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Abstract

We propose a novel Multi-Task Learning framework
(FEGA-MTL) for classifying the head pose of a person
who moves freely in an environment monitored by multi-
ple, large field-of-view surveillance cameras. As the tar-
get (person) moves, distortions in facial appearance ow-
ing to camera perspective and scale severely impede per-
formance of traditional head pose classification methods.
FEGA-MTL operates on a dense uniform spatial grid and
learns appearance relationships across partitions as well
as partition-specific appearance variations for a given head
pose to build region-specific classifiers. Guided by two
graphs which a-priori model appearance similarity among
(i) grid partitions based on camera geometry and (ii) head
pose classes, the learner efficiently clusters appearance-
wise related grid partitions to derive the optimal partition-
ing. For pose classification, upon determining the target’s
position using a person tracker, the appropriate region-
specific classifier is invoked. Experiments confirm that
FEGA-MTL achieves state-of-the-art classification with few
training data.

1. Introduction

Head pose estimation and tracking is critical for surveil-

lance and human-behavior understanding, and has been ex-

tensively studied for over a decade [15]. However, most

existing approaches compute the head pose from high res-

olution images, where facial features are clearly visible.

Estimating the head pose from large field-of-view surveil-

lance cameras, where faces are typically captured at 50×50
or lower pixel resolution, has received importance only re-

cently [5, 16, 19]. Computing the head pose under these

conditions is difficult, as faces appear blurred and models

employing detailed facial information are ineffective.

Figure 1. (left) Facial appearance change under target motion: for

the same 3D head pose, automatically extracted face crops cor-

responding to camera C1-C4 are shown for target positions P1-

P3. (right) Space division: S1, S2 denote classification accuracies

when the training images come from the white quadrant (figure is

best viewed in color).

Fewer still are head pose estimation methods that uti-

lize information from multiple surveillance cameras. Em-

ploying a single camera view is insufficient for studying

people’s behavior in large environments and multi-view im-

ages have been exploited to achieve robust pose estimation

[14, 22, 17, 20, 23]. However, methods such as [14, 20]

estimate pose as a person rotates in place, but is not freely

moving around in the environment. The broader goal of this

work is to analyze behavior [13] from head pose cues in un-

structured interactive settings (e.g. parties), where targets

(persons) can move around freely. Therefore, in this paper

we consider the problem of multi-view head pose classifica-
tion under target motion.

Fig.1(left) illustrates the challenges involved in the con-

sidered scenario. The facial appearance of a target with

identical 3D head pose but at different positions varies con-

siderably due to perspective and scale. As the target moves,

the face can appear larger/smaller and face parts can be-

come occluded/visible due to the target’s relative position

with respect to the camera. We investigated the effect of

appearance change on pose classification using the DPOSE

dataset [17], which comprises synchronously recorded im-

ages of moving persons from four camera views, associated

target positions and head pose annotations. Upon dividing

the DPOSE space into four quadrants Q1-Q4, we trained an
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SVM classifier with HOG [7] features extracted from the

4-view images corresponding to a particular quadrant. The

SVM was then tested with images from each of the quad-

rants and the task was to assign head pose to one of eight

classes, each denoting a quantized 45o (360o/8) head-pan.

Fig.1(right) presents the results. Much lower accuracies

were obtained when training and test images came from dif-

ferent quadrants, confirming the adverse impact of position-

induced appearance changes on head pose classification.

To address this issue, we propose FEGA-MTL, a FlEx-

ible GrAph-guided Multi-Task Learning framework for

multi-view head pose classification under target motion.

Given a set of related tasks, MTL attempts to learn relation-

ships among the tasks as well as task-specific differences.

Upon dividing a physical space into a discrete number of

planar regions (as in Fig.1), we seek to learn the pose-

appearance relationship in each region. Analogous with

the MTL problem, one can expect some similarity in facial

appearance for a given head pose across the regions, and

region-specific differences owing to perspective and scale.

FEGA-MTL seeks to simultaneously learn the relation-

ship between facial appearance and head pose across all

partitions of a dense uniform 2D spatial grid. Since the fa-

cial appearance is likely to be more similar for neighboring

regions (as against spatially disjoint partitions), employing

a single model to denote the inter-region appearance rela-

tionship can lead to negative transfer, arising when knowl-

edge sharing has a negative impact on the performance of

the learned model. Therefore, we devise a method where

appearance-wise related grid clusters (which denote related

tasks) are flexibly discovered, and the within-cluster appear-

ance similarity is modeled via the MTL parameters.

Two graphs, which respectively define appearance sim-

ilarity among (i) grid partitions for a particular head pose

given camera geometry, and (ii) head pose classes, guide

the learning process to output the optimal spatial partition-

ing comprising a number of grid clusters and an associated

MTL classifier. During the classification stage, upon deter-

mining the position corresponding to a test instance using a

person tracker, the corresponding region-specific classifier

is invoked. Our approach is flexible owing to three main

reasons: (1) It can work with arbitrary camera setups; (2)

The learning algorithm can adaptively deal with multiple

feature descriptors having differing discriminative power,

and (3) Given the camera geometry and face appearance

features, the optimal grid-cluster configuration is automati-

cally discovered using our approach. Experiments confirm

that FEGA-MTL outperforms competing head pose classi-

fication and MTL approaches.

To summarize, the paper’s contributions are: (i) It rep-

resents one of the first works to explore multi-view head

pose classification under target motion; (ii) To our knowl-

edge, an MTL framework for head pose classification has

not been proposed before; (iii) A novel graph-guided ap-

proach for simultaneously learning a set of classifiers and

their relationships is proposed, and an efficient solver is de-

vised; (iv) We seamlessly connect camera geometry (tradi-

tional computer vision) with machine learning for head pose

classification through a novel graph modeling strategy; (v)

FEGA-MTL is a general framework, potentially applicable

to many computer vision and pattern recognition problems.

2. Related Work
Head Pose Classification from Low Resolution Faces.

Head-pose classification from surveillance images has been

investigated in a number of works [3, 5, 16, 19]. In [16], a

Kullback-Leibler distance-based facial appearance descrip-

tor is proposed for low resolution images. The array-of-

covariances (ARCO) descriptor is introduced in [19], and is

found to be effective for representing faces as it is robust to

scale and illumination changes. In [3, 5], head pose esti-

mation with weak or no supervision is achieved employing

motion-based cues and constraints imposed by joint model-

ing of head and body pose. However, all these works ad-

dress single view head pose classification.

Few works estimate head pose fusing information from

multiple views [14, 17, 20, 23]. A particle filter is combined

with a neural network for pan/tilt classification in [20]. A

HOG-based confidence measure is also used to determine

the relevant views. In [14], SVMs are employed to calcu-

late a probability distribution for head pose in each view.

The results are fused to produce a more precise estimate.

Nevertheless, both these works attempt to determine head

orientation as a person rotates in place and position-induced

appearance variations are not considered.

A weighted distance approach for classifying pose un-

der target motion is proposed in [17]. Upon dividing the

space into four quadrants, max-margin distance learning

is employed to learn a classifier per region– such a rigid

space partitioning scheme will not optimally encode the

pose-appearance relationship under motion, with arbitrary

camera geometry. In [23], head pose under motion is deter-

mined by mapping the target’s face texture onto a spherical

head model, and subsequently locating the face in the un-

folded spherical head image. However, many camera views

are required to produce an accurate texture map– 9 cameras

are used in [23]. In contrast, our approach is predominantly

image-based, applicable even with few camera views.

Multi-task Learning. MTL methods aim to simultane-

ously learn classification/regression models for a set of re-

lated tasks. This typically leads to better models as com-

pared to a learner that does not account for task relation-

ships. Traditional MTL methods consider a single shared

model, assuming that all the tasks are related [1, 8, 21].

However, when some of the tasks are unrelated, this may

lead to negative transfer. Recently, more sophisticated
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Figure 2. Overview of the proposed head pose classification framework assuming three camera views. The region graph and optimal

partitioning are as seen from a fourth (camera-less) view. Figure is best viewed in color and under zoom.

approaches have been proposed to counter this problem.

These methods assume some a-priori knowledge (e.g. in

the form of a graph) defining task dependencies [6] or learn

the task relationships simultaneously with task-specific pa-

rameters [11, 24, 10, 25, 9]. Among these, the work most

similar to ours is [6]. Similar to [6], our algorithm adopts a

graph to specify a-priori task dependencies. We also over-

come the limitations of [6] as FEGA-MTL automatically

discovers task relationships and refines the initial graph

structure. For multi-view head pose estimation under mo-

tion, the graph structure is very useful as it reflects inter-

region facial appearance similarity as derived from the cam-

era geometry.

3. Multi-view Head Pose Classification

3.1. System Overview

Fig.2 presents an overview of our multi-view head pose

classification system which consists of three phases: (1)

preprocessing and extraction of multi-view face appearance

descriptors, (2) learning of head pose-appearance relation-

ships under motion with FEGA-MTL and (3) classification.

As we deal with freely moving targets, in the preprocess-

ing stage, a color-based particle filter tracker incorporat-

ing multi-view geometry information is employed to reli-

ably localize the target’s face and extract multi-view face

crops. Also, the tracker allows for determining the target

position corresponding to a test instance, so that the appro-

priate region-based pose classifier can be invoked. Features

extracted from the multi-view face appearance images are

fed to the FEGA-MTL module for learning region-specific

classification parameters.

The learning process is guided by two graphs that respec-

tively model appearance-based task dependencies among

grid partitions and head pose classes– (a) the region graph
quantifies the multi-view facial appearance distortion based

on camera geometry, as the target moves from one grid par-

tition to another, and (b) the pose graph posits that neigh-

boring head pose classes tend to have more similar facial

appearance. FEGA-MTL outputs the pose classification

parameters for each grid partition, and the configuration

of grid clusters so that the facial appearance for a given

head pose is very similar in those partitions constituting a

cluster– these grid clusters denote the learnt task relation-

ships given the features and task dependencies. We will

now describe each of these modules in detail.

3.2. Preprocessing

Tracking and Head Localization. A multi-view, color-

based particle filter [12] is used to compute the 3D body

centroid of moving targets. A 30×30×20 cm-sized dense

3D grid (with 1cm resolution) of hypothetic head locations

is then placed around the estimated 3D head-position pro-

vided by the particle filter1. Assuming a spherical model

of the head, a contour likelihood is computed for each grid

point by projecting a 3D sphere onto each view using cam-

era calibration information. The grid point with the high-

est likelihood sum is determined as the head location. The

1The grid size accounts for the tracker’s variance and horizontal and

vertical offsets of the head from the body centroid due to pan, tilt and roll.
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tracking and head localization procedures are illustrated in

Fig.2. The head is then cropped and resized to 20 × 20

pixels in each view.

Feature Extraction. Head crops from the different

views are concatenated to generate the multi-view face

crops as shown in Fig.2, and similar to previous works [3,

5], we employ HOG descriptors to effectively describe the

face appearance for head pose classification. The multi-

view face appearance image is divided into non-overlapping

4×4 patches, and a 9-bin histogram is used as the HOG de-

scriptor for each image patch.

3.3. Space Partitioning and Graph Modeling

Region Graph Modeling. To apply FEGA-MTL, we

initially divide the 2D ground space into a uniform grid with

R partitions, as shown in Fig.3. We want to learn the pose-

appearance relationship in each partition. The algorithm

learns from a training set Tt = {(xt
i, y

t
i) : i = 1, 2, . . . , Nt}

for each region t = 1, 2, . . . , R, where xt
i ∈ IRD denote

D-dimensional feature vectors and yti ∈ {1, 2, . . . , C} are

the head pose labels (C = 8 classes in our setting). One of

the graphs guiding the learning process specifies the sim-

ilarity in appearance for a given head pose across regions

based on camera geometry. If grid partitions form the graph

nodes, we determine the edge set E1 and the associated edge

weights γmn quantifying the appearance distortion between

Tm and Tn due to positional change from region m to region

n– these edge weights indicate whether knowledge sharing

between regions m and n is beneficial or not.

As mentioned earlier, we model the target’s head as a

sphere. Let Zk denote the sphere placed at the target’s 3D

head position pk, and whose multi-view camera projection

yields training image Ik in Tm. Using camera calibration

parameters, one can compute the correspondence between

surface points in Zk and pixels in Ik. Then, we move Zk

to position pl corresponding to image Il in Tn, and deter-

mine how many surface points in Zk are still visible in Il.
The appearance distortion over U camera views due to dis-

placement v from pk to pl is defined as δ(Zk, pk → pl) =∑U
u=1 ‖v‖+ ξn0, where n0 is the number of surface points

in Zk that are occluded after translation and ξ is a constant

that penalizes such occlusion.
The appearance similarity between regions m and n is

then computed based on a Gaussian model by considering
distortion between all image-pairs associated to Tm, Tn as:

γmn = e
− Ω

NmNnσ2

where Ω =
∑

∀Ik∈Tm,Il∈Tn
[δ(Zk, pk → pl) + δ(Zl, pl → pk)],

Nm and Nn are number of images in Tm and Tn. σ = 1
and E1 is the set of edges for which γmn ≥ 0.1.

Fig.3 depicts the appearance similarity maps for two dif-

ferent camera configurations when the head-sphere at pk is

moved around in space (the projection of pk on the ground

is denoted by the red ‘X’). When pk is close to the camera-

less room corner in the 3-camera setup, a number of regions

around pk share a high appearance similarity, implying that

pose-appearance relationship can be learnt jointly in these

regions. However, the similarity measure decreases sharply

as the target moves from pk towards any of the three cam-

eras, and tends to zero for the upper diagonal half of the

room. Also, when a camera is introduced in the fourth room

corner, appearance similarity holds only for a smaller por-

tion of space around pk as compared to the 3-camera case.

Pose Graph Modeling. A second graph guiding the

learning process models the fact that facial appearances

should be more similar for neighboring pose classes as com-

pared to non-neighboring classes. For example, as shown

in Fig.2, the facial appearance of exemplars from class 1

should be most similar to exemplars from class 2 and 8.

Exploiting this information, a pose graph E2 is defined with

associated edge weights βij = 1 if i and j correspond to

neighboring pose classes ci, cj , and βij = 0 otherwise.

4. Flexible Graph-guided MTL
Given a training set Tt, for each task (region) t, we de-

fine the matrix Xt = [xt
1
, ...,xt

Nt
]′, Xt ∈ IRNt×D. If N =

R∑
t=1

Nt denotes the total number of training samples, we also

define X = [X′1, . . . ,X
′
R]
′, X ∈ IRN×D obtained concate-

nating the matrices Xt for all the R tasks. In this paper,

the notation (·)′ indicates the transpose operator. For each

training sample, we construct a binary label indicator vector

yt
i ∈ IRRC as yt

i = [0, 0, ..., 0︸ ︷︷ ︸
Task 1

, 0, 1, ..., 0︸ ︷︷ ︸
Task 2

, ..., 0, 0, ..., 0︸ ︷︷ ︸
Task R

], i.e.

the position of the non-zero element indicates the task and

class membership of the corresponding training sample. A

label matrix Y ∈ IRN×RC is then obtained concatenating

the yt
i’s for all training samples.

For each region t and pose class c, we propose to
learn the region-specific weight vectors for pose clas-
sification wt,c = st,c + θt,c, wt,c, st,c,θt,c ∈ IRD.
The st,c components model the appearance relationships
among regions, while θt,c’s account for region-specific
appearance variations. Defining the matrices S,Θ ∈
IRD×RC , S = [s1,1, ..., s1,C︸ ︷︷ ︸

Task 1

, ..., sR,1, ..., sR,C︸ ︷︷ ︸
Task R

], Θ =

[θ1,1, ...,θ1,C︸ ︷︷ ︸
Task 1

, ...,θR,1, ...,θR,C︸ ︷︷ ︸
Task R

], we propose to solve the

following optimization problem:

min
S,Θ

∥∥∥(Y′Y)−
1
2 (Y −X(S+Θ))

∥∥∥
2

F
+ λsΩs(S) + λθΩθ(Θ) (1)

where ‖ · ‖F denotes the matrix Frobenius norm. The
normalization factor (Y′Y)

−1/2
compensates for differ-

ent number of samples per task. The regularization term
Ωθ(Θ) = ‖Θ‖2F penalizes large deviation of st,c from wt,c,
while Ωs(·) is defined as follows:
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Figure 3. (from left to right) Appearance similarity map computed around a point with 3 camera views and 4 camera views, initial grid

partitions and learned grid clusters for the 3-camera setup (figure best viewed in color).

Ωs(S) =‖S‖2F + λ1

∑
(i,j)∈E1

γij‖sti,c − stj ,c‖1

+ λ2

∑
(i,j)∈E2

βij‖st,ci − st,cj‖1

where γij’s and βij’s are the appearance similarity-based

weights of region graph edges E1 and pose graph edges E2
respectively as described in Sec 3.3. The term ‖S‖2F regu-

lates model complexity, while the �1 norm regularizer im-

poses the weights st,c of appearance-wise related regions

and neighboring classes to be close together. In particular,

region clusters are formed as λ1 →∞. Importantly, this ef-

fect is feature-specific– cluster structure varies from feature

to feature, and the clustering obtained for the more and less

discriminant features can be very different. This is primar-

ily why our method is flexible, and the model as well as the

proposed optimization strategy benefit from this important

effect.
To solve (1), we adopt the Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) [2]. FISTA solves opti-
mization problems of the form minμ f(μ) + r(μ), where
f(μ) is convex and smooth, r(μ) is convex but non-smooth.
Due to its simplicity and scalability, FISTA is a popular tool
for solving many convex smooth/non-smooth problems. In
each FISTA iteration, a proximal step is computed [2]:

min
μ
‖μ− μ̂‖2F +

2

Lk
r(μ) (2)

where μ̂ = μ̃k − 1
Lk
∇f(μ̃k), μ̃k is the current estimate

and Lk is a step-size determined by line search. To apply
FISTA to our optimization problem, we define:

f(S,Θ) =
∥∥∥(Y′Y)−1/2(Y −X(S+Θ))

∥∥∥
2

F

r(S,Θ) = λθ‖Θ‖2F + λs‖S‖2F + λsλ1

∑
(i,j)∈E1

γij‖sti,c − stj ,c‖1

+ λsλ2

∑
(i,j)∈E2

βij‖st,ci − st,cj‖1

Incorporating the above definition in (2) followed by al-
gebraic manipulation, the proximal step amounts to solving
the following:

min
S,Θ

∥∥∥S− Ŝ
∥∥∥
2

F
+

∥∥∥Θ− Θ̂
∥∥∥
2

F
+ λ̂1

∑
(i,j)∈E1

γij‖sti,c − stj ,c‖1

+λ̂2

∑
(i,j)∈E2

βij‖st,ci − st,cj‖1+λ̂s ‖S‖2F + λ̂θ ‖Θ‖2F (3)

Algorithm 1 FEGA-MTL

INPUT: Tt, ∀t = 1, . . . , R, λs, λθ , λ1, λ2, E
Initialize S0, Θ0, α0 = 1.

OUTER LOOP:
αn = 1

2
(1 +

√
1 + 4α2

n−1)

{Update Θ}
Θ̂ = Θn − 2X′(XΘn −Y)
Θn+ 1

2
= 1

1+λ̂θ
Θ̂

Θn+1 = (1 +
αn−1−1

αn
)Θn+ 1

2
− αn−1−1

αn
Θn

{Update S}
Ŝ = Sn − 2X′(XSn −Y)
Update Sn+ 1

2
with ADMM as follows:

For each d = 1 : D
Initialize qd,0, ad,0, sd,0

Set M = ρE′E+ (2 + 2λ̂s)I
Compute Cholesky factorization of matrix M.

INNER LOOP:
{Update s} Solve Msd,k+1 = bk

{Update q} qd,k+1 = STλ̂1/ρ
(Esd,k+1 + 1

ρ
ad,k)

{Update a} ad,k+1 = ad,k+ρ(Esd,k+1−qd,k+1)
Until Convergence

Sn+1 = (1 +
αn−1−1

αn
)Sn+ 1

2
− αn−1−1

αn
Sn

Until Convergence
Output: W = S+Θ

where λ̂s = 2λs/Lk, λ̂θ = 2λθ/Lk λ̂1 = 2λ1λs/Lk and

λ̂2 = 2λ2λs/Lk, Θ̂ = Θ − 2X′(XΘ − Y) and Ŝ =
S−2X′(XS−Y). We solve (3) by considering S, Θ sepa-

rately, using the procedure described in Algorithm 1. To op-

timize with respect to S, we devise a novel approach using

alternating direction method of multipliers (ADMM) [4].

In Algorithm 1, STλ(x) = sign(x)max(|x| − λ, 0) is a

soft-thresholding operator and the matrix E =

[
λ̂1E1

λ̂2

λ̂1
E2

]
is defined considering the edge-vertex incident matrices

E1 e=(i,j),h =

{
γij , i = h
−γij , j = h
0, otherwise

, E1 ∈ IR|E1|×RC , and

E2 e=(i,j),h =

{
βij , i = h
−βij , j = h
0, otherwise

, E2 ∈ IR|E2|×RC .

Regarding the computational complexity of Algorithm
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1, the main steps in the outer loop are: the update of

Θ which takes O(DR) time, the gradient computation

taking O(NtDR) time and the update of S. The last

step is the most computationally expensive as it requires

a Cholesky matrix factorization (O(R3)) for each dimen-

sion d = 1, . . . , D. However, the Cholesky factorization is

performed only in the outer loop. In the inner loop, each

iteration involves solving one linear system (O(R2)) and a

soft-thresholding operation (O(|E1|+ |E2|)).
After the learning phase, the computed weights matrix

W = S+Θ is used for classification. While testing, upon

determining the region t associated to a test sample xtest

using the person tracker, the corresponding wt,c’s are used

to compute the head pose label as argmax
c=1,...,C

w′t,cxtest .

5. Experimental Results
In this section, we compare head pose classification re-

sults achieved with FEGA-MTL against (i) state-of-the-

art head pose estimation methods and (ii) other MTL ap-

proaches. We perform our experiments on the DPOSE

dataset [17]. To our knowledge, there are no other databases

for benchmarking multi-view head pose classification per-

formance under target motion. The CLEAR [18] and Uco-

Head [14] databases are recorded with targets rotating in-

place, while the dataset proposed in [23] does not include

ground-truth head pose measurements for moving targets.

DPOSE comprises over 50000 4-view synchronized images

recorded for 16 moving targets, with associated positional

and head pose measurements (target positions are computed

using the person tracker [12]).

As mentioned earlier, the larger goal of this work is to

detect interactions in informal gatherings such as parties,

where we mainly focus on classifying the head-pan into one

of 8 classes (each denoting a 45◦ pan range). Since faces

are captured at low-resolution by distant, large field-of-view

cameras, this task is quite challenging and the state-of-the-

art can achieve only about 79% accuracy on the 4-view face

images (Table 1). We divide DPOSE into mutually exclu-

sive training/validation/test sets. For all methods, regular-

ization parameters are tuned using the validation set, con-

sidering values in the interval [2−3, 2−2, . . . , 23]. We con-

sider an initial, uniformly spaced grid with R = 25 regions

as shown in Fig.3. Our results denote mean classification

accuracies obtained from five independent trials, where a

randomly chosen training set is employed in each trial.

Table 1 presents results comparing FEGA-MTL with

competing head pose classification methods. We grad-

ually increase the training set size from 5 to 30 sam-

ples/class/region, while the test set comprises images from

all regions. As baselines, we consider the recent multi-view

approach which probabilistically fuses the output of multi-

ple SVMs [14] and the state-of-the-art ARCO classifier [19]

which is shown to be powerful at low resolution (we feed in

the 4-view image features to ARCO in order to extend it

to the multi-view setup). As shown in the table, both these

methods perform poorly with respect to the proposed ap-

proach, as they are not designed to account for facial distor-

tions due to scale/perspective changes.

A better strategy in such cases is to compensate for

position-induced appearance distortions in some way [17,

23]. The texture-mapping approach presented in [23] is

shown to be accurate, but many cameras are required for

effective texture mapping. Instead, we attempted the warp-

ing method proposed in [17], which despite its simplicity

is shown to effectively work with few low-resolution views.

We implemented a radial basis SVM to determine head pose

from the warped 4-view images. Warping is greatly benefi-

cial in the considered scenario as the Single SVM+Warping

method significantly outperforms Single SVM.

It is pertinent to point out two differences between our

approach and [17]– [17] proposes a pre-defined division

of space (the room is divided into 4 quadrants) which is

not necessarily optimal for describing the pose-appearance

relationship under arbitrary camera geometry. Secondly,

task relationships are not considered in [17], and an in-

dependent classifier is used for each quadrant. In con-

trast, FEGA-MTL discovers the optimal configuration of

grid clusters that best describes the pose-appearance rela-

tionship given camera geometry. Considering task relation-

ships enables FEGA-MTL to achieve higher classification

accuracy than a single global classifier (Single SVM), Sin-

gle SVM+Warping and separate region-specific classifiers

that do not consider inter-region appearance relationships

(Multiple Region-specific SVMs).

Table 1 also presents accuracies obtained with �21
MTL [1], which assumes all tasks share a common com-

ponent. As discussed before, negative transfer adversely af-

fects performance of �21 MTL, while FEGA-MTL achieves

higher accuracy upon flexibly discovering related tasks. We

also repeated the experiments employing only two of the

four camera views for head pose classification, and while

obtained accuracies are expectedly lower in this case, the

accuracy trends are still consistent with the 4-view scenario.

Table 2 compares classification performance of various

MTL methods. The advantage of employing MTL for head

pose classification under target motion is obvious since all

MTL approaches greatly outperform single SVM. More-

over, having a flexible learning algorithm which is able

to infer appearance relationships among regions provides

some advantages in terms of classification accuracy. This

is confirmed by the fact that in all situations (varying train-

ing set sizes and number of camera views) FTC MTL [24],

Clustered MTL [25] and FEGA-MTL achieve superior per-

formance. FEGA-MTL, which independently considers

features and employs graphs to explicitly model region and

head pose-based appearance relationships, achieves the best
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Table 1. DPOSE dataset: Head pose classification accuracy. Comparison with state-of-the-art head pose estimation methods.
4-view 2-view

Training Set Size/Class/Region Training Set Size/Class/Region

5 10 20 30 5 10 20 30

Single SVM 0.495 0.564 0.65 0.70 0.441 0.486 0.559 0.602

Multiple Region-specific SVMs 0.523 0.571 0.664 0.699 0.446 0.51 0.58 0.618

�21 MTL[1] 0.589 0.696 0.779 0.795 0.525 0.642 0.724 0.758

Multi-view SVM [14] 0.544 0.573 0.682 0.713 0.447 0.486 0.565 0.672

ARCO [19] 0.603 0.70 0.761 0.784 0.529 0.64 0.695 0.739

Single SVM+Warping [17] 0.563 0.644 0.725 0.752 0.466 0.575 0.653 0.687

FEGA-MTL 0.660 0.759 0.822 0.861 0.602 0.711 0.759 0.799

Table 2. DPOSE dataset: Head pose classification accuracy. Comparison with MTL approaches.
5 training samples/class/region 10 training samples/class/region

2-view 3-view 4-view 2-view 3-view 4-view

Single SVM 0.441 0.494 0.523 0.486 0.549 0.564

�21 MTL [1] 0.525 0.567 0.589 0.642 0.675 0.696

Flexible Task Clusters MTL [24] 0.555 0.598 0.621 0.65 0.681 0.715

Dirty model MTL [10] 0.546 0.585 0.603 0.655 0.686 0.696

Clustered MTL [25] 0.540 0.590 0.619 0.639 0.682 0.711

Robust MTL [9] 0.550 0.580 0.581 0.655 0.689 0.705

FEGA-MTL (region graph only, λ2 = 0) 0.581 0.623 0.643 0.677 0.718 0.733

FEGA-MTL (region graph + pose graph) 0.602 0.643 0.660 0.711 0.748 0.759

performance. The usefulness of modeling both region and

pose-based task dependencies through FEGA-MTL is evi-

dent on observing the results in Table 2. Using the region

graph alone is beneficial as such, while employing the re-

gion and pose graphs in conjunction produces the best clas-

sification performance.

Figure 4. Comparison of graph-guided MTL methods: classifica-

tion accuracies for (left) 4-views and (right) a single view.

Fig.3 shows the initial spatial grid and the optimal spa-

tial partitioning learned for a three-camera system with 5

training images/class/region. Clustered regions correspond

to identical columns of the task similarity matrix S, i.e. two

regions ti and tj merge if sti,c = stj ,c ∀c. Constrained by

the appearance similarity graph weights, spatially adjacent

regions tend to cluster together. While regions closer to the

camera-less room corner tend to form large clusters, smaller

clusters are observed as one moves closer to the cameras

owing to larger facial appearance distortions caused by per-

spective and scale changes. Apart from the region and pose-

based appearance similarity graph weights, facial appear-

ance features also influence the clustering of related regions,

and therefore, the computed optimal partitioning.

To further demonstrate the advantages of FEGA-MTL,

we compare it with the other graph-guided MTL meth-

ods [6, 26]. Fig.4 shows that higher accuracy is obtained

with our approach for different training set sizes. A main

difference between FEGA-MTL and these methods [6, 26]

is that they do not decompose wt,c as st,c + θt,c, and due

to the non-consideration of task-specific components θt,c,

they have less flexibility. Moreover, in [26] (due to the use

of �2 norm) and [6] (due to smoothing) task-clustering is

encouraged but not enforced, i.e. the wt,c’s corresponding

to a cluster are similar but not identical.

Also, it is worth noting that FEGA-MTL can also be

used in a single-view setting. However, the use of multi-

ple views is greatly advantageous. Fig.4 presents the ac-

curacies obtained with 4-view features against single-view

features (mean of the accuracies obtained with each of the

four views is considered here). Expectedly, higher classi-

fication accuracy is obtained with the four-view features.

The performance gain achieved using FEGA-MTL over an

SVM modeling pose-appearance relationship over the en-

tire space is evident, for both single and four-view cases.

Finally, Fig.5 shows some qualitative results obtained

with FEGA-MTL for single and multiple targets tracked

real-time using [12]. With multiple targets, identical col-

ors are used to denote the pose direction frustum and face

crop rectangle for each target. This scenario is quite chal-

lenging, as six targets are interacting naturally and freely

moving around in the room.

6. Conclusions

We propose a novel graph-guided FEGA-MTL frame-

work for classifying head pose of moving targets from mul-

tiple camera views. Starting from a dense 2D spatial grid,

two graphs which respectively model appearance similar-

ity among grid partitions and head pose classes guide the

learner to output region-specific pose classifiers and the op-

timal space partitioning. Experiments demonstrate the su-

periority of FEGA-MTL over competing methods.
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Figure 5. (Top) Head pose classification results for a target moving freely within a 3-camera setup are shown two-by-two. The learned

clusters, as seen from a fourth view, are shown on the bottom-left inset. Cluster corresponding to the target position (denoted using a stick

model) is highlighted. (Bottom) Pose classification results for a party video involving multiple mobile targets (best viewed under zoom.)
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