · · ·∑K
i=n+j(αdi − wt

i)
2 α ∈ [

wt
n+j

dn+j
, C];

(16)

Different from the Projected Subgradient method [23]

that uses predefined updating step-sizes, the updating step-

size αt in our algorithm is adaptively determined by solv-

ing the optimization problem (14), which can well balance

the learning efficiency and performance of the learned CRF

models. For the limit of space, the detailed derivation and

proof is presented in Appendix A of the supplementary ma-

terial [1].

Next, we briefly analyze how to solve the optimization

problem (14). As L(α) is a piecewise quadratic function of

α, in the kth piecewise definition domain of L(α), [αs, αe],
the maximum value of L(α) can be computed as:

Lmax
k =

{
L(α∗) α∗ ∈ [αs, αe];
max{L(αs),L(αe)} otherwise;

(17)

Setting the partial derivatives of L(α) with respect to α to

zero gives α∗:

α∗ =

∑n
i=1 w

t
id

t
i +

∑K
i=n+k w

t
id

t
i +Δ(y∗, ŷt)∑n

i=1 d
2
i +

∑K
i=n+k d

2
i

(18)

The adaptive step-size αt is the very one that maximizes

L(α) among all values of α. With the maximum value of

L(α) in each piecewise definition domain, αt can be effi-

ciently computed by searching the maximum value ofL(α),
Lmax = max{Lmax

k }jk=1.

grass tree building cow bike sheep plane 

Figure 1. The training process of using the algorithm 1 to train

a Robust PN model [14] for image parsing. The first column

shows the input training image; The second column is the unary

classification result; The third column is the output of the Robust

PN model with the learned parameters after the first iteration; The

fourth column is the output of the Robust PN model with the final

learned parameters which is obtained at the 5th iteration. These

output are obtained in the fourth step of algorithm 1.

As C is an upper bound of α, to assure that appropriate

progress is made in each iteration, C is initialized with a

large value κ (κ= 1 in our implementation), and iteratively

decreases to κ/
√
t, as stated in the fifth step of the algo-

rithm 1. Meanwhile, to avoid the trivial solution, we set a

non-zero low bound for α, η/
√
t (η = 10−8) in our imple-

mentation.

3.1.2 Convergence Analysis

Regarding the convergence of the proposed algorithm, we

have the following theorem:

Theorem 3.2 Suppose w∗ is the optimal solution that min-
imizes (8), t is the number of iterations, ∀ε > 0, the final
solution wf obtained by the algorithm 1 is bounded by:

lim
t→+∞ ρ(wf )− ρ(w∗) ≤ ε+ 1

2‖wf‖2 − 1
2‖w∗‖2 (19)

The proof is given in the supplementary material [1].

4. Learning with Partially Labeled Image
Partially labeled training images are common in image

parsing problems, as it is usually very time-consuming to

get precise annotations by manual labeling. A typical par-

tially labeled example is shown in Figure 2(a). The unla-

beled regions in partially labeled training images are not

trivial for the parameter learning of CRF models, as ob-

served in previous works [25, 28]. As evaluating the loss on

the unlabeled regions during the learning process is not fea-

sible, discarding the unlabeled regions would be a straight-

forward choice, which excludes the unlabeled regions from

the CRF models built for the partially labeled training im-

ages in the learning process. However, without considering

the unlabeled regions, the interactions between the labeled
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(a) (b) (c)

Figure 2. (a) A partially labeled training image. The unlabeled re-

gions are shown in black; (b) and (c), the pairwise CRF models

for the parameter learning with different ways to treat the unla-

beled regions in the training image. (b) using the constraint (20),

the nodes in the unlabeled regions and links linked to them are

shown in green. (c) discarding the unlabeled regions in the param-

eter learning, with the nodes and links for the unlabeled regions in

(b) excluded.

regions and the unlabeled regions will not be modeled in

the learning process. This could affect the parameter learn-

ing of CRF models. For example, for the boundaries be-

tween the labeled regions and unlabeled regions, as these

boundaries are mostly not the real boundaries between dif-

ferent categories, the pairwise smoothness should be pre-

served on these boundaries. Without the interactions be-

tween the labeled regions and the unlabeled regions, the

pairwise smoothness constraint on these boundaries will not

be encoded in the learning process.

To deal with partially labeled training images, we pro-

pose a new objective constraint for the parameter learning

of CRF models by modifying the objective constraint (12),

with the CRF models built for partially labeled training im-

ages in the learning process taking into both the labeled re-

gions and the unlabeled regions. Let Rk and Ru denote the

labeled regions and the unlabeled regions in the partially la-

beled training images, y∗k denote the ground truth label for

Rk. In each iteration of the algorithm 1, the obtained la-

bel prediction ŷt can be divided into two parts: the labeling

configuration for Rk and the labeling configuration for Ru,

and we denote them as ŷk
t and ŷu

t . Then, the new objective

constraint is defined as:

H(w;x∗,y∗t , ŷt) ≤ ξ (20)

where the ground truth label y∗t = y∗k ∪ ŷu
t consists of the

ground truth label y∗k for Rk and the predicted label ŷu
t for

Ru. Note that when there are no unlabeled regions in the

training images, (12) and (20) are the same. A simple pair-

wise CRF model for a partially labeled training image is

shown in Figure 2, with different ways to handle the unla-

beled regions in the partially labeled training images illus-

trated.

5. Experiment
To evaluate the proposed method, we choose one typical

CRF model widely used in the image parsing: the Robust

PN model [14], with its energy function defined as:

E(x,y) =
∑
i∈V

Ψi(yi) +
∑

(i,j)∈E
Ψij(yi, yj) +

∑
c∈S

Ψc(yc)

= wu · fu(x,y) +wp · fp(x,y) +wc · fc(x,y)
= wT · Φ(x,y) (21)

where fu(x,y), fp(x,y) and fc(x,y) are the label de-

pendent feature vectors for the unary potential, pairwise

potential and high order potential to enforce label consis-

tency, and Φ(x,y) = [fu(x,y), fp(x,y), fc(x,y)], w =
[wu,wp,wc]. The parameters to be learned include wu =
[wu],wc = [wc] and wp = [w1

p, w
2
p, · · · , wL

p ], where L is

the number of categories. Similar to [25], the unary poten-

tial is defined on pixel level, multiplied by the weight pa-

rameter wu. The Robust Higher Order Potential is defined

the same as that in [14], multiplied by the weight parameter

wc. The pairwise smoothness potential is defined as:

Ψij(yi, yj) =

{
λ(i, j)(wyi

p + w
yj
p ), yi �= yj ;

0, yi = yj
(22)

where λ(i, j) = 1/(1 + c ‖ Di − Dj ‖2) is the contrast

sensitive between neighboring pixels. Di and Dj are the

RGB color vectors of nodes i, j ∈ T in the graph.

The evaluation of the proposed method is carried out

on two public datasets: the MSRC-21 dataset [25] and

CBCL StreetScenes dataset [3], with it compared with an-

other two widely used methods: the Projected Subgradi-

ent method [23]1 and the 1-slack StructSVM method [12]

which has been demonstrated to be much more efficient

than the n-slack StructSVM method [27]. [26] using the n-

slack StructSVM method is not included in the comparison,

as it needs to solve a large scale QP problem in each itera-

tion and will be very time-consuming, when the number of

training images is large.

The procedure of the evaluation includes three succes-

sive steps: 1) unary potential training which is identical in

our method, the 1-slack StructSVM method and the Pro-

jected Subgradient method; 2) parameter learning of the

CRF model; 3) testing of the learned CRF model. Each

dataset for the evaluation is randomly split with a parti-

tion ratio 45%/10%/45% for the above three steps respec-

tively. As our focus is evaluating the parameter learning

algorithms for CRF models, we choose simple patch level

features: Texton + SIFT for the unary potential training,

with the Random Forest classifier [6](50 trees, max depth

= 32) chosen as the classifier model. The evaluation proce-

dure is repeated five times with random split of the datasets

for the evaluation, and the results reported in the following

sections are the averaged results. The parameter learning of

1As the energy function for the Robust PN model is submodular, no

decomposition in [15] is necessary for the model, which makes [15] and

the Projected Subgradient method [23] equivalent in this situation.
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the Robust PN model starts with the unary classification,

with the parameters to be learned initialized as wu = 1,

wp = 0, wc = 0 for our method, the 1-slack StructSVM

method and Projected Subgradient method. For the MAP

inference on the Robust PN model, the α-expansion algo-

rithm is used. For the performance evaluation, we use two

criteria: CAA (category average accuracy, the average pro-

portion of pixels correctly labeled in each category) and GA

(global accuracy, proportion of all pixels correctly labeled)

same as the previous works on the image parsing [25, 18].

Robust PN model
Unary StructSVM [12] Subgradient [23] Our method

classification (25 iterations) (200 iterations) (5 iterations)

GA 0.63 0.692 0.701 0.708
CAA 0.421 0.476 0.507 0.503

(a) MSRC-21 dataset

Robust PN model
Unary StructSVM [12] Subgradient [23] Our method

classification (33 iterations) (200 iterations) (5 iterations)

GA 0.666 0.687 0.692 0.696
CAA 0.623 0.641 0.644 0.647

(b) CBCL StreetScenes dataset

Table 1. The segmentation accuracy obtained with unary classifi-

cation, the Robust PN models learned by the 1-slack StructSVM

method, Projected Subgradient method and our method on the

datasets for the evaluation. The average numbers of iterations used

by different methods to achieve the reported segmentation accu-

racy are indicated in the parentheses.

5.1. Performance of the learned models

The segmentation accuracy achieved with the unary clas-

sification as well as the Robust PN models learned by our

method, the 1-slack StructSVM method and Projected Sub-

gradient method on the two datasets for the evaluation is

given in Table 1. As some critical parameters in the learning

formulation of our method, the 1-slack StructSVM method

and Projected Subgradient method could influence the per-

formance of the learned CRF models to varying degrees,

these critical parameters are carefully tuned for a fair com-

parison by trying different values, and the achieved best re-

sults are reported for the performance comparison in Ta-

ble 1. These critical parameters include the initial upper

bound of the updating step-size in our method, the updating

step-sizes and the weight of constraint violation in the Pro-

jected Subgradient method, the weight of slack variable in

the 1-slack StructSVM method. More details are explained

in the supplementary material [1]. Several examples of the

parsing results obtained by different methods are illustrated

in Figure 3.

MSRC-21 dataset This dataset contains 591 images cov-

ering 21 categories. The segmentation accuracy achieved

(a) (b) (c) (d) (e) (f)

Figure 3. The parsing results obtained by unary classification and

the Robust PN models learned by the 1-slack StructSVM [12],

Projected Subgradient [23] and our method on the MSRC-21

dataset and the CBCL street scene dataset. (a) test images; (b)

unary classification; (c) 1-slack StructSVM; (d) Projected Sub-

gradient; (e) our method, using the modified constraint (20); (f)

ground truth annotation

Time Cost
StructSVM [12] Subgradient [23] Our method

Learning of Robust PN model

MSRC-21 114 min 935 min 26 min

CBCL 276 min 1512 min 51 min

Table 2. The average time cost of the 1-slack StructSVM method,

Projected Subgradient method and our method for the parameter

learning of the Robust PN models on the MSRC-21 dataset and

CBCL StreetScenes dataset. All methods are implemented with

C++ and tested on the same platform (Intel i7 2.8G, 8G RAM).

with the Robust PN models learned by our method, 1-slack

StructSVM method and Projected Subgradient method are

given in Table 1 (a). From the comparison in Table 1 (a), we

find that compared with the unary classification, the seg-

mentation accuracy is improved to varying degrees by the

Robust PN models learned by all the three methods. The

segmentation accuracy achieved with the Robust PN model

learned by our method outperforms that achieved with the

model learned by the 1-slack StructSVM method and is

comparable to that achieved with the Robust PN model

learned by the Projected Subgradient method.

CBCL StreetScenes dataset This dataset contains 3547

images of street scenes, covering nine categories: car,

pedestrian, bicycle, building, tree, sky, road, sidewalk, and

store. We exclude the three categories with frequency of

occurrence under 1%: pedestrian, bicycle and store in the

test. The segmentation accuracy achieved with the Robust

PN models learned by our method, the 1-slack StructSVM

method and Projected Subgradient method is given in Ta-

ble 1(b). Similar to the result on the MSRC-21 dataset, the

Robust PN models learned by all the three methods im-

prove the segmentation accuracy to varying degrees. We
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Figure 4. The number of iterations used to train the Robust PN

models in the Projected Subgradient method [23] and our method

to the corresponding parsing error achieved with the learned

Robust PN models on the MSRC-21 dataset and the CBCL

StreetScenes dataset. The parsing error is measured by the loss

of GA (global accuracy) and CAA (category average accuracy).

also find that the segmentation accuracy achieved with the

Robust PN model learned by our method is slightly better

than that achieved with the models learned by the 1-slack

StructSVM method and Projected Subgradient method.

5.2. Learning efficiency

The average time cost to train the Robust PN models

by different methods is presented in Table 2. The learn-

ing efficiency of our method and the Projected Subgradi-

ent method depends on the predefined numbers of iterations

used to train the CRF models, such as M in the algorithm 1.

The relationship between the numbers of iterations used to

train the Robust PN models and the corresponding perfor-

mance of the trained models is plotted in Figure 4 for these

two methods. In Figure 4, we find that on the test set of

both datasets for the evaluation, the parsing errors of the

Robust PN model learned by our method become stable

rapidly, after only five iterations. By contrast, on the test

sets of both datasets for the evaluation, the parsing errors of

the Robust PN model learned by the Projected Subgradient

method decreased gradually, approximately stable after 200

iterations. Therefore, in our experiment, the numbers of it-

erations used to train the CRF models in our method and

the Projected Subgradient method are set as 5 and 200 re-

spectively. For the 1-slack StructSVM method, it converged

after about 25 and 33 iterations on the MSRC-21 dataset and

CBCL StreetScenes dataset respectively, with the stop con-

dition that the learned parameters of the CRF model keep

unchanged, same as that in [26].

5.3. Learning with partially labeled training images

To evaluate the influence of the unlabeled regions in par-

tially labeled training images on the parameter learning of

CRF models, we test the three learning methods with two

different ways to treat the unlabeled regions, using the mod-

ified objective constraint (20) and discarding the unlabeled

regions. Before the evaluation, we first force the boundaries
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Figure 5. The segmentation accuracy achieved on the MSRC-21

and CBCL dataset with the Robust PN models learned by our

method, the 1-slack StructSVM [12] and Projected Subgradient

method [23], using different ways to treat the unlabeled regions.

(a) and (b), the global accuracy on the MSRC-21 and the CBCL

dataset; (c) and (d), the category average accuracy on the MSRC-

21 and the CBCL dataset

(a) (b) (c) (d)

Figure 6. The parsing results obtained with the Robust PN mod-

els learned by our method, with different ways to treat the unla-

beled regions in partially labeled training images. (a) test images;

(b) using the modified objective constraint (20); (c) discarding the

unlabeled regions; (d) ground truth annotation

between different categories in the annotation masks unla-

beled by clearing the labels of the boundary pixels between

different categories, similar to the segmentation annotation

in the VOC dataset [8].

The evaluation result is given in Figure 5, and we find

that when using the modified objective constraint (20) for

the parameter learning, the parsing performance of Robust

PN models learned by our method and the Projected Sub-
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gradient method is significantly improved on both datasets

for the evaluation. This indicates that modeling the in-

teractions between the labeled regions and unlabeled re-

gions of the partially labeled training images in the learn-

ing process is important for our method and the Projected

Subgradient method. Please note that the results of our

method and the Projected Subgradient method reported in

Table 1 are also obtained by using the modified objective

constraint (20), as many images in the two datasets for the

evaluation are partially labeled. For the 1-slack StructSVM

method, the learned models using the modified objective

constraint (20) achieve better performance on the CBCL

StreetScenes dataset and worse performance on the MSRC-

21 dataset. Several examples of the parsing results obtained

with the Robust PN models learned by our method are illus-

trated in Figure 6, with different ways to treat the unlabeled

regions in partially labeled training images.

6. Conclusion
We present an adaptive subgradient descent method to

learn parameters of CRF models for image parsing. In each

iteration of the algorithm, the adaptive subgradient descent

updating is carried out by solving a simple convex optimiza-

tion problem which has a subgradient-based solution with

an adaptively determined step-size. The adaptively deter-

mined updating step-size can well balance the learning effi-

ciency and performance of the learned CRF models. Mean-

while, the proposed method is capable of handling partially

labeled training data robustly, with a new objective con-

straint modeling both the labeled and unlabeled parts in the

partially labeled training images for the parameter learning.
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