
Complex 3D General Object Reconstruction from Line Drawings

Linjie Yang1, Jianzhuang Liu2,1,3, and Xiaoou Tang1,2
1Department of Information Engineering, The Chinese University of Hong Kong

2Shenzhen Key Lab of Computer Vision and Pattern Recognition
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

3Media Lab, Huawei Technologies Co. Ltd., China
{yl012,jzliu,xtang}@ie.cuhk.edu.hk

Abstract

An important topic in computer vision is 3D object
reconstruction from line drawings. Previous algorithms
either deal with simple general objects or are limited to
only manifolds (a subset of solids). In this paper, we
propose a novel approach to 3D reconstruction of complex
general objects, including manifolds, non-manifold solids,
and non-solids. Through developing some 3D object
properties, we use the degree of freedom of objects to
decompose a complex line drawing into multiple simpler
line drawings that represent meaningful building blocks of
a complex object. After 3D objects are reconstructed from
the decomposed line drawings, they are merged to form
a complex object from their touching faces, edges, and
vertices. Our experiments show a number of reconstruction
examples from both complex line drawings and images with
line drawings superimposed. Comparisons are also given
to indicate that our algorithm can deal with much more
complex line drawings of general objects than previous
algorithms.

1. Introduction and Related Work

A 2D line drawing is the most straightforward way of

illustrating a 3D object. Given a line drawing representing

a 3D object, our visual system can understand the 3D

structure easily. For example, we can interpret without

difficulty the line drawing shown in Fig. 1(a) as a castle

with four walls and one door. Imitating this ability has been

a longstanding and challenging topic in computer vision

when a line drawing is as complex as this example. The

applications of this work include 3D object design in CAD

and for 3D printers, 3D query generation for 3D object

retrieval, and 3D modeling from images.

In this paper, same as the majority of related work, a

line drawing is defined as the orthogonal projection of the

(a) (b)
Fig. 1. (a) A line drawing representing a castle. (b) The 3D model

of the line drawing.

edges and vertices of a 3D object in a generic view, and

objects with planar surfaces are considered. A line drawing

is represented by an edge-vertex graph. It can be obtained

by the user/designer who draws on the screen with a tablet

pen, a mouse, or a finger (on a touch sensitive screen), with

all, with some, or without hidden edges and vertices.

Line labeling is the earliest work to interpret line draw-

ings [1], [17]. It searches for a set of consistent labels such

as convex, concave, and occluding from a line drawing to

test its correctness and/or realizability. Line labeling itself

cannot recover 3D shape from a line drawing. Later, 3D

reconstruction from the contours (line drawings) of objects

in images is studied [19], [14], [13], which handles simple

objects only. Model-based 3D reconstruction [2], [3], [20]

can deal with more complex objects, but these methods

require to pre-define a set of parametric models.

Recently, popular methods of 3D reconstruction from

line drawings are optimization based, which are most

related to our work and are reviewed next. These methods

can be classified into two categories: one dealing with

manifolds and the other dealing with general objects. A

general object can be a manifold, non-manifold solid, or

non-solid. Manifolds are a subset of solids, defined as

follows:

A manifold, or more rigorously 2D manifold, is a
solid where every point on its surface has a neighborhood
topologically equivalent to an open disk in the 2D Euclidean
space.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.181

1433

In this paper, a solid is a portion of 3D space bounded

by planar faces, and a manifold is also bounded by planar

faces. Each edge of such manifolds is shared exactly by two

faces [4].

Most 3D reconstruction methods from a line drawing

assume that the face topology of the line drawing is known

in advance. This information can reduce the reconstruction

complexity greatly. Algorithms have been developed to find

faces from a line drawing in [16], [10], and [9], where [16]

and [10] are for general objects and [9] for manifolds.

Optimization-based 3D reconstruction depends on some

critera (also called image regularities) that simulate our vi-

sual perception. Marill proposes a very simple but effective

criterion to reconstruct a simple object: minimizing the

standard deviation of the angles (MSDA) in the object [11].

Later, other regularities are proposed to deal with more

complex objects such as face planarity, line parallelism,

isometry, and corner orthogonality [5], [6], [15], [18]. In

these methods, an objective function

Φ(z1, z2, ..., zNv) =

C∑

i=1

ωiφi(z1, z2, ..., zNv) (1)

is minimized to derive the depths z1, z2, ..., zNv
, where

Nv is the number of vertices in the line drawing, φi, i =
1, 2, ..., C, are the regularities, and ωi, i = 1, 2, ..., C,
are the weights. The main problem in this approach is

that these algorithms are easy to get trapped into local

minima (obtaining failed results) when a line drawing is

complex with many vertices, due to the search in a high-

dimensional space (Nv dimensions) with the non-convex
objective function. For example, the search space is of 56

dimensions for the object in Fig. 1(a).

To alleviate this problem, Liu et al. formulate 3D

reconstruction in a lower dimensional space so that the

optimization procedure has a better chance to find desired

results [7]. For the complex object in Fig. 1(a), however,

the search in a space with 18 dimensions is still too difficult

for it to obtain a satisfactory 3D object (see Section 3).

The methods in [5], [6], [15], [18], and [7] reconstruct

general objects, and the one in [7] can deal with more com-

plex objects than the other four. But these algorithms cannot

avoid the local minimum problem in a high dimensional

search space when a line drawing is complex.

In [8], a divide-and-conquer (D&C) strategy is used to

tackle this problem. It first separates a complex line drawing

into multiple simpler ones, then independently recovers the

3D objects from these line drawings, and finally merges

them to form a complete object. Since the separated line

drawings are much simpler than the original one, the 3D

reconstruction from each of them is an easy task.

This D&C approach handles manifolds only. Based

on known faces found by the face identification algorithm

in [9], it uses manifold properties to find internal faces

c

a b

d

e f

gh

i

'a 'b

'c'd

a b

cd

e f

gh

i

(a) (b)

Fig. 2. (a) A simple manifold with nine faces and one internal face

(a, b, c, d). (b) Decomposition result from the internal face.

(a) (b) (c) (d)
Fig. 3. (a) A non-manifold solid. (b) Expected decomposition of

(a). (c) A sheet object. (d) Expected decomposition of (c).

from a line drawing and then separates the line drawing

from the internal faces. An internal face is defined as an

imaginary face lying inside a manifold with only its edges

visible on the surface [8]. It is not a real face but can be

considered as two coincident real faces of identical shape

belonging to two manifolds. For example, Fig. 2(a) shows

a manifold with nine faces. The D&C first finds the internal

face (a, b, c, d) and then decomposes the line drawing from
this internal face (Fig. 2(b)).

However, handling manifolds only limits the applica-

tions of [8]. In many applications in computer vision and

graphics such as 3D object matching, retrieval, and render-

ing, it is unnecessary to represent objects as manifolds, in

order to facilitate data processing and reduce data storage.

For example, a flat ground can be represented by a sheet

(one face), but if it is represented by a manifold, a thin

box with six faces has to be used. Fig. 1(a), Fig. 3(a), and

Fig. 3(c) are line drawings of three non-manifolds.

In this paper, we propose a novel approach to 3D

reconstruction of complex general objects based on visual

perception, object properties, and new line drawing decom-

position. Compared with previous methods, ours can deal

with much more complex line drawings of general objects.

It can handle not only manifolds but also non-manifold

solids and non-solids, and is insensitive to sketching errors.

2. General Object Reconstruction
We also use the D&C strategy to deal with 3D re-

construction from a line drawing representing a complex

general object. The key is how to decompose a complex line

drawing of any objects into multiple simpler line drawings.

These decomposed line drawings should represent objects

that are in accordance with our visual perception, which

makes the 3D reconstruction from these line drawings easier

and better because the regularities used to build an objective

function for reconstruction follow human perception of

1434

common objects [11], [5], [6], [15], [18].

Before the decomposition of a line drawing, we assume

that all the real and internal faces of the object have been

obtained from the line drawing using a face identification

algorithm. For example, the algorithm in [10] finds 10 faces

from the line drawing in Fig. 2(a) (including the internal

face), and obtains 12 and 7 faces from the line drawings in

Figs. 3(a) and (c), respectively.

2.1. Decomposing line drawings of solids
In this subsection, we consider the line drawings of

solids first. The decomposition method will be extended to

the line drawings of general objects in the next subsection.

It is not difficult to see that in general, a complex object,

especially a manmade complex object, can be considered

as the combinations of multiple smaller objects. The most

common combination is the touch of two faces from two

different objects such as the one in Fig. 2. Other combi-

nations are the touches among lines, faces, and vertices.

Our target is to decompose a complex solid into multiple

primitive solids. Before the definition of a primitive solid,
we introduce a term called the degree of freedom of a solid.

Definition 1. The degree of freedom (DoF) of a 3D solid
represented by a line drawing is the minimal number of z-
coordinates that can uniquely determine this 3D solid.
This is the first time that the concept of DoF is

used to decompose line drawings. Now let us con-

sider a simple object in Fig. 4(a). The cube has

six faces: (v1, v2, v3, v4), (v1, v2, v6, v5), (v1, v4, v8, v5),
(v2, v3, v7, v6), (v4, v3, v7, v8), and (v6, v7, v8, v5). We can
show that the cube is determined if the z-coordinates of

its four non-coplanar vertices are known. Without loss of

generality, suppose z1, z2, z4, and z5 are known. Since

the 3D coordinates of v1, v2, and v4 are fixed (remind that
the x- and y-coordinates of all the vertices are known under

the orthogonal projection), the 3D plane passing through

the face (v1, v2, v3, v4) is determined, and thus z3 can be
calculated. Similarly, z6 and z8 can be obtained. Finally,
z7 can be computed with the 3D coordinates of v3, v4, and
v8 known, which determine the plane passing through the
face (v4, v3, v7, v8). So the 3D cube can be determined by

the known four z-coordinates, z1, z2, z4, and z5. Further, it
can be verified that three 3D vertices cannot determine this

object uniquely because they can only define one face in 3D

space. Therefore, the DoF of the cube is 4.

Similar analysis allows us to know that the solids in

Fig. 2(b), Fig. 3(b), and Fig. 4(b) all have DoF 4, while

the two solids in Fig. 2(a) and Fig. 3(a) have DoFs 5 and 6,

respectively. From these analysis, we can have the intuition

that solids with DoF 4 serve as the building blocks of more

complex solids whose DoFs are more than 4. Besides, we

have the following property:

Property 1. There is no solid with DoF less than 4.

2v

1v 3v
4v

5v
6v

7v

8v(a) (b) a

b

c

d

e f

g
h

i

jAf

Bf

Cf
(c)

Fig. 4. (a) A cube whose DoF is 4. (b) Another solid whose DoF

is also 4. (c) Part of a line drawing with each vertex of degree 3.

This property is easy to verify. A solid with fewest

faces is a tetrahedron. Every two of its four faces are not

co-planar. Three 3D vertices of a tetrahedron can only

determine one 3D face. Next, we define primitive solids.

Definition 2. A 3D solid represented by a line drawing is
called a primitive solid if its DoF is 4.
Property 2. If every vertex of a 3D solid represented by a
line drawing has degree 31, then it is a primitive solid.
Proof. Let part of such a line drawing be the one as shown
in Fig. 4(c). At each vertex, every two of the three edges

form a face, because a solid is bounded by faces without

dangling faces and edges. Let the three paths fA, fB , and
fC in Fig. 4(c) denote the three faces at vertex a.
Without loss of generality, suppose that the four z-

coordinates (and thus the four 3D coordinates) of vertices a,
b, c, and d are known. Then the three planes passing through
fA, fB , and fC are determined in 3D space. With the two

known 3D planes passing through fA and fB at vertex b,
the 3D coordinates of vertices g and h connected to b can
be computed. Similarly, the 3D coordinates of vertices e
and f connected to d and the 3D coordinates of vertices i
and j connected to c can be obtained. Furthermore, all the
3D coordinates of the other vertices connected to e, f , g,
h, i, and j can be derived in the same way. This derivation
can propagate to all the vertices of this solid. Therefore, the

DoF of this solid is 4 and it is a primitive solid.

Property 3. The DoF of a solid is 5 which is obtained by
gluing two faces of two primitive solids.
Proof. Let the two primitive solids be PS1 and PS2 and
their corresponding gluing faces be f1 and f2, respectively.
The DoFs of PS1 and PS2 are both 4. Suppose that PS1 is
determined in 3D space, which requires four z-coordinates.

Then f1 and f2 are also determined in 3D space. When the

z-coordinates of three vertices on PS2 are known based on
f2, one more z-coordinate of a vertex not coplanar with f2
on PS2 can determine PS2 in 3D space. Therefore, the

DoF of the combined solid is 5.

Fig. 2 is a typical example of two primitive solids gluing

together along faces. Fig. 3(a) is an example of two

primitive solids gluing together along edges. Two primitive

solids may also connect at one vertex. The following

property is easy to verify.
1The degree of a vertex is the number of edges connected to this vertex.

1435

Property 4. The DoF of a solid is 6 which is obtained by
gluing two edges of two primitive solids. The DoF of a solid
is 7 which is obtained by gluing two vertices of two primitive
solids.
From the above properties, we can see that primitive

solids are indeed the “smallest” solids in terms of DoF and

they can serve as the building blocks to construct more

complex solids. Therefore, our next target is to decompose

a line drawing representing a complex solid into multiple

line drawings representing primitive solids. Before giving

Definition 3, we define some terms first.

Vertex set of a face. The vertex set V er(f) of a face f
is the set of all the vertices of f .
Fixed vertex. A fixed vertex is one with its z-coordinate

(thus its 3D coordinate) known.

Unfixed vertex. An unfixed vertex is one with its z-

coordinate unknown.

Fixed face. A fixed face is one with its 3D position

determined by its three fixed vertices.

Unfixed face. An unfixed face is one with its 3D position

undetermined.

Definition 3. Let the vertex set and the face set of a line
drawing be V = {v1, v2, ..., vn} and F = {f1, f2, ..., fm},
respectively, where n and m are the numbers of the
vertices and the faces, respectively. Also let Vfixed, Ffixed,
Vunfixed, and Funfixed be the sets of fixed vertices, fixed
faces, unfixed vertices, and unfixed faces, respectively.
Suppose that an initial set of two fixed neighboring faces
sharing an edge is Finitial with all their fixed vertices in
Vinitial. The final Ffixed in Algorithm 1 is called the
maximum extended face set (MEFS) from Finitial.

In Algorithm 1, a face f that satisfies the condition in

step 3 is a face that has been determined in 3D space by the

current fixed vertices in Ffixed. When this face is found,

it becomes a fixed face and all its vertices become fixed

vertices. The DoF of the initial two fixed faces combined

is 4. It is not difficult to see that the algorithm does not

increase the initial DoF, and thus the final object represented

by the MEFS also has DoF 4. Next, let us consider a simple

example shown in Fig. 2(a) with the following three cases:

Case 1. Suppose that Finitial = {(e, f, g, h),
(e, f, b, a)}, Vinitial = {e, f, g, h, b, a}, and the algorithm
adds the faces into Ffixed in this order: (f, g, c, b) →
(a, b, c, d) → (e, h, d, a) → (g, h, d, c). Then the final

object found by the algorithm is the cube. Note that the

algorithm does not add any triangular faces into Ffixed
because they do not satisfy the condition in step 3.

Case 2. If Finitial = {(b, i, a), (b, i, c)}, then the final
object found is the pyramid, and the algorithm does not add

any rectangular faces except (a, b, c, d) into Ffixed.
Case 3. If Finitial = {(b, a, i), (e, f, b, a)}, the algorith-

m cannot find any other faces to add to Ffixed. Thus, it fails
to find the cube or pyramid.

Algorithm 1 Face extending procedure

Initialization: Funfixed = F \ Finitial, Ffixed = Finitial,
Vfixed = Vinitial, Vunfixed = V \ Vinitial.
1. do the following steps until no face satisfies the condition in

step 3;

2. Find a face f ∈ Funfixed that satisfies

3. the number of non-collinear vertices in V er(f)∩Vfixed
is more than 2;

4. Add face f into Ffixed and delete it from Funfixed;

5. For each vertex v ∈ V er(f), if v ∈ Vunfixed, add v into

Vfixed and delete it from Vunfixed;

Return The final Ffixed.

(a) (b)
Fig. 5. (a) A complex line drawing of non-manifold solid. (b) The

decomposition result by our algorithm.

In case 3, the object represented by the MEFS has only

two initial faces and this object is discarded. In order not to

miss a primitive solid, we run Algorithm 1 multiple times

each with a different pair of neighboring faces in Finitial.
Then, we can always have Finitial with its two faces from
one primitive solid. For the object in Fig. 2(a), we can

always find the cube and the pyramid. Note that the same

primitive solid may be found multiple times from different

Finitial, and finally we keep only one copy of each different
object (cube and pyramid in this example).

When a complex solid is formed by more than two

primitive solids, Algorithm 1 can still be used to find the

primitive solids, which is the decomposition result of the

complex line drawing. More complex examples are given

in Section 3. Besides, Algorithm 1 can also deal with

complex solids formed by gluing primitive solids between

edges and vertices. Fig. 5(a) is a solid constructed by gluing

eight primitive solids between faces, edges, and vertices.

Running Algorithm 1 multiple times with different pairs of

neighboring faces in Finitial generates the primitive solids
as shown in Fig. 5(b).

2.2. Decomposing line drawings of general objects
A general object can be a manifold, non-manifold

solid, or non-solid. Given a line drawing representing a

general object, it is unknown whether this object consists

of only primitive solids. However, we can always apply

Algorithm 1 to the line drawing multiple times, each with a

1436

1

4
3

2

5
6

78
9

10

11

13

14

12

15
16

17

18

19
20

21

22

24
23

27

28

25

26

4

1
3

2

5
78

9

10

6

16
17

18

19
20

2124
23
22

15

5
6

79

10

8
19

20

22

24
23

21

Obj 1 Obj 2

Obj 3 Obj 4

Obj 5 Obj 6

Obj 1 (9)

Obj 6 (4)

Obj 5 (4) Obj 4 (7)

Obj 3 (7)

Obj 2 (9)

(a) (b)

(c) (d)

5
6

7

10

11

13

14

12

9 19

20

21

22

27

28

25

26

23

Fig. 6. Illustration of our decomposition method. (a) A line

drawing. (b) The set of MEFSs from (a). (c) The weighted object-

coexistence graph where the maximum weight clique is shown in

bold. (d) The decomposition of (a).

different pair of neighboring faces in Finitial, generating a
set SMEFS of MEFSs (recall that an MEFS with only two
initial neighboring faces is discarded). In what follows, we

also call an MEFS an object, which is represented by the

MEFS. Note that an MEFS generated from a general line

drawing may not be a primitive solid, but its DoF must be

4. Objects of DoF 4 have relatively simple structures and

are easy to be reconstructed. A number of decomposition

examples of complex general line drawings can be seen

from the experimental section.

One issue existing in this decomposition method is that

two different MEFSs may share many faces. For example,

from the line drawing in Fig. 6(a), all different MEFSs

found by running Algorithm 1 multiple times are shown in

Fig. 6(b), where Obj 1 and Obj 5 share four faces, and so
do Obj 2 and Obj 6. Obviously, Obj 5 and Obj 6 are not
necessary. Next we define object coexistence and a rule to
choose objects.

Definition 4. Two objects are called coexistent if they share
no face or share only coplanar faces.

Rule 1. Choose a subset of SMEFS such that in the subset,
all the objects are coexistent and the number of total faces
is maximized.
From Definition 4, Obj 1 and Obj 5 are not coexistent

in Fig. 6, and Obj 2 and Obj 6 are not either. If Obj 5 and
Obj 6 are kept with Obj 1 and Obj 2 discarded, many faces
in the original object will be missing. Rule 1 guarantees that

Obj 1 and Obj 2 are kept but not Obj 5 and Obj 6.

Algorithm 2 Decomposition of a general line drawing

Input: A Line Drawing: G = (V,E, F).
Initialization: SMEFS = ∅, SMWC = ∅.
1. for each pair of neighboring faces {fa, fb} in F do

2. CallAlgorithm 1with Finitial = {fa, fb} and Vinitial =
V er(fa) ∪ V er(fb);

3. if the returned Ffixed from Algorithm 1 contains more

than two faces do

4. SMEFS ← Ffixed;

5. Construct the object-coexistence graph Gobj with SMEFS ;

6. SMWC ← the maximum weight clique found from Gobj ;

7. for each face f not contained in SMWC do

8. Attach f to the object in SMWC that contains the

maximum number of the vertices of f ;

Return SMWC .

(a) (b)

Fig. 7. (a) A sheet object with 23 faces. (b) Decomposition result

by Algorithm 2 with the modification in Algorithm 1.

We formulate Rule 1 as a maximum weight clique

problem (MWCP), which is to find a clique2 of the max-

imum weight from a weighted graph. First, we construct

a weighted graph, called the object-coexistence graph, in

which a vertex denotes an object in SMEFS and there is an
edge connecting two vertices if the two objects represented

by the two vertices are coexistent. Besides, each vertex is

assigned a weight equal to the number of the faces of the

corresponding object. TheMWCP is a well-known NP-hard

problem. In our application, however, solving this problem

is fast enough since an object-coexistence graph usually has

less than 20 objects (vertices). We use the algorithm in [12]

to deal with this problem.

Fig. 6(c) is the object-coexistence graph constructed

from the six objects in Fig. 6(b), where the weights of the

vertices are denoted by the numbers in the parentheses. The

maximum weight clique is shown in bold.

From Fig. 6, we see that the face (14, 13, 26, 25) is not

contained in SWMC , which is used to store the objects in
the maximum weight clique. This face is finally attached

to Obj 3. In general, each of the faces not in SWMC is

attached to an object that contains the maximum number of

the vertices of this face. If there are two or more objects

that contain the same number of the vertices of this face,

this face is assigned to any of them.

2A clique is a subgraph of a graph such that every two vertices in the

subgraph are connected by an edge.

1437

Algorithm 2 shows the complete algorithm to decom-

pose a general line drawing. Steps 7 and 8 attach the faces

not in SMWC to some objects in SMWC .
A common complex object usually consists of primitive

solids and sheets, and Algorithm 2 works well for the

decomposition of most complex line drawings. However,

there are still some line drawings the algorithm cannot deal

with. Such an example is shown in Fig. 7(a) which is a sheet

object with 23 faces. In Algorithm 1, with any pair of initial

neighboring faces, there is no any other face satisfying the

condition in step 3, thus no object of DoF 4 will be found.

The following scheme can solve this problem.

Given a line drawing, steps 1–6 in Algorithm 2 are

used to decompose it into multiple objects of DoF 4. If

there are separate groups of faces not in SMWC , where
the faces in each group are connected, then attach the

groups each with less than four faces to some objects in

SMWC
3 (the attachment method is similar to steps 7 and 8

in Algorithm 2). For a group with four or more connected

faces, Algorithm 2 is applied to it with a minor modification

in Algorithm 1. The modification is to set Finitial to
contain three connected faces whose combined DoF is 5.

This modification allows the search of objects of DoF 5.

Suppose the object in Fig. 7(a) is such a group. Applying

Algorithm 2 to it with the minor modification generates the

decomposition result as shown in Fig. 7(b).

2.3. 3D Reconstruction
A complex line drawing can be decomposed into several

simpler ones using the method proposed in Sections 2.1

and 2.2. The next step is to reconstruct a 3D object from

each of them, which is an easy task because the decomposed

line drawings are simple. The method in [6] or [7] can carry

out this task very well. We use the one in [6] for our work

with the objective function Φ(z1, z2, ..., zNv) constructed
by these five image regularities: MSDA, face planarity, line

parallelism, isometry, and corner orthogonality. The details

of the regularities can be found from [6].

After obtaining the 3D objects from all the decomposed

line drawings, the next step is to merge them to form one

complex object. When merging two 3D objects, since they

are reconstructed separately, the gluing parts (face or edge)

of them are usually not of the same size. Then one object

is automatically rescaled according to the sizes of the two

gluing parts, and the vertices of the gluing part of this object

are also adjusted so that the two parts are the same. After

merging all the 3D objects, the whole object is fine-tuned

by minimizing the objective function Φ on the object.

We can also apply our method to reconstruct 3D shapes

from objects in images. First, the user draws a line drawing

along the visible edges of an object and he/she can also

3The reason to attach a group with less than four faces to an object in

SMWC is that this group is small and is not necessary to be an independent

object to reconstruct.

guess (draw) the hidden edges. Then from this line drawing,

our approach described above reconstructs the 3D geometry

of the object in the image.

3. Experimental Results
In this section, we show a number of complex 3D re-

construction examples from both line drawings and images

to demonstrate the performance of our approach. The

first set of experiments in Fig. 8 has nine complex line

drawings. Fig. 8(a) is a manifold, and the others are non-

manifold solids or non-solids. The decompositions of the

line drawings are also given in the figure, from which we

can see that the results are in accordance with our visual

perception very well. All the primitive solids are found by

our algorithm. It is the successful decompositions that make

the 3D reconstructions from these complex line drawings

possible. The expected satisfactory reconstruction results

are shown also in Fig. 8 each in two views.

Fig. 9 shows another set of 3D reconstructions from

objects in images with line drawings drawn on the objects.

The decomposition results are omitted due to the space

limitation. Each reconstruction result obtained by our

algorithm is shown in two views with the texture from

the image mapped onto the surface. We can see that the

results are very good. The details of the objects and the

line drawings can be shown by enlarging the figures on the

screen.

Among all the previous algorithms for general object

reconstruction, the one in [7] can deal with most complex

objects. Due to the local minimum problem in a high

dimensional search space, however, this algorithm cannot

handle line drawings as complex as those in Figs. 8 and 9.

For example, Fig. 10(a) shows its reconstruction result from

the line drawing in Fig. 8(c), which is a failure.

The reader may wonder what happens if the 3D recon-

struction is based on an arbitrary decomposition of a com-

plex line drawing, instead of the proposed one. Fig. 10(b)

shows such a decomposition from Fig. 8(c). Based on this

decomposition, the 3D reconstruction result obtained by

the scheme described in Section 2.3 is given in Fig. 10(c),

which is a failure. The failure is caused by two reasons:

(i) An arbitrary decomposition usually does not generate

common objects, which makes the image regularities less

meaningful for the 3D reconstruction. (ii) The gluing of

3D objects from the decomposition in Fig. 10(b) is difficult

because of the irregular touches between the objects. The

fine-tuning processing (see Section 2.3) cannot reduce the

large distortion to an acceptable result.

Note that since our algorithm is not limited to manifolds,

it can deal with line drawings with some or without hidden

lines. The third line drawing in Fig. 9 is an example where

some hidden lines are not drawn.

Most of the line drawings in this paper look tidy. This

1438

(b) (c)

(d) (e)

(f)

(h) (i)

(a)

(g)

Fig. 8. Nine complex line drawings, their decompositions, and 3D reconstruction results in two views where different colors are used to

denote the faces (better viewed on the screen).

Fig. 9. Four images, the corresponding line drawings, and the reconstructed 3D objects with texture mapped, each shown in two views.

The details can be seen by enlarging the figures on the screen.

1439

(b) (c)(a)

Fig. 10. (a) A failed reconstruction by the algorithm in [7]. (b) An

arbitrary decomposition of the line drawing in Fig. 8(c) without

using our decomposition method. (c) Failed 3D reconstruction

based on the decomposition in (b).

(a) (b) (c)

Fig. 11. (a) A line drawing with strong sketching errors. (b) (c)

Two views of the successful reconstruction result by our algorithm.

is for easy observation of the objects. In fact, our algorithm

is not sensitive to sketching errors. Take Fig. 8(a) as an

example and assume it is an accurate projection of the 3D

object. Then, random variations are generated with the

Gaussian distribution N(0, σ2) on the 2D locations of the

vertices. Fig. 11(a) is a resulting noisy line drawing with

σ = W/200 where W is the width of the line drawing

in Fig. 8(a). From Fig. 11, we see that even for this line

drawing with strong sketching errors, our algorithm can still

obtain the good reconstruction result.

Our algorithm is implemented in C++. The computation-

al time includes two parts: line drawing decomposition and

3D reconstruction. The main computation is consumed by

the second part. On average, a common PC takes about one

minute to obtain the reconstruction from each of the line

drawings in Figs. 8 and 9.

4. Conclusion
Previous algorithms of 3D object reconstruction from

line drawings either deal with simple general objects or

are limited to only manifolds (a subset of solids). In

this paper, we have proposed a novel approach that can

handle complex general objects, including manifolds, non-

manifold solids, and non-solids. It decomposes a complex

line drawing into simpler ones according to the degree of

freedom of objects, which is based on the developed 3D

object properties. After 3D objects are reconstructed from

the decomposed line drawings, they are merged to form a

complex object. We have shown a number of reconstruction

examples with comparison to the best previous algorithm.

The results indicate that our algorithm can tackle much

more complex line drawings of general objects and is

insensitive to sketching errors.

The future work includes (i) the correction of the

distortions of 3D objects reconstructed from images caused

by the perspective projection, and (ii) the extension of this

work to objects with curved faces.

Acknowledgements
This work was supported by grants from Natural Science

Foundation of China (No. 61070148), Science, Indus-

try, Trade, and Information Technology Commission of

Shenzhen Municipality, China (No. JC201005270378A),

and Guangdong Innovative Research Team Program (No.

201001D0104648280). Jianzhuang Liu is the correspond-

ing author.

References
[1] M. Clowes. On seeing things. Artificial Intelligence, 2:79–116, 1971.
[2] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering

architecture from photographs: A hybrid geometry- and image-based

approach. Proc. ACM SIGGRAPH, pages 11–20, 1996.
[3] D. Jelinek and C. Taylor. Reconstruction of linearly parameterized

models from single images with a camera of unknown focal length.

IEEE T-PAMI, 23(7):767–773, 2001.
[4] D. E. LaCourse. Handbook of Solid Modeling. McGraw-Hill, 1995.
[5] Y. Leclerc and M. Fischler. An optimization-based approach to the

interpretation of single line drawings as 3D wire frames. IJCV,
9(2):113–136, 1992.

[6] H. Lipson and M. Shpitalni. Optimization-based reconstruction of

a 3d object from a single freehand line drawing. Computer-Aided
Design, 28(7):651–663, 1996.

[7] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-based optimization for

3D object reconstruction from single line drawings. IEEE T-PAMI,
30(2):315–327, 2008.

[8] J. Liu, Y. Chen, and X. Tang. Decomposition of complex line

drawings with hidden lines for 3d planar-faced manifold object

reconstruction. IEEE T-PAMI, 33(1):3–15, 2011.
[9] J. Liu, Y. Lee, and W. Cham. Identifying faces in a 2D line drawing

representing a manifold object. IEEE T-PAMI, 24(12):1579–1593,
2002.

[10] J. Liu and X. Tang. Evolutionary search for faces from line drawings.

IEEE T-PAMI, 27(6):861–872, 2005.
[11] T. Marill. Emulating the human interpretation of line-drawings as

three-dimensional objects. IJCV, 6(2):147–161, 1991.
[12] P. R. J. Östergård. A new algorithm for the maximum-weight clique

problem. Nordic J. of Computing, 8(4):424–436, Dec. 2001.
[13] H. Shimodaira. A shape-from-shading method of polyhedral objects

using prior information. IEEE T-PAMI, 28(4):612–624, 2006.
[14] I. Shimshoni and J. Ponce. Recovering the shape of polyhedra using

line-drawing analysis and complex reflectance models. Computer
Vision and Image Understanding, 65(2):296–310, 1997.

[15] K. Shoji, K. Kato, and F. Toyama. 3-d interpretation of single line

drawings based on entropy minimization principle. CVPR, 2001.
[16] M. Shpitalni and H. Lipson. Identification of faces in a 2d line

drawing projection of a wireframe object. IEEE T-PAMI, 18(10),
1996.

[17] K. Sugihara. Machine interpretation of line drawings. MIT Press,
1986.

[18] A. Turner, D. Chapman, and A. Penn. Sketching space. Computer
and Graphics, 24:869–879, 2000.

[19] F. Ulupinar and R. Nevatia. Shape from contour: straight homoge-

neous generalized cylinders and constant cross-section generalized

cylinders. IEEE T-PAMI, 17(2):120–135, 1995.
[20] T. Xue, J. Liu, and X. Tang. Example-based 3d object reconstruction

from line drawings. CVPR, 2012.

1440

