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Abstract

The problem of graph matching in general is NP-hard
and approaches have been proposed for its suboptimal so-
lution, most focusing on finding the one-to-one node map-
ping between two graphs. A more general and challenging
problem arises when one aims to find consistent mappings
across a number of graphs more than two. Conventional
graph pair matching methods often result in mapping in-
consistency since the mapping between two graphs can ei-
ther be determined by pair mapping or by an additional
anchor graph. To address this issue, a novel formulation
is derived which is maximized via alternating optimization.
Our method enjoys several advantages: 1) the mappings are
jointly optimized rather than sequentially performed by ap-
plying pair matching, allowing the global affinity informa-
tion across graphs can be propagated and explored; 2) the
number of concerned variables to optimize is in linear with
the number of graphs, being superior to local pair match-
ing resulting in O(n2) variables; 3) the mapping consis-
tency constraints are analytically satisfied during optimiza-
tion; and 4) off-the-shelf graph pair matching solvers can
be reused under the proposed framework in an ‘out-of-the-
box’ fashion. Competitive results on both the synthesized
data and the real data are reported, by varying the level of
deformation, outliers and edge densities.

∗Corresponding author. The work is supported by NSF IIS-
1116886, NSF IIS-1049694, NSFC 61129001/F010403 and the 111
Project (B07022).

1. Introduction

Graph matching is an essential problem in theoretical
computer science due to its powerful characteristics of ab-
straction. The problem of graph matching is to establish
a consistent mapping between the nodes of two or more
graphs. It is related to various research areas such as com-
puter vision, pattern recognition, and machine learning. It
has attracted considerable research interests [4] for decades
yet remains challenging, due to its NP-hard property.

Graph matching is typically and mostly considered un-
der the two-graph scenario, and has been explored in a vari-
ety of tasks such as feature tracking, image retrieval, object
recognition, and shape matching [9]. For instance, object
matching can be regarded as finding consistent correspon-
dences between two sets of features, by maximizing the fit-
ness regarding the unary and edge similarities in two graph-
s. In this setting, the problem can be formulated as graph
matching that aims to find a point-to-point mapping that p-
reserves as much as possible the relationships between n-
odes. Many approaches have been proposed, ranging from
the early work [7] to the recent work [3, 21] etc.

However, in many of other scenarios, given a set of
graphs, which all represent equivalent or related structures,
it is required to find global consistent correspondences for
the all graphs. Relevant applications could be found in [24],
where representations obtained from Infrared, Optical, Car-
tographic and SAR images must be combined, as well as
in [15] where a prototype has to be synthesized from noisy
data representing the same object. To address the multi-
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ple graph matching problem, a simple strategy could be ap-
plying the state-of-the-art two-graph matching algorithms
on each graph pair individually and independently: for in-
stance, given graphGa, Gb and Gc, firstly one can apply the
pair matching solver e.g. [3, 21] to find the node mapping
Xab, Xbc respectively, and then obtain the mapping Xac in-
duced by the intermediate graphGb. One obvious weakness
is the affinity measurement between Ga and Gc is ignored,
which might be more accurate than the defined affinity be-
tween Ga-Gb and Gb-Gc especially in case Gb is heavily
corrupted. On the other hand, applying pair match solver
between individual Ga and Gc is likely to generate incon-
sistent or redundant matching solutions compared with the
mapping induced by Xab, Xbc, especially given large num-
ber of nodes or significant corruption.

Aiming at addressing these challenges, we make the fol-
lowing main contributions in theory and algorithm:

1) We derive the original objective formulation into a
new one where the redundant mapping variables are com-
pactly represented by the set of basis mapping variables.
Moreover, we show the number of the basis variables scales
linearly with the number of graphs. This formulation math-
ematically ensures the mapping constraints and allows for
joint pair mappings optimization, mixing the local and the
global affinity information. Its robustness against noise and
local distortion are indicated in the experiments;

2) Using the derived formulation, we propose an alter-
nating optimization method which allows reusing any of the
existing pair matching solvers. The convergence property is
analyzed theoretically and observed experimentally.

2. Related work

A myriad of methods have been proposed for graph
matching. Most approaches address the graph matching
problem in the context of finding correspondence between
a pair of graphs, for which an incomplete list is as fol-
lows: [14] formulate graph matching as a constrained inte-
ger quadratic programming (IQP) problem with a concave
optimization scheme. [7] proposed the well known Grad-
uated Assignment algorithm (GAGM) by relaxing the in-
teger constraint. [23] designed the Successive Projection
Graph Matching (SPGM), and recently [10] proposed the
Integer Projected Fixed Point (IPFP) method with climb-
ing and convergence properties that optimizes the IQP in
the discrete domain. Another line of optimization tech-
niques adopts the technique of spectral matching to approx-
imately solve the matching task: [9] proposed an efficient
Spectral Matching (SM) method to the IQP based on spec-
tral relaxation, which computes the leading eigenvector of
symmetric nonnegative affinity matrix. [20] extended SM
to Spectral Matching with Affine Constraint (SMAC) by in-
troducing affine constraints into the spectral decomposition
that encodes the one-to-one matching constraints. Recent-

ly, [13] showed point matching capable of handling signif-
icant affine or similarity transformation can be formulated
as an IQP problem which also appeared in graph matching

Beyond the second order edge affinity, recent work ex-
plore the graph structure by hyper-edges, e.g. triple-node
tuples [5,8,12,26]. Another research thread in parallel is fo-
cusing on learning the affinity matrix (or tensor in the hyper
graph case) for graph matching [2,6,11] etc. While this pa-
per focuses on the optimization framework, rather than how
come from the affinity information (learning or learning-
free); or to what extend the affinity information is explored
(edge or hyper-edge). Thus these work are in parallel and
out of the scope of this paper.

One limitation of the aforementioned approaches is that
the matching is conducted under a graph pair, rather than
an arbitrary number of graphs jointly and consistently. The
multiple graph matching problem is also termed as common
labelling, especially in the context of graph cluster represen-
tation [18], and has many connections with how to measure
the similarity for the attributed graphs, in terms of random
graph synthesizing, representation, classification and clus-
tering e.g. [1, 16, 17, 25] etc. Specifically, [25] synthesizes
an ensemble of attributed graphs into the distribution of a
random graph and further classify the query graph to a cer-
tain category. By using the second order information, [16]
extend the first order random graphs (FORGs) [25] to the
second-order random graphs (SORGs) for graph cluster-
ing and recognition. [1] propose an unsupervised learning
method for graphs clustering and median graph building
based on a set of graphs. These works are all based on graph
pair matching as the similarity metric, and share the com-
mon weakness that the local matching error taken at initial
stages might propagate and lead to bad global results.

Compared with the pair matching problem, the multi-
ple graph matching has not been intensively studied by the
community, and only a few address this problem using prin-
cipled optimization. The proof-of-concept (as claimed in
the paper by the authors) [24] provide a Bayesian view to
extend the matching graph pairs to multiple ones, but no
solver is proposed. Using the generalized softassign al-
gorithm, [18] substitute the assignation matrices associat-
ed with each graph pair by an assignation hypercube. It
generates always consistent isomorphisms, and alleviates
the lacking of global knowledge in optimization. Howev-
er simply extending to the N -dimension softassign suffer-
s the prohibitive computational complexity due to directly
manipulating the N -dimension stochastic hypercube during
softassign iteration. A more recent state-of-the-art [19] is
the extension and improvement of [18]: hypercube is first
obtained by pair isomorphism, and then a clean-up step is
performed to enforce the mapping consistency. This al-
gorithm computes the hypercube via sequential local pair
matching, resulting in more computational efficiency. How-
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ever, none of the previous work has shown how the multiple
graph matching formulation can be back transformed into a
pair matching problem in its IQP formulation, both algo-
rithmically and mathematically.

To our best knowledge, this is the first work on extend-
ing the IQP formulation for pair matching to multiple ones.
Our novel formulation explores the global affinity and un-
veil the underlying connection with pair matching. And it
is scalable to N -graph case.

3. Preliminaries for graph matching

3.1. Graph pair matching

First we briefly introduce the widely used formulation
of pair graph matching. Concretely, given two graph-
s GL(V L, EL, AL) and GR(V R, ER, AR), where V de-
notes nodes, E, edges and A, attributes, there is an affin-
ity matrix defined as Mia;jb that measures the affinity with
the candidate edge pair (vLi , v

L
j ) vs. (vRa , v

R
b ). And the

diagonal term Mia;ia describes the unary affinity of a n-
ode match (vLi , v

R
a ). By introducing a permutation matrix

x ∈ {0, 1}nL×nR whereby pia = 1 if node V L
i matches

node V R
a (and pia = 0 otherwise), it leads to the following

constrained IQP formulation:

p∗ = argp max(pT Mp) s.t. Ap = 1 p ∈ {0, 1} (1)

here x is the vectorized permutation matrix, and Ax=1 refers
to the one-to-one node mapping constraint for two graphs.

3.2. Multiple graph matching

Given N graphs and the associated affinity matrix Mij ,
a natural extension for multi-graph matching is:

P∗ = argP max
∑

i,j=1,2,...,N;i>j

λijpT
ijMijpij (2)

s.t. Apij = 1 pij ∈ {0, 1}

∀i, j = 1, 2, ..., N ; i > j |P| =
N(N − 1)

2

where P is the vectorized pairwise permutation matrix set
among multiple views: {pij}(∀i, j = 1, 2, ..., N ; i > j).
And λ is the weight for each pair matching score.

The above formulation tells that optimizing pij , pjk and
xik could not guarantee the consistency between pik and
the mapping induced by the chain pij , pjk - see Fig. 1 for
example. One alternative solution is to enforce some cer-
tain constraints like f(pij , pik, pjk) = 0 in addition to the
extended formulation 2, and this calls for exploring the ex-
plicit mathematical connection. Even knowing the explicit
constraints as will be shown in the rest of this paper, we stil-
l need new algorithms to solve this problem as it might be
different from the conventional pair matching problem.

Figure 1: Graph a, b, c: (a) the edge mapping between graph
b and c by the mapping chain through pab and pac is incon-
sistent to the direct mapping pbc, this suggests the redun-
dancy of three mappings; (b) when the pbc is subsumed by
a formulation only containing pab and pac, the redundancy
and inconsistency naturally disappear.

4. Proposed framework and algorithm

Given a graph set with more than two graphs, we are
interested in finding their node mapping among the graph-
s. Directly applying the existing pairwise matching meth-
ods will sequentially match the graphs by pair and a local
matching mistake between two graphs may propagate along
the matching chain to deteriorate the overall performance.
Thus we are motivated to design a principled multiple graph
matching framework in nature, and furthermore, to explore
the possibility of reusing the resource of the off-the-shelf
pairwise matching solvers.

4.1. Reduce the redundant Pbc

In the following, we show how to find the representa-
tion of Pbc that satisfies consistency over multiple graphs.
For clarity reason, the following mathematical derivation-
s will specifically focus on the triple-view graph matching
scenario, while it should be noted the formulation can be
readily extended to any number of graphs - this will be dis-
cussed shortly after the illustration of triple case. Given
three graphs Ga, Gb, Gc, let pab, pac, pbc denote the match-
ing correspondences mapping between view pair {Ga, Gb},
{Ga, Gc} and {Gb, Gc}, respectively.

In particular, we are interested in how to formulate the
triple-view graph matching problem in a unified optimiza-
tion framework, and preferably, the pairwise matching tech-
niques can be reused. We illustrate our idea using a concrete
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example as shown in the following1:

pab =

[
0, 1, 0, 0,

...0, 0, 1, 0,
...1, 0, 0, 0,

...0, 0, 0, 1

]T
(3)

pac =

[
0, 0, 0, 1,

...0, 0, 1, 0,
...0, 1, 0, 0,

...1, 0, 0, 0

]T
(4)

where pab in Eq.3 indicates that point {1,2,3,4} in view a

corresponds to point {2,3,1,4} in view b respectively. And
pac in Eq.4 denotes point {1,2,3,4} in view a corresponds
to {4,3,2,1} in view c respectively. In this way, the corre-
spondences between view b and view c can be determined
from the known mapping between pair ab and pair ac:

pbc =

[
0, 1, 0, 0,

...0, 0, 0, 1,
...0, 0, 1, 0,

...1, 0, 0, 0

]T
(5)

While the above observation is obvious, it still lacks the
strict mathematical derivation. In what follows, we show
how to obtain pbc when given pab and pac, respectively.
This is the key step to build our final formulation.

Still in the context of four-point graph matching, first de-
fine the matrix Q41 as follows:

Q41 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1, 0, 0, 0,
...0, 0, 0, 0,

...0, 0, 0, 0,
...0, 0, 0, 0

0, 1, 0, 0,
...0, 0, 0, 0,

...0, 0, 0, 0,
...0, 0, 0, 0

0, 0, 1, 0,
...0, 0, 0, 0,

...0, 0, 0, 0,
...0, 0, 0, 0

0, 0, 0, 1,
...0, 0, 0, 0,

...0, 0, 0, 0,
...0, 0, 0, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

And we have: Q41pab = [0, 1, 0, 0]
T . Note that Q41 is

used to get the first block of pab. And for Q41, the subscript
‘1’ denotes the position of the identity sub-matrix in Eq. 6.
Similarly, we have: Q41pac = [0, 0, 0, 1]

T . As such, one
can obtain:

(Q41xab)⊗ (Q41xac) =

[
0, 0, 0, 0,

...0, 0, 0, 1,
...0, 0, 0, 0,

...0, 0, 0, 0

]T

where ⊗ is the Kronecker Product. Thus we have:

pbc =
4∑

i=1

(Q4ipab)⊗ (Q4ipac) (7)

In general, for N node graph, we have:

pbc =
N∑
i=1

(QNipab)⊗ (QNipac) (8)

We have shown pbc can be analytically derived from pab and
pac. And triple-view matching objective can be written:

maxpT
abMabpab + pT

acMacpac + pT
bcMbcpbc (9)

1When the number of nodes are different in two graphs, one can add
dummy nodes or introduce slack variables as done in [7]. Thus we always
assume equal number of nodes.

where pbc =
∑N

i=1(QNipab)⊗ (QNipac). Without loss of
generality, the weights of each term in (9) are omitted.

Then we address how to formulate pT
bcMbcpbc using pab

and pac while keeping its IQP formulation. Note the fol-
lowing equation (the so-called mixed-product property):

(QNipab)⊗ (QNipac) = (QNi ⊗QNi)(pab ⊗ pac) (10)

Therefore pT
bcMbcpbc can be written as:

[
N∑
i=1

(QNipab)⊗ (QNipac)]
T Mbc[

N∑
i=1

(QNipab)⊗ (QNipac)]

=

N∑
i=1

(pab ⊗ pac)
T (QNi ⊗QNi)

T Mbc

N∑
i=1

(QNi ⊗QNi)(pab ⊗ pac)

=(pab ⊗ pac)
T [

N∑
i=1

(QNi ⊗QNi)
T Mbc

N∑
i=1

(QNi ⊗QNi)](pab ⊗ pac)

=
[
p1

abpT
ac, p2

abpT
ac, . . . , pN2

ab pT
ac

]
MQ

bc

⎡
⎢⎢⎢⎣

p1
abpac

p2
abpac

...

pN2

ab pac

⎤
⎥⎥⎥⎦

=
N2∑
i=1

N2∑
j=1

pi
abpj

abpT
acMQ

bc(i, j)pac (11)

where pi
ab is the ith scalar element in pab, while MQ

bc(i, j)
denotes the sub-matrix within row (i− 1) ∗N2+1 : i ∗N2

and column (j − 1) ∗N2 + 1 : j ∗N2. And we have:

MQ
bc =

N∑
i=1

(QNi ⊗QNi)
T Mbc

N∑
i=1

(QNi ⊗QNi) (12)

Note that MQ
bc is a constant during optimization, thus the

mathematically difficult operator ⊗ actually disappears.
Then we obtain the transformed new objective function:

pT
abMabpab + pT

acMacxac +

N2∑
i,j=1

pi
abpj

abpT
acMQ

bc(i, j)pac (13)

Now we show how to replace the term including pbc us-
ing pab. Note one can reverse pT

bcMbcpbc into pT
cbMcbpcb

without changing the property of the objective function 9,
which allows for the following reformulation by replacing
pcb with pab:

pT
abMabpab + pT

acMacpac +

N2∑
i,j=1

pi
acpj

acpT
abMQ

cb(i, j)pab (14)

where MQ
cb =

∑N

i=1(QNi ⊗ QNi)
T Mcb

∑N

i=1(QNi ⊗
QNi). It should be noted that pab, pac and pbc are redun-
dant in determining the two mapping relation among three
graphs. This also poses the gap for direct applying of the
conventional pair matching methods. The above derivation
has shown how to replace the redundant variable pbc in Eq.
9 and reach a more compact objective formulation as in Eq.
13 or Eq. 14.
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Algorithm 1 Alternating optimization for graph Ga,Gb,Gc

Input: affinity matrix Mab,Mbc, Mac;
Output: consistent mappings pab, pbc, pac

Initial: k = 0; p0
ab = p0

bc = p0
ac = [ 1

n2 , ...,
1
n2 ]

T

while (k not exceeds iteration maximum) do
k=k+1
fix the latest updated pk−1

ab , and update pk
ac using (15)

fix the latest updated pk
ac, and update pk

ab using (16)
Δab = ‖pk

ab − pk−1
ab ‖2, Δac = ‖pk

ac − pk−1
ac ‖2

if Δab < ε,Δac < ε: stop
end while
Calculate pbc by pab and pac using Eq.8.

4.2. Alternating optimization algorithm

In terms of the proposed framework, we design our opti-
mization algorithm by iterating with respect to pab and pac

alternatively, and fixing the other meanwhile. In the k-th
iteration, leveraging on the form of objective function by
(13), one can fix pk−1

ab and update pk
ac by maximizing:

max
pk
ac

pk
ac

T
[Mac +

N2∑
i,j=1

pik
abpjk

abMQ
bc(i, j)]p

k
ac (15)

Alternatively, using Eq.14, one can fix the updated pk
ac and

renew pk
ab via optimizing:

max
pk
ab

pk
ab

T
[Mab +

N2∑
i,j=1

pik
acpjk

acMQ
bc(i, j)]p

k
ab (16)

By doing so, we update both pk
ab and pk

ac in the k-the iter-
ation. Notice that Eq.15 and Eq.16 are both IQP problem,
which can be solved by current pair graph matching tech-
niques ‘out-of-the-box’.

Based on the above observation, the proposed formula-
tion and algorithm are described in Alg.1. Any pair match-
ing solver can be performed for alternating updating. Here
we briefly discuss the convergence property of the pro-
posed algorithm. As the optimized variable p = [pab, pac]
is vectorized permutation matrix, forming a solution chain
p1,p2,... thus there must exist k and s such that pk=ps.
In other words, the iteration will converge to a looping se-
quence or a fixed point after finite steps.

4.3. From triple-graph to N -graph

Now we address the problem raised in the beginning for
how to generalize to any-order of multiple graph matching.
Observing the fact from the triple matching model that pbc

can be represented by pab and pac. Thus for arbitrary N

graphs, e.g. a set of 4 graphs a, b, c, d, the pairwise match-
ing correspondences pbc, pbd, pcd can be represented by

Algorithm 2 Alternating optimization for N -graph

Input: affinity matrix MG1G2
,MG2G3

,..., MGN−1GN

Output: consistent pG1G2
, pG2G3

,...,pGN−1GN

Initial: k=0; p0
G1G2

=,...,=p0
GN−1GN

=[ 1
n2 , ...,

1
n2 ]

T

while (k not exceeds iteration maximum) do
k=k+1
for (i = 2 to N ) do

fix the latest updated pk−1
GjG1

, and update pk
GiG1

ΔGiG1
= ‖pk

GiG1
− pk−1

GiG1
‖2, (j=2,...,N , j �= i)

end for
if ∀ ΔGiG1

< ε; i = 2, 3, ..., N : stop
end while

Table 1: Eq.8 establishing ratio of 30 random trials from the
synthetic experiment by independent pair-graph matching.

Deformation .05 0.1 .15 0.2 .25 0.3 .35
100% 100% 90% 70% 40% 0% 0%

Outlier # 2 4 6 8 10 12 14
80% 67% 27% 30% 0% 0% 0%

Density level 0.4 0.5 0.6 0.7 0.8 0.9 1
70% 67% 64% 64% 20% 3% 0%

the tuples: (pab, pac), (pab, pad) and (pac, pad) respec-
tively. This indicates that pab, pac, pad are the base vari-
ables for optimization. Similar to the triple-graph case, one
can fix two of the three variables, and optimize in terms of
the left one. In general, given m graphs G1, G2, . . . , Gm,
one can reformulate the objective function with respect to
pG1G2

, pG1G3
, . . . , pG1Gm

, totally m − 1 variables. And
for each iteration, fix m − 2 variables, and optimize with
respect to the other in an alternative manner. This observa-
tion is important to the computational extensibility of our
framework in that as the number of graph increases, the
total computational overhead grows in a linear proportion
due to each of the m− 1 variables is iteratively updated by
turn. The convergence analysis for the triple-graph case al-
so applies for the study of N -graph. And the N -view graph
matching algorithm is summarized in Alg.2.

In summary, we derive a framework for multiple graph
matching, where the variables are optimized jointly and the
consistency is always satisfied. In each iteration, we cast
the objective function into an IQP that can be solved by any
pair matching techniques. The formulation is also mathe-
matically and computationally extensible to N graphs.

5. Experiments and discussion

5.1. Protocol on simulation tests

In terms of experimental protocol for graph matching,
the online available [3,8] has been recognized as a baseline
evaluation. Following the same procedure as [3], we ran
multiple random tests on synthetic data by different levels of
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deformation, outliers and edge densities. We also compared
the proposed approach with: 1) individual graph matching
for each pair by using a particular pair matching algorith-
m, which might generate inconsistent solutions - in this pa-
per, we term it ppair; and 2) the hypercube framework used
in the state-of-the-art [19], which firstly performs a certain
pair matching algorithm among graph pairs to build a hyper-
cube, then plus a post-discretization step to obtain the com-
mon labelling (can be a sequential greedy algorithm as in
this paper or an extended Hungarian method), is performed
to obtain the final consistent solutions: pcube. IPFP [10] is
chosen as the black-box solver in alternating optimization,
in that it is a score non-descending algorithm. And we use
different terms: ‘Pair’ - method 1), ‘Cube’ - method 2) and
‘Multi’ - our method, in result illustration.

For each trial in all random graph experiments, the same
affinity matrix was shared as the input for the testing al-
gorithms. We build three graphs Ga, Gb and Gc with nin

inliers, optional nout outliers and the edges with a density
controlled by parameter ρ as the same in [3]. For graph Ga,
each edge’s attribute dija is assigned by a random value u-
niformly sampled from [0,1], and the perturbed graph Gb

and Gc are created by adding a Gaussian deformation noise
ε sampled from N(0, σ2) to dija i.e. dijb = dija +εC where C

is the average of all dija in graph Ga. The affinity matrix
is calculated by exp(−‖dija -dxyb ‖/σ

2
s ) where ij is the edge

between node i and j in one graph and xy is the edge be-
tween node x and y in the other graph. σ2

s is set to 0.15
same as in [3] for random graph tests. The performances of
each method are measured in both accuracy and scores the
same as defined in [3]. The maximum iteration in Alg.1 is
set to 5. All experiments are repeatedly performed for 30
random trials and the average results together with standard
deviations are plotted.

5.2. Observations and analysis

The average accuracy and score out of 30 random trials
are shown in Fig.3 for matching across three graphs; and
Fig.4 for the four graph case. The curves are reflecting dif-
ferent degrees of synthetically imposed deformation, outli-
er, and edge density. For deformation test, the edge density
is set to 0.7. For outlier test and density test, we add addi-
tional deformation with ε=0.05 and ε=0.2 respectively. The
experimental results trigger some discussions:

Discrepancy exists between score and accuracy: solu-
tions with better accuracy may produce lower scores under
two particular graphs. One can find such examples in Fig.3,
Fig.4 for both three-graph matching and four-graph, espe-
cially the disturbance is significant. In our analysis, this
might be due to that as graphs are corrupted, the associated
local affinity matrix is misleading and makes the individual
matching ppair inaccurate (although being an optimum in
score). While our method can propagate the global infor-

(a) Delaunay image

30 34 38 42 46 50

0.2

0.4

0.6

0.8

1

sequencegap

A
cc

ur
ac

y 
A

B
C

 

 

PairGAGM
MultiGAGM
CubeGAGM

(b) Overall accuracy

30 34 38 42 46 50

0.2

0.4

0.6

0.8

1

sequencegap

Sc
or

e 
A

B
C

 

 

PairGAGM
MultiGAGM
CubeGAGM

(c) Overall score
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(d) Accuracy of pab
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(e) Accuracy of pac
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(f) Accuracy of pbc
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(g) Score of pab
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(h) Score of pac
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(i) Score of pbc

Figure 2: Performance evaluation on CMU hotel sequence
dataset with increasing frame gap. Delaunay triangulation
is used for graph construction on each raw image as exem-
plified in the left top sub-graph. GAGM [7] is adopted as
the solver for pairwise graph matching.

mation from other affinity matrix to compensate such devi-
ation. As a result, it jointly optimizes the mapping variables
by simultaneously exploring the affinity matrix across pairs,
and become less sensitive to the local noise.

Accuracy is boosted especially in the presence of out-
liers and deformation: as the alternating optimization al-
gorithm works in an expectation maximization fashion, the
local solution quality in each iteration will largely influence
the overall performance and IPFP is found the most com-
petitive one regarding accuracy, in all testing as shown in
synthetic-graph matching. Due to the space limitation, in
this paper we only provide the results using IPFP as the
black-box pair matching solver.

Individual pair matching is inconsistent: Table 1
shows the counts of the trials when Eq. (8) holds, which
is out of the 30 trials on three-graph test in terms of defor-
mation, outlier and edge density as shown in Fig.3. As the
disturbance grows, it becomes more difficult for the indi-
vidual two-view matching solutions ppair

ab , ppair
ac , ppair

bc to
satisfy the establishment of Eq.8.

5.3. Results across image sequence

The proposed method is also evaluated against other
methods on the CMU Hotel and House sequences which
has been extensively used in many work [3, 5, 8, 22] etc.
30 landmark feature points were manually tracked and la-
beled across all frames on which Delaunay triangulation is
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Figure 3: Performance evaluation for matching three synthetic graphs by varying deformation, outlier #, and edge density:
average and deviation of accuracy and score out of 30 random trials. Row 1: accuracy and score of pab; Row 2: accuracy and
score of pac; Row 3: accuracy and score of pab; Row 4: accuracy and score of mean of pab,pac,pbc.

performed to obtain the graph structure. The affinity ma-
trix is set by exp(−‖dija -dxyb ‖/σ

2
s ) where dija (or d

xy
b ) is

the Euclidean distance. To better differentiate the methods,
we select the Graduate assignment method [7] as the pair-
matching solver as its mechanism is quite different from the
IPFP method used in the synthesized test thus the proposed
framework can be better verified. And we set the scale pa-
rameter σ2

s = 0.15 after normalizing the point coordinate
between [0,1], as the same with the synthetic experiment.
As shown in Fig.2, we vary the sequence gap gap between
three frames to verify the robustness of the compared meth-
ods. Given frame t for the first graph, the other two graphs
are selected from frame t+0.75∗gap and t+1.5∗gap such
that the average sequence gap between two graphs is gap.

6. Conclusion
We propose a novel formulation for robust and consistent

multiple graph matching. The merits lie in the extension of
the conventional pair matching formulation, and seamless
reuse of existing pair matching solvers. Experimental re-
sults show the competitiveness of the proposed method.
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Figure 4: Performance evaluation for matching four synthetic graphs by varying deformation, outlier #, and edge density:
average and deviation of accuracy and score out of 30 random trials. Row 1: accuracy and score of pab; Row 2: accuracy and
score of pac; Row 3: accuracy and score of pbc; Row 4: accuracy and score of pad; Row 5: accuracy and score of pbd; Row
6: accuracy and score of pcd; Row 7: accuracy and score of mean of pab,pac,pbc,pbc,pbd,pcd.
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