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Abstract

Compared to visual concepts such as actions, scenes
and objects, complex event is a higher level abstraction of
longer video sequences. For example, a “marriage pro-
posal” event is described by multiple objects (e.g., ring,
faces), scenes (e.g., in a restaurant, outdoor) and actions
(e.g., kneeling down). The positive exemplars which exactly
convey the precise semantic of an event are hard to obtain.
It would be beneficial to utilize the related exemplars for
complex event detection. However, the semantic correla-
tions between related exemplars and the target event vary
substantially as relatedness assessment is subjective. Two
related exemplars can be about completely different events,
e.g., in the TRECVID MED dataset, both bicycle riding
and equestrianism are labeled as related to “attempting a
bike trick” event. To tackle the subjectiveness of human as-
sessment, our algorithm automatically evaluates how pos-
itive the related exemplars are for the detection of an event
and uses them on an exemplar-specific basis. Experiments
demonstrate that our algorithm is able to utilize related ex-
emplars adaptively, and the algorithm gains good perform-
ance for complex event detection.

1. Introduction
Current research of visual content analysis mainly fo-

cuses on the recognition of visual concepts, such as actions,
scenes and objects [1][2] [17]. Differently, in this paper
we propose a generic framework to detect complex events
in large scale unstructured web video archives. Figure 1
shows two contrastive examples illustrating the substantial
variations within one event. Both video sequences are of
the event “marriage proposal” in the TRECVID MED data-
set. The first event took place in a classroom while in the
second video a man proposed outdoor. People with different
cultural background will also have very different marriage
proposals, e.g., the western and eastern marriage proposals
can be very different. Compared to concept (scene, action,

Video 1 

Video 2 

Figure 1. Two video sequences of the event “marriage proposal”
in TRECVID MED dataset. An event may take place in different
places with huge variations in terms of lighting, resolution, dura-
tion and so forth.

object, etc.) analysis, event detection is more challenging in
the following aspects:

Firstly, an event is a higher level semantic abstraction
of video sequences than a concept and consists of multiple
concepts. For example, a “marriage proposal” event can be
described by multiple objects (e.g., ring, faces), scene (e.g.,
in a restaurant), actions (e.g., talking, kneeling down) and
acoustic concepts (e.g., music, cheering).

Secondly, a concept can be detected in a shorter video
sequence or even in a single frame but an event is usually
contained in a longer video clip. The object “table” can be
detected in a single frame and the action “jump” only occurs
in a very short video clip. In contrast, a video sequence of
the event “birthday party” may last longer. If we see only
a few frames showing some people chatting, we could not
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know if it is a “ birthday party” event or not.
Thirdly, different video sequences of a particular event

may have dramatic variations. Taking “giving directions to
a location” event as an example, it may take place in the
street, inside a shopping mall or even in a car, where the
visual features are very different. Also, web videos have
huge variations. For example, they can be recorded either
by a mobile camera with fast camera motion or by a profes-
sional video recorder fixed on a tripod.

While much progress has been made on visual concept
recognition recently, the detection of complex event is still
in its infancy. Most previous works of video concept/event
detection are constrained to the detection of unusual activ-
ities (but not typical events) in small video dataset, e.g., ab-
normal activity or repetitive patterns detection in video se-
quence. Since 2012, limited studies focusing on complex
event analysis of web videos have been reported. In [6],
researchers proposed a graph based approach to analyze the
relationship among different concepts such as action, scene,
and object for complex event analysis. However, they only
focused on event recognition while event detection is a more
challenging task. Tamrakar et al. have experimentally com-
pared seven visual features for complex event detection in
web videos [14] and found that MoSIFT [3] is the most
discriminative feature [14]. Ma et al. proposed to adapt
the auxiliary knowledge from pre-labeled video dataset to
facilitate event detection [9] where only 10 positive exem-
plars are available. The study in [12] has combined acous-
tic feature, texture feature and visual feature for event de-
tection. Xu et al. have proposed an decision level fusion
algorithm, which jointly considers threshold and smooth-
ing factor to learn optimal weights of multiple features, for
event detection [18]. In literature, Support Vector Machine
(SVM) with χ2 kernel has been shown to be an effective
tool for event detection in research papers and TRECVID
competition [20] [11] [9] [12] [14]. In [10], event detection
and video attribute classification are integrated into a joint
framework to leverage the mutual benefit.

Compared to concepts, an event is a higher level abstrac-
tion of a longer video clip. We should not directly apply the
method proposed for concept recognition with weak super-
vision, e.g. one shot learning [4] or attribute based recog-
nition [1], to our problem. Due to the semantic richness of
an event in longer web videos, we may need more positive
exemplars for training. For example, if all the positive ex-
emplars of “marriage proposal” we have are indoor videos,
the system probably may not be able to detect the second
video in Figure 1 as “marriage proposal.” In addition, many
frames in web videos are not semantically meaningful. As
shown in Figure 1, only a small portion of the frames are
directly related to marriage proposal.

Last year, TRECVID Multimedia Event Detection
(MED) Track has launched a new task, aiming to detect

Figure 2. A video related to “marriage proposal.” A girl plays mu-
sic, dances down a hallway in school, and asks a boy to prom.

complex event in web videos when only 10 positive and
10 related video exemplars are available. The premise is
that it is a non-trivial task to collect a positive exemplar
video which conveys the precise semantic of a particular
event and excludes any irrelevant information. It is compar-
atively easier to collect a video exemplar which is related
to a particular event, but does not necessarily contain all
the essential elements of the event. A main problem con-
fronted is that it remains unclear how to use the related ex-
emplars, as they are neither positive nor negative. The re-
lated exemplars can be of any other event, e.g., both “thesis
proposal” and “people date” are related to “marriage pro-
posal”. Thus transfer/multi-task learning does not apply
to this problem as it remains unclear how to set the labels
of the related exemplars. Due to the difficulties, although
NIST has provided related exemplars for event detection in
TRECVID, none of the existing systems has ever used these
data. In this paper, we aim to detect complex events us-
ing only 10 positive exemplars along with 10 related video
exemplars for event detection. To the best of our know-
ledge, this paper is the first research attempt to automat-
ically assess the relatedness of each related exemplar and
utilize them adaptively, thereby resulting in more reliable
event detection when the positive data are few.

2. Motivations and Problem Formulation
Detecting complex event using few positive exemplars is

more challenging than the existing works which use more
than 100 positive exemplars for training [12] [14]. Figure
2 shows some frames from a video clip marked as related
to the event “marriage proposal” in TRECVID MED data-
set. The video has several elements related to “marriage
proposal,” e.g., a young man and a young lady doing some-
thing intimately, and people cheering. If we have sufficient
positive exemplars for a particular event, including the re-
lated exemplars may not improve the performance. How-
ever, given that only few positive exemplars are available, it
is crucial to make the utmost use of all the information.

Related exemplars are easier to obtain, but are much
more difficult to use. The main problem is that the defin-
ition of “relatedness” is rather vague and subjective. There
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Figure 3. A video related to “marriage proposal.” A large crowd
cheers after a boy asks his girlfriend to go to prom with him with
a bouquet of flowers and a huge sign.

are not objective criteria to evaluate how close an exemplar
is related to the target event. Simply assigning identical
labels to different related exemplars does not make much
sense as a related exemplar can be either closely or loosely
related to the target event. Let us consider the case shown
in Figure 3: a young man approaches to a young lady with
a bouquet of flowers, kneels down in front of the lady, then
they kiss and hug, and a large crowd cheers afterwards. The
video looks pretty much like a “marriage proposal” event
but it is not. The young man in that video actually asks
his girlfriend to go to prom with him as opposed to propos-
ing marriage. Compared to Figure 2, the video sequence
shown in Figure 3 is more likely to be a “marriage pro-
posal” event. It would be better to label the video shown
in Figure 3 as closer to positive exemplar than that shown
in Figure 2. Consequently, adaptively assigning soft labels
to related exemplars by automatically assessing the related-
ness turns to an important research challenge.

Next, we give our algorithm which is able to assign la-
bels to related exemplars adaptively. Suppose there are
n training videos {x1, x2, ...xm, xm+1, ..., xn}, which are
grouped into three classes, i.e., positive exemplars, null
videos and related exemplars, and xm+1, ...xn are related
exemplars. Hereafter, a null video is a video sequence
which can be any video sequence except for positive and
related exemplars. There are two label sets Ỹ and Y used in
our algorithm. The first label set Ỹ is the same as the tradi-
tional classifiers such as SVM and least square regression,
which does not account for the related exemplars. More
specifically, if xi is a positive exemplar, the ith row of Ỹ
is [0, 1], otherwise Ỹi = [1, 0]. To encode the information
from related exemplars, we introduce a new label set Y to
infer the soft labels of positive and related exemplars.

The key problem is to adaptively infer a soft label reflect-
ing the positiveness for each of the related exemplars. De-
note Si ≥ 0 as a positive variable. We use a vector A ∈ R

n

to indicate if a training data is a positive or related exem-
plar. If xi is a positive exemplar, Ai = 1; if xi is a related
exemplar, Ai = −1; if xi is null video, Ai = 0. Recall
that in Ỹ used in the traditional classifiers, the label of a
positive exemplar is set as 1 for the second column. There-

fore, given a related exemplar xi, its adaptive soft label Y a
i

should be Y a
i = 1 − Si. To better differentiate related and

positive exemplars, if xi is a positive exemplar, its adapt-
ive soft label Y a

i is set to be Y a
i = 1 + Si. If xi is a null

video, then its label is the same as in Ỹ . The intuition lying
behind is that related exemplars have positive attributes but
less positive than the true positive exemplars. For negative
exemplars, their labels are −1, which is the same as Ỹ used
in the traditional classifiers. Denote X = [x1, ..., xn]. The
basic model to adaptively assess the positiveness of related
exemplars is formulated as follows:

min
P,S,Y a

∥∥XTP − Y
∥∥2
F
+Ω(P )

s.t. Y = [Ỹ1, Y
a], Y a = Ỹ2 +A� S, S ≥ 0, (1)

where Ỹ1 is the first column of Ỹ , P is the transformation
matrix from video feature X to the soft labels Y , Ω(P ) is a
regularization term on P , and � is the Hadamard product.
Intuitively, the labels of related exemplars should be smal-
ler than those of positive exemplars. Thus for a positive
exemplar xi, we add a positive variable Si to (Ỹ2)i in (1).
Likewise, for a related exemplar xj , we subtract a positive
variable Sj from (Y2)j . That is the reason why we impose
non-negative constraint on S ∈ R

n. As the adaptive la-
bel matrix Y a is an optimization variable in (1), the model
is able to adaptively utilize the related exemplars on a per-
exemplar basis. When there are no related exemplars avail-
able, Y is the same as Ỹ , and the algorithm will reduce to
least square regression. Given a related exemplar xi, Si ad-
aptively reflects its relatedness. If xi is less related to the
target event, a larger value Si will be subtracted from Ỹ2.

As the number of null videos is much larger than those
of positive and related exemplars, we further cluster the null
videos into k clusters by K-means as preprocessing. In this
way, the training exemplars are grouped into k negative sets
and one positive set (including related exemplars). Denote
Yr = [Y 1

r , Y
2
r , ..., Y

k+1
r ] ∈ {0, 1}n×(k+1), whose first k

columns correspond to the k negative clusters and the last
column Y k+1

r corresponds to positive and related samples.
The same as (1), if xi is a null video from the jth neg-
ative cluster, then Y ij

r = 1; if xi is a positive or related
exemplar then Y

i(k+1)
r = 1. Further to the basic model

shown in (1), we constrain that the transformation matrix P
in (2) should have some common structure with the detector
which is learnt based on positive and null exemplars only,
as positive exemplars are more accurate than related ones.
We propose to minimize the following objective function:

min
W,P,S,Y

∥∥∥X̃TW − Ỹ
∥∥∥
2

F
+

∥∥∥XTP − Y
∥∥∥
2

F

+α(‖W‖2F + ‖P‖2F ) + β ‖E‖∗
s.t. Y = [Y 1

r , Y
2
r , ..., Y

k
r , Y a

r ],

Y a
r = Y k+1

r +A� S,E = [W,P ], S ≥ 0,

(2)
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where ‖·‖∗ is the trace norm of a matrix and X̃ =
[x1, ..., xm]. In (2), the trace norm minimization of E =
[W,P ] is adopted to uncover the shared knowledge of W
and P [19]. The minimization of (2) would allow the sys-
tem to analyze the relationship between the positive and the
related exemplars, and obtain the optimal adaptive label Y .

3. The Optimization Procedure

Let D = 1
2 (EET )−

1
2 . We convert Eq (2) to:

min
W,P,S

∥∥∥X̃TW − Ỹ
∥∥∥
2

F
+

∥∥∥XTP − Y
∥∥∥
2

F

+α(‖W‖2F + ‖P‖2F ) + βTr(ETDE)

s.t. Y = [Y 1
r , Y

2
r , ..., Y

k
r , Y a

r ],

Y a
r = Y k+1

r +A� S,E = [W,P ], S ≥ 0,

(3)

By setting the derivative of Eq (3) w.r.t. P to 0, we get:

P = (XXT + αI + βD)−1XY. (4)

Then we fix P and optimize W and S. By setting the deriv-
ative of Eq (3) w.r.t. W to 0, we get:

W = (X̃X̃T + αI + βD)−1X̃Ỹ (5)

Optimizing S equals to the following problem:

min
S≥0

∥∥(XTP )k+1 − (Y k+1
r +A� S)

∥∥2
F
, (6)

where (XTP )k+1 denotes the (k + 1)th column of XTP .
Let (XTP )k+1 − Y k+1

r = M , it becomes:

min
S≥0

‖M −A� S‖2F (7)

The optimal solution to (7) can be obtained by

Sij = max(Mij/Aij , 0). (8)

Based on the discussion, we propose the algorithm
shown in Algorithm 1 to optimize the objective problem and
the convergence is guaranteed by Theorem 1.

Theorem 1. Algorithm 1 monotonically decreases the ob-
jective function value of Eq (2) until convergence.

Proof. According to Step 2 of Algorithm 1:

∥∥∥X̃TWt+1 − Ỹ
∥∥∥
2

F
+

∥∥∥XTPt+1 − Yt+1

∥∥∥
2

F

+α(‖Wt+1‖2F + ‖Pt+1‖2F ) + βTr(ET
t+1DtEt+1)

≤
∥∥∥X̃TWt − Ỹ

∥∥∥
2

F
+

∥∥∥XTPt − Yt

∥∥∥
2

F

+α(‖Wt‖2F + ‖Pt‖2F ) + βTr(ET
t DtEt)

(9)

Algorithm 1: Adaptive Relatedness Analysis.
Input:

X ∈ R
d×n, X̃ ∈ R

d×m, Ỹ ∈ R
n×1,Yr ∈ R

n×(k+1);
Parameters α and β.

Output:
Optimized W ∈ R

d×1, P and S.
1: Set t = 0 and initialize W and P randomly;
2: repeat

Compute Dt as: Dt =
1
2 (EtE

T
t )

− 1
2 ;

Update Pt according to Eq (4);
Update Wt according to Eq (5) ;
Compute XTPt − Yr = Mt;
Compute St by Sij

t = max(M ij
t /Aij , 0);

t = t+ 1.
until Convergence;

Substituting Dt =
1
2 (EtE

T
t )

− 1
2 into Eq (9), it becomes:

∥∥∥X̃TWt+1 − Ỹ
∥∥∥
2

F
+

∥∥∥XTPt+1 − Yt+1

∥∥∥
2

F

+α(‖Wt+1‖2F + ‖Pt+1‖2F ) +
β

2
Tr

(
Et+1E

T
t+1(EtE

T
t )−

1
2

)

≤
∥∥∥X̃TWt − Ỹ

∥∥∥
2

F
+

∥∥∥XTPt − Yt

∥∥∥
2

F

+α(‖Wt‖2F + ‖Pt‖2F ) +
β

2
Tr

(
EtE

T
t (EtE

T
t )−

1
2

)

(10)

According to Lemma 1 in [19]:

β

2
Tr

(
Et+1E

T
t+1(EtE

T
t )

− 1
2

)
− βTr(Et+1E

T
t+1)

1
2

≥ β

2
Tr

(
EtE

T
t (EtE

T
t )

− 1
2

)
− βTr(EtE

T
t )

1
2 . (11)

Subtracting Eq (11) from Eq (10), we have:

∥∥∥X̃TWt+1 − Ỹ
∥∥∥
2

F
+
∥∥XTPt+1 − Yt+1

∥∥2
F

+α(‖Wt+1‖2F + ‖Pt+1‖2F ) + β ‖Et+1‖∗
≤

∥∥∥X̃TWt − Ỹ
∥∥∥
2

F
+
∥∥XTPt − Yt

∥∥2
F

+α(‖Wt‖2F + ‖Pt‖2F ) + β ‖Et‖∗

(12)

As the objective function value of (2) is lower bounded by
zero, the proposed algorithm converges.

4. Experiments
In this section, we conduct extensive experiments to test

our algorithm using large scale real world dataset.

4.1. The Dataset

In 2011, NIST collected a large scale video dataset,
namely MED 11 DEV-O collection, as the test bed for event
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detection. MED 11 DEV-O was collected from a variety of
Internet hosting sites, which consists of over 32,000 test-
ing videos and the total duration of DEV-O collection is
about 1,200 hours. It is so far the largest publicly avail-
able video dataset with fine human labels, either in terms of
total duration or number of videos. There are 10 events
defined by NIST for TRECVID MED 11 evaluation. In
2012, NIST added another 10 new events to the evaluation.
NIST provided about 2,000 positive exemplars of the 10
new events as MED 12 Develop collection. There are two
types of event detection tasks defined by NIST. The first
one is to detect complex event using about 150 positive ex-
emplars. The other one is to detect events using only 10
positive exemplars and 10 related exemplars. We use the 10
positive exemplars and the related exemplars of each event
identied by NIST for training. 1000 null videos from MED
11 develop dataset are used as negative exemplars.

In our experiment, we use all the testing data in MED 11
DEV-O collection for the 10 MED 11 events. Since the
labels for TRECVID MED 12 testing collection are not re-
leased, we remove the 10 positive and related exemplars
from MED 12 Develop collection and merge the remaining
into MED 11 DEV-O collection as the testing data. Given a
testing video xt, the detection score is given by (PTxt)k+1.

4.2. Experiment Setup

We use three motion features in our experiments, includ-
ing Space-Time Interest Points (STIP) [8], Motion SIFT
(MoSIFT) [3], and Dense Trajectories [15]. These fea-
tures utilize different descriptors to capture the shape and
temporal motion information of videos. In addition, we
use three static features from key frames in the experi-
ment, including Scale-Invariant Feature Transform (SIFT),
Color SIFT (CSIFT) [13] and Transformed Color Histo-
gram (TCH). We have a 32,768 dimension spatial BoWs for
each feature as we used in [20]. We use Blacklight at Pitt-
sburgh Supercomputing Center, a cluster which has 4096
cores and 32 TB RAM, to extract the visual features. Up to
1000 cores were simultaneously used to extract the 6 visual
features. However, it is worth noting that our algorithm is
much faster than feature extraction. Both training and test-
ing are run on a desktop once the features are extracted.

Leveraging related exemplars for event detection is so
far an unexploited area. To the best of our knowledge, there
is no directly related algorithm to compare with. Support
Vector Machine (SVM) and Kernel Regression (KR) are the
most widely used classifiers in TRECVID MED 11 com-
petition by the top ranked teams and recent research pa-
pers [12] [14] [20] [11] [9]. Therefore, we mainly com-
pare our algorithm to them. To show the advantage of
our algorithm in utilizing related exemplars, we report the
results of SVM and KR using related exemplars as posit-
ive exemplars, which are denoted as SVMRP and KRRP

Table 1. Experiment results on LFW dataset.
Method AP(%) Method AP(%) Method AP(%)

Ours 22.6 KR 19.0 KRRP 18.3
KRRN 18.7 SVM 19.5 SVMRP 19.0

SVMRN 19.2 MTFL 19.6 – –

hereafter. In addition, as the related exemplars may not be
closely related to the target event, we also report the results
of SVM and KR using related exemplars as negative exem-
plars, which are denoted as SVMRN and KRRN . Moreover,
we compare our algorithm to the multi-task feature learning
algorithm MTFL proposed in [7], which considers posit-
ive, negative, and related prediction as three tasks and learns
the shared representations among tasks in the same group.
Since we have three tasks in total, we use 2 as the group
number, which makes related videos share some informa-
tion with both positive ones and negative ones. Average
Precision (AP) and Mean AP (MAP) are used as the evalu-
ation metrics.

The χ2 kernel as described in [16] has been demon-
strated the most effective kernel for event detection [12]
[14] [20] [11]. Therefore, we use the χ2 kernel defined be-
low for SVM, SVMRP , SVMRN , KR, KRRP and KRRN .
Following [9] [10], we perform full-rank Kernel PCA
(KPCA) with χ2 kernel to get the kernelized represent-
ation of videos for our algorithm and MTFL. The para-
meters of all the algorithms are searched on the grid of
{10−4, 10−2, 1, 102, 104}. After KPCA, K-means should
be performed to have a more balanced input for each fea-
ture. k is empirically set to 10 in our experiment.

4.3. Experiment on A Toy Problem

We use the LFW dataset [5] containing face images of
5749 individuals as a toy problem. The dataset is not
equally distributed. For example, there are 530 images of
George Walker Bush, but only 13 images of George Her-
bert Walker Bush. The 530 images of George W. Bush are
divided into two subset: 10 as positive training exemplars
and the remaining 520 data for testing. We then use the 13
face images of George H.W. Bush as related exemplars be-
cause of the father-child relationship. To test the robustness
of the algorithm, we add some noises to six (about a half) of
the face images of George H.W. Bush. We sample one im-
age for each person as background images, resulting in 5746
background images. 1000 null images are used as negative
training exemplars and the remaining 4746 images are used
as null testing images. In this toy, pixel values are used as
image features. Experiment results are reported in Table 1,
which shows that our algorithm gains the best performance.

4.4. Experiment on Complex Event Detection

We first use some examples to show how the proposed al-
gorithm adaptively assigns soft labels to related exemplars.
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Table 2. Mean Average Precision (MAP) (%) of the 20 events. The proposed algorithm significantly outperforms all the other algorithms.
Feature Our Algorithm KR KRRP KRRN SVM SVMRP SVMRN MTFL
STIP 4.9 4.5 4.1 4.4 4.0 3.6 1.1 4.5

MoSIFT 7.1 6.7 6.3 6.6 6.2 5.4 1.0 6.7
Trajectory 8.9 8.3 8.0 8.2 7.8 7.1 1.9 8.1

SIFT 6.8 6.3 6.2 6.2 6.3 6.1 1.0 6.3
TCH 4.3 3.9 3.8 3.9 3.9 3.6 0.8 3.9

CSIFT 5.6 5.2 4.5 5.1 5.2 4.4 0.9 5.1

Average 6.3 5.8 5.5 5.7 5.6 5.0 1.1 5.8

(a) People dancing at a party. Derived soft label: 0.8884

(b) People sitting in a house at night. Derived soft label: 0.4761

Figure 4. The frames sampled from two video sequences marked
as related exemplars to the event “birthday party” by NIST.

(a) Someone giving a lecture in Europe. Derived soft label: 0.9105

(b) Two guys demonstrating robot fight. Derived soft label: 0.6581

Figure 5. The frames sampled from two video sequences marked
as related to the event “town hall meeting” by NIST.

In (2) the label matrix Y is an optimization variable as ap-
posed to a fixed constant. Given a related exemplar, if it is

closely related to the target event, the corresponding learned
label should be larger than the one which is loosely related
to the target event. Figure 4 shows the frames sampled from
two video sequences marked as related exemplars of the
event “birthday party” by NIST. The first video is not a
“birthday party” event, but is about people singing and dan-
cing in a party. It is pretty much related to “birthday party”.
In the second video, a few people sit and chat at night. It
is also related to a “birthday party” event as there are sev-
eral people in the video. One can see that the first video is
more related to the target event. Correspondingly, the de-
rived soft label of the first video is 0.8884 and the derived
soft label of the second one is only 0.4761, both of which
are quite consistent with human perception. Figure 5 shows
another example, which includes the frames sampled from
two related exemplars of the event “town hall meeting”. The
system learned soft label for the video in which someone
gives a lecture in Europe is 0.9105. The soft label of the
other video in which two guys demonstrate robot fight for
audience is 0.6581. We can see that using the learned op-
timal label for training makes more sense than simply tak-
ing them as positive or negative exemplars. These examples
also demonstrate that it is less reasonable to fix the labels of
related exemplars as a smaller constant, e.g. 0.5.

Next, we quantitatively compare the proposed algorithm
to the state of the art. Table 2 shows the MAP of all the 20
events using different visual features. Our algorithm outper-
forms KR by almost 9% relatively, indicating that it is be-
neficial to utilize related exemplars for event detection. As
human assessment of relatedness is subjective, the selection
of related exemplars is somewhat arbitrary. Some of the re-
lated exemplars should be regarded as positive exemplars
but others are much less positive. As a result, we observe
from Table 2 that KR outperforms both KRRN and KRRP .
Similarly, SVM also outperforms SVMRN and SVMRP .
This observation indicates that different related exemplars
should be utilized adaptively. Using related exemplars as
either positive or negative will degrade the overall perform-
ance for both SVM and KR. That could be also the reason
why none of the existing event detection systems built in
2012 used related exemplars for event detection [20] [11]
[9] [14], although NIST has provided them.
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Figure 6. Performance comparison using MoSIFT (the upper two subfigures) and Color SIFT (the lower two subfigures) on MED dataset.

Next, taking MoSIFT and Color SIFT as showcases, we
report the AP of each event. The upper two subfigures
of Figure 6 show the event detection performance of us-
ing MoSIFT feature. The lower two subfigures of Figure 6
show the event detection performance of using Color SIFT
feature. Looking into Figure 6, we observe that when using
MoSIFT feature, our algorithm achieves the best or second
best performance for 19 out of 20 events. When using Color
SIFT feature, our algorithm achieves the best or second best
performance for 18 out of 20 events. As SVM and Ker-
nel regression models have been demonstrated very effect-
ive for complex event detection [12] [14] [20] [11] [9], this
experiment demonstrates that our model not only gains the
best MAP for all the events, the performance is also stable
across multiple events.

4.5. The Limitations

Although the proposed algorithm gains promising per-
formance in event detection, it still has some limitations. In
our setting, the number of negative training data is much
larger than that of positive ones. The major problem of the
algorithm is that it may fail in relatedness analysis mainly
due to the imbalanced numbers of positive and negative
samples. As the number of positive examples are much
smaller than that of negative examples, all the induced soft
labels of related videos will be the same as negative la-
bels. As a way to relieve the drawback, K-means clustering
is performed to divide the negative samples into multiple
classes. Figure 7 shows a failure example of our algorithm.
If we look at the video, it is very similar to the event visu-
ally and should have a higher score. In the experiment the
derived soft label is only 0.3136, which is not quite con-
sistent with human supervisor’s decision. In the future, we
will study how to do a better job in dealing with imbalanced
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Figure 7. The frames sampled from a video sequence marked as
related to the event “Getting a vehicle unstuck” by NIST.

training data for relatedness analysis.

5. Conclusions

We have focused on how to utilize related exemplars for
event detection when the positive exemplars are few. The
main challenge confronted is that the human labels of re-
lated exemplars are subjective. We propose to automatic-
ally learn the relatedness and assign soft labels to related
exemplars adaptively. Extensive experiments indicate that
1) taking related exemplars either as positive or negative ex-
emplars may degrade the performance; 2) our algorithm is
able to effectively leverage the information from related ex-
emplars by exploiting the relatedness of a video sequence.
Future work will apply our model to interactive information
retrieval where the users may not be able to get the exact
search exemplars for relevance feedback.
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