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Abstract

How to measure the perceptual quality of natural images
is an important problem in low level vision. It is known that
the Mean Squared Error (MSE) is not an effective index to
describe the perceptual fidelity of images. Numerous per-
ceptual fidelity indices have been developed, while the rep-
resentatives include the Structural SIMilarity (SSIM) index
and its variants. However, most of those perceptual mea-
sures are nonlinear, and they cannot be easily adopted as
an objective function to minimize in various low level vision
tasks. Can MSE be perceptual fidelity aware after some mi-
nor adaptation?

In this paper we propose a simple framework to enhance
the perceptual fidelity awareness of MSE by introducing an
l2-norm structural error term to it. Such a Structural MSE
(SMSE) can lead to very competitive image quality assess-
ment (IQA) results. More surprisingly, we show that by us-
ing certain structure extractors, SMSE can be further turned
into a Gaussian smoothed MSE (i.e., the Euclidean distance
between the original and distorted images after Gaussian
smooth filtering), which is much simpler to calculate but
achieves rather better IQA performance than SSIM. The so-
called Perceptual-fidelity Aware MSE (PAMSE) can have
great potentials in applications such as perceptual image
coding and perceptual image restoration.

1. Introduction
In many image processing and low level vision tasks, it

is indispensable to find a suitable fidelity measure to mea-

sure the fidelity index of the underlying visual signal. The
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use of fidelity measure can be generally classified into the

following categories. First of all, the fidelity measure is u-

biquitously used to evaluate the performance of competing

algorithms and to guide the parameter selection, for exam-

ple, in image denoising [9] and medical image reconstruc-

tion [29]. Second, the fidelity measure is used to design the

objective function for minimization in applications such as

image coding [12,23] and image restoration [17]. Third, the

fidelity measure can be used as the rule to make decisions,

for example, in content based image retrieval [21] and block

matching [16, 27].

The most popular and widely used signal fidelity mea-

sure may be the classical Mean Squared Error (MSE),

which measures the fidelity of a signal d ∈ RN by ‖r −
d‖22/N , where r ∈ RN is the reference counterpart of

d. MSE has many appealing mathematical properties. It

is simply the l2-norm of the difference between r and d,

and is the Euclidean distance metric in theRN space. MSE

is convex and differentiable, and can be easily minimized

with an analytical solution. From another viewpoint, MSE

measures the energy of the error signal, which can be pre-

served under orthonormal transforms such as Fourier trans-

form, discrete cosine transform, orthonormal wavelet trans-

form and principal component analysis, etc. For a more

thorough analysis of MSE, please refer to [24].

Despite of the many desired mathematical properties,

one fatal weakness of MSE in the context of vision appli-

cations is its inconsistency with human perception of im-

age quality [24]. This is mainly because MSE is pixel-wise

and ignores the structural relationship in a neighborhood.

Meanwhile, it also ignores the correlation between the noise

signal and the original image.

The past decades have witnessed the rapid development

of image quality assessment (IQA) methods, which aim to

gauge the perceptual quality of natural images like human
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does. In the case that the reference image is accessible, the

resulting full reference (FR) IQA model can be utilized as

an image perceptual fidelity term to mimic the human per-

ception of image quality. Numerous FR IQA models have

been proposed by using mutual information [18, 19], struc-

ture comparison [25, 28, 30, 31], and human vision system

simulation [10], etc. Though these IQA models can bet-

ter predict the perceptual quality of a test image than MSE,

they do not profit much the applications such as perceptual

image coding, perceptual image representation and restora-

tion, etc. The main reason lies in that those IQA models are

nonlinear and lack the properties such as differentiability

and convexity. Most of them are not a valid distance metric

and have much higher computational complexity than MSE.

Among the existing FR IQA models, the Structural SIM-

ilarity (SSIM) [25] index is probably the most influential

one. It has been widely studied by researchers and many

IQA models were developed based on the principle of S-

SIM [2, 30]. In perceptual image coding and restoration,

more visually comfortable results have been reported by us-

ing SSIM to guide the algorithm design [16, 17, 23]. The

underlying assumption of SSIM is that the human vision

system is highly adapted to extract structural information in

the viewing field. For a pair of reference image r and dis-

torted image d, SSIM estimates the perceptual quality of d
from three aspects: luminance, contrast and structure. It us-

es the following formula to compute the perceptual fidelity

index of d:

SSIM(r,d) =
2μrμd + c1
μ2
r + μ2

d + c1
· 2σr,d + c2
σ2
r + σ2

d + c2
(1)

where μr and μd are the local mean luminance of r and d;

σ2
r and σ2

d are the local variance; σr,d is the local covariance

between r and d.

The mathematical properties of SSIM have been careful-

ly analyzed in [1], revealing some desirable properties of

SSIM such as quasi-convexity, the triangular inequality, d-

ifferentiability, etc. However, compared with the l2-norm

based MSE, SSIM is still much more difficult to be used as

an objective function to minimize, due to its complicated

gradient computation [1, 26]. It is highly demanded to find

an MSE-like fidelity measure, which could inherit some of

the appealing merits of MSE while being highly perceptual

fidelity aware. This will not only simplify the computation

in IQA applications, but also facilitate significantly the use

of perceptual fidelity measure in applications such percep-

tual image coding and perceptual image restoration.

With the above considerations, in this work we aim to

develop an MSE-like l2-norm perceptual fidelity measure.

We propose to introduce an l2-norm structural error term

to the original MSE so that the resulting measure can be

more perceptual fidelity aware. The structural error term

can be simply designed by using the linear gradient oper-

ator or Laplacian of Gaussian operator. Our experimental

results show that such a Structural MSE (SMSE) leads to

very competitive IQA performance with SSIM.

More surprisingly, we show that by using certain linear

structure extractors, the proposed SMSE can be turned in-

to a Gaussian smoothed MSE, i.e., the Euclidean distance

between reference image r and distorted image d after

Gaussian smooth filtering. We call the resulting measure

Perceptual-fidelity Aware MSE (PAMSE), which provides

a very simple MSE-like formula to calculate the image per-

ceptual fidelity and achieves rather better perceptual consis-

tency than SSIM. In addition, PAMSE can have great poten-

tials in perceptual image coding and restoration.

Section 2 presents the framework of SMSE and the set-

ting of its structural term. Section 3 presents the derivation

of PAMSE from SMSE. Section 4 presents the experimental

results and Section 5 concludes the paper.

2. A Framework of Structural MSE
2.1. The framework

As discussed in the Introduction section, Mean Squared

Error (MSE) possesses many desirable mathematical prop-

erties and it is easy to use. It would be very interesting if we

could design an MSE-like l2-norm distance metric, which

could inherit some important advantages of MSE while im-

proving the consistency with human perception of image

quality. Since human visual system is sensitive to image lo-

cal structures, we propose to amend MSE a little so that the

modified MSE can count more the structural information in

the fidelity estimation.

Figure 1(a) shows the proposed framework of SMSE for

IQA. The original MSE term ‖r − d‖22/N is preserved in

SMSE to measure the signal energy preservation. In par-

allel, a linear structure extractor, denoted by S, is used

to extract the structure features of r and d, and a term

‖Sr−Sd‖22/N is introduced to measure the structural error

in image d. The resulting SMSE index is:

SMSE(r, d) =
1

N
(‖r− d‖22 + α‖Sr − Sd‖22)

=
1

N
(‖r− d‖22 + α‖S(r− d)‖22)

(2)

where α is a (negative or positive) constant to adjust the

contribution of structural error term ‖Sr−Sd‖22 to the final

index. Here we restrict the structure feature extractor S to

be linear in order to make the whole SMSE model linear

and easy to apply.

SMSE is an amendment of MSE by introducing a struc-

tural error term. It is necessary to know if SMSE can still

be a valid distance metric, like the original MSE does. Eq. 2

can be re-written as:

SMSE(r, d) =
1

N
(r− d)T (I + αSTS)(r− d) (3)
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Figure 1. The framework of Structure MSE (SMSE) and Perceptual fidelity Aware MSE (PAMSE).

where superscript ’T ’ means transpose and I denotes the

identity matrix. Let M = I + αSTS. If M is positive

semi-definite (PSD), SMSE will be a valid (pseudo-) dis-

tance metric. Denote by λi, i = 1 . . . N , the eigenvalues

of matrix STS. Then the eigenvalues of M , denoted by

γi, i = 1 . . . N , can be written as γi = 1 + αλi. Then the

sufficient and necessary condition that SMSE is a distance

metric is:

γi = 1 + αλi ≥ 0, i = 1 . . . N. (4)

On the other hand, since M is symmetric, when it is a

PSD matrix with γi ≥ 0, we can find a matrix P such that

M = P TP (5)

And then the SMSE metric can be re-written as:

SMSE(r, d) =
1

N
‖P (r− d)‖22 (6)

The matrix P can be viewed as a new feature extractor

(a linear projection/transform) which is able to simultane-

ously measure the pixel-wise energy preservation and local

neighborhood-wise image structure preservation. P can al-

so be viewed as a kernel to measure the similarity between

r and d.

2.2. Linear structure extractor S

There are many candidates for the linear structure oper-

ator S in the proposed SMSE framework. For instances,

S can be chosen as the gradient operator which outputs the

abrupt changes of image intensity; S can also be chosen

as the Laplacian or Laplacian of Gaussian(LOG) operator

which mimics the receptive field of the ganglion cells and

the lateral geniculate nucleus (LGN) cells [5]. The linear

transforms such as wavelet transform and principle compo-

nent analysis can also be employed as the feature extractor

S. For simplicity, in this paper we only consider the gradi-

ent operator and the Laplacian operator.

2.2.1 Gradient operators

Image gradient is a good feature for low level and higher

level vision tasks, and gradient priors are widely used in

image restoration. Image gradient has also been employed

in IQA and led to good results [2]. Therefore, it is a good

choice to employ gradient operators as S in the proposed

SMSE framework.

For continuous images, the gradient is computed as the

first derivative along some direction. For discrete images,

the simplest analog of derivative is the first order forward

(or backward) difference operator. That is, we can apply

a filter f = [1,−1] horizontally and vertically to the im-

ages r and d to get their gradient maps. The forward dif-

ference filtering can be written as a matrix operator, denot-

ed by Sd = [Sx
d ;S

y
d ], where Sx

d and Sy
d denote the corre-

sponding operators along horizontal and vertical directions,

respectively.

The forward difference operator can be too sensitive to

small intensity changes. A more commonly used gradien-

t operator is the Gaussian gradient operator, which actual-

ly smoothes the image by using a Gaussian smooth filter

h before applying the forward difference filter f . We use

Sg = [Sx
g ;S

y
g ] to denote the Gaussian gradient operator.

2.2.2 Laplacian operators

The gradient operator computes the first derivative of im-

ages. In comparison, the Laplacian operator, denoted by Sl,

exploits the second derivative of images by filtering the im-

ages with the Laplacian filter l = [0, 1, 0; 1,−4, 1; 0, 1, 0].
The Laplacian operator Sl is very sensitive to noise and im-

age small changes, and hence the LOG operator, denoted by

Slog, is proposed to smooth the image by Gaussian smooth

filter h before applying l. LOG has a clear biological ex-

planation in that its response is similar to the receptive field

of the neuron cells in human visual system [5]. The zero-
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crossings of the LOG filtering response indicate the edge

locations, and the LOG based edge map has been success-

fully used to predict image quality [28, 31].

2.2.3 The determination of α

Given a linear structure extractor S, we need to determine

the parameter α to make the proposed SMSE a valid dis-

tance metric. Refer to Eq. 4, α should satisfy 1 + αλi ≥ 0
for all i = 1 . . . N . Therefore, we need to calculate λi, the

eigenvalues of STS.

Suppose that the elements in vectorized images r and d
are ordered column by column. Since the operators Sd, Sg ,

Sl, and Slog can be interpreted as filtering operations, they

can be written as a circulant matrix (each row is a cyclic

shift of another) of size N × N , whose rows are repeated

versions of the corresponding filter template. Let’s denote

by s = [s1, s2, ...sN ] the first row of S. The eigenvalue

βi of a circulant matrix S can be easily calculated from the

discrete Fourier transform of s [7]:

βi = DFT(s) =
∑N

k=1
sk exp(−j 2πki

N
) (7)

For circulant matrix S, its eigenvectors constitute a uni-

tary matrix U , and we have S = Udiag(βi)U
∗ , where ’*’

denotes conjugate transpose and diag(βi) denotes a diago-

nal matrix with βi, i = 1 . . . N , being its diagonal elements.

We have:

STS = Udiag(β∗
i )U

∗Udiag(βi)U
∗

= Udiag(β∗
i βi)U

∗ (8)

Therefore, the eigenvalues λi of matrix STS can be ob-

tained as: λi = β∗
i βi = |βi|2 , where |βi| denotes the mod-

ulus of βi.

Let βmax be the eigenvalue of S which has the largest

modulus. From Eq. 4, we have α ≥ − 1
|βmax|2 . We can then

let

α = c
1

|βmax|2 , c ≥ −1 (9)

The constant c can be adjusted to make SMSE have good

IQA performance while being a valid distance metric. In

Section. 4.2, we will use experiments to investigate the se-

lection of c, and it will be seen that c can be stably set as -1

across different IQA databases.

3. Gaussian smooth MSE: an inherent percep-
tual fidelity aware MSE

In Section. 2, we proposed a framework to make MSE

be able to characterize image local structural changes while

measuring the global energy of image pixel-wise error.

With some linear structure extractor S and the associated

parameter α determined in Eq. 9, the new image fideli-

ty measure SMSE is however still a valid distance met-

ric. The metric is actually characterized by the symmetric

PSD matrix M = I + αSTS, which can be written as

M = P TP , and consequently the SMSE metric can be

written as SMSE(r, d) = 1
N ‖P (r− d)‖22 . This hints use

to make a very interesting hypothesis: if matrix P is a cir-

culant matrix and each row of it comes from a filter, then the

feature extraction by Pr and Pd becomes the linear filter-

ing of images r and d by this filter. As a result, SMSE can

be further reduced to the MSE between the filtered images

of r and d. Can we find such an operator P ?

The operator P depends on the used linear feature ex-

tractor S. In Section 2, we discussed four commonly used

operators, Sd, Sg , Sl and Slog. Using each one of them,

much better IQA results than MSE and competitive result-

s with SSIM can be obtained (please refer to Section 4 for

details). We can also use more than one operator in the pro-

posed SMSE framework. Suppose that we use the differ-

ence operator Sd and the Laplacian operator Sl, and hence

the SMSE measure becomes

SMSE(r, d) =
1

N
(‖r− d‖2 + αd‖Sd(r− d)‖2

+ αl‖Sl(r− d)‖2)
(10)

where αd and αl are constants. Interestingly, it can be

proved that (please refer to Appendix A) if we set αd =
−2σ2 and αl = σ4, where σ is the scale parameter of a

Gaussian smooth filter h and σ is small, then we have

SMSE(r, d) =
1

N
(‖r− d‖2 − 2σ2‖Sd(r− d)‖2

+ σ4‖Sl(r− d)‖2) ≈ 1

N
‖h⊗ (r− d)‖22

(11)

where ’⊗’ means the convolution operators.

Eq. 11 raises a rather surprising conclusion: we can sim-

ply make MSE perceptual fidelity aware by filtering the im-

ages r and d with a Gaussian smooth filter. We call such

an image fidelity measure Perceptual-fidelity Aware MSE

(PAMSE), defined as

PAMSE(r, d) =
1

N
‖h⊗ (r− d)‖22 (12)

Figure. 1(b) illustrates the procedures of PAMSE. Since

Eq. 12 can be written as PAMSE(r, d) = 1
N (r −

d)TP T
h Ph(r−d), where Ph is the matrix form of filtering

by h, PAMSE is always a (pseudo-)distance metric because

P T
h Ph is a PSD matrix.

4. Experiments and analysis
4.1. Databases and evaluation protocols

To validate the IQA performance of SMSE and

PAMSE, we test them on three benchmark IQA databas-

es: LIVE [20], CSIQ [10] and TID2008 [15]. The images

in these databases are generated through different distor-

tion channels and are all assigned with a subjective quali-

ty/distortion score. The consistency between the subjective
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(a) SMSE with Sd (b) SMSE with Sg (c) SMSE with Sl (d) SMSE with Slog

Figure 2. The IQA results (in terms of SRC) of SMSE versus c on the three databases. Note that when c is 0, SMSE reduces to MSE, and

when c ≥ −1, SMSE is a valid distance metric.

scores and the predicted scores can be examined in terms

of Spear rank order correlation coefficient (SRC), Pearson

correlation coefficient (PCC) and the root mean squared er-

ror (RMSE). Note that PCC and RMSE are calculated after

a logistic regression between the predicted scores and the

subjective scores [8]. A good IQA measure should have

high SRC, PCC scores and low RMSE score.

The LIVE database consists of 29 reference images and

779 distorted images generated from JPEG compression

(JPEG), JPEG2000 compression (JP2K), additive white

noise (AWN), Gaussian blur (GB), and simulated fast fad-

ing Rayleigh channel. The CSIQ database consistes of 30

reference images and 866 distorted images of JPEG2000,

JPEG, AWN, GB, additive pink Gaussian noise (PGN) and

contrast change. We exclude the the last type in experiments

since it’s not a structural distortion. The TID2008 database

is the largest IQA dataset so far. There are 25 reference

images and 1,700 distorted images of 17 distortion types.

Since the last 4 types are non-structural distortions which

are out the interest of this work, we only validate the IQA

performance for the first 13 types of distorted images.

4.2. Implementation and results of SMSE

We implement the proposed SMSE by using the opera-

tors Sd, Sl, Sg and Slog, respectively. Since these operators

are actually the matrix form of spatial filters, in implemen-

tation we use spatial convolution to compute the structural

features Sr and Sd. As described in Section. 2.2.3, we ad-

just c to find a good α, and c should be no less than -1 to

ensure SMSE a valid distance metric.

For SMSE with Sd, the corresponding spatial filter is

f = [1,−1] along horizontal and vertical directions. It

can be easily computed that the associated |βmax|2 is 8.

In Figure. 2(a), we plot the curves of Sd’s IQA results (in

terms of SRC) versus c on the three databases. Note that

we vary c from -3 to 1 with step-length 0.2 for a more com-

prehensive observation of the performance. The best SRC

results of SMSE with Sd occur at c = −1.8, c = −1.8
and c = −1.4, respectively, for LIVE, CSIQ and TID2008

databases. However, those values will make SMSE an in-

valid distance metric. Therefore, we set c to -1, which is

the critical point to ensure SMSE a distance metric. When

c = 0, SMSE reduces to MSE. A clear performance im-

provement of SMSE over MSE on all the three databas-

es can be observed from the curves. For instance, on the

TID2008 database, the performance gain of SMSE (with

Sd) over MSE is 12.19%.

For SMSE with Sg , we will smooth the images r
and d by using a Gaussian smooth filter h(i, j) =

1
2πσ2 exp(− i2+j2

2σ2 ) before applying the forward difference

filter f . Through experiments, we found that setting σ =
0.5 could lead to good results on all the three IQA databas-

es. Then it can be computed that the |βmax|2 associated

with Sg is 1.53. In Figure. 2(b), we plot the SRC curves

of SMSE (with Sg) versus c. It can be seen that SMSE

achieves its best or nearly best results at c = −1.2 and

c = −1. By letting c = −1, the performance improve-

ments of SMSE over MSE are 14.85%, 5.62% and 5.04%,

respectively, on TID2008, CSIQ and LIVE databases. Note

that for SMSE with Sg , the performance will drops dramat-

ically when c < −1.2.

For SMSE with Sl, the corresponding spatial filter is

f = [0, 1, 0; 1,−4, 1; 0, 1, 0]. The associated |βmax|2 is

64. In Figure. 2(c), we plot the curves of Sl’s IQA results.

The best SRC results of SMSE with Sl occur at c = −2.6,

c = −2.2 and c = −1.8. When c is set to the critical point

-1, the performance improvement of SMSE (with Sl) over

MSE is 8.7%, 2.6% and 1.5%, respectively, on TID2008,

CSIQ and LIVE databases.

For SMSE with Slog, we also need to set the scale pa-

rameter of the Gaussian smooth filter h. Through experi-

ments, we set σ = 0.5, and the |βmax|2 associated with Slog

is 41.88. The SRC curves of SMSE with Slog are shown in

Figure. 2(d). The best results occur at c = −1.4, c = −1.4
and c = −1.2, respectively, on LIVE, CSIQ and TID2008

databases. The results of SMSE at c = −1 are close to

the best results, and SMSE has 15.39%, 4.26%, 3.69% im-

provements over MSE on TID2008, CSIQ and LIVE, re-

spectively.

In Table. 1, we list the IQA results of SMSE with c = −1
for all the four operators and compare them with MSE, S-

SIM, as well as other popular IQA methods. More discus-

sions about why c is negative will be given in Section 4.4.
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Table 1. IQA performance comparison. In each column, the best three results are highlighted.

LIVE (779 images) CSIQ (750 images) TID2008 (1300 images) Weighted average

SRC PCC RMSE SRC PCC RMSE SRC PCC RMSE SRC PCC

MSE 0.8756 0.8739 13.283 0.9060 0.8882 0.125 0.7718 0.7649 0.852 0.8362 0.8279

SMSE with Sd 0.8992 0.8953 12.170 0.9394 0.9155 0.110 0.8659 0.8491 0.649 0.8946 0.8795

SMSE with Sl 0.8890 0.8890 12.647 0.9299 0.9049 0.116 0.8393 0.8230 0.751 0.8770 0.8629

SMSE with Sg 0.9197 0.9162 10.946 0.9569 0.9188 0.108 0.8864 0.8711 0.637 0.9143 0.8963

SMSE with Slog 0.9091 0.9046 11.644 0.9449 0.9421 0.091 0.8934 0.8764 0.890 0.9114 0.9016

PAMSE 0.9280 0.9243 10.428 0.9565 0.9163 0.109 0.9162 0.9018 0.571 0.9301 0.9119
IFC [19] 0.9259 0.9268 10.264 0.8827 0.8912 0.124 0.7589 0.8007 0.792 0.8383 0.8599

SSIM [25] 0.9479 0.9451 8.927 0.9247 0.9188 0.108 0.8742 0.8530 0.690 0.9082 0.8962

MAD [10] 0.9438 0.9394 9.368 0.9604 0.8881 0.125 0.8694 0.8306 0.736 0.9142 0.8762

VIF [18] 0.9636 0.9604 7.614 0.9282 0.9321 0.099 0.8731 0.8938 0.593 0.9130 0.9226
rNSE [28] 0.9242 0.9211 10.639 0.9405 0.9495 0.086 0.8622 0.8766 0.636 0.9002 0.9083

FSIM [30] 0.9634 0.9597 7.674 0.9544 0.9541 0.082 0.9199 0.9068 0.557 0.9412 0.9341

Figure 3. The IQA results (in terms of SRC) of PAMSE versus σ
on the three databases.

4.3. Implementation and results of PAMSE

The implementation of PAMSE is even simpler than

SMSE because we only need to set the scale parameter σ
of the Gaussian smooth filter h. Refer to our derivation

in Appendix A, σ cannot be big. To find a good value of

σ, we tested the performance of PAMSE on the three IQA

databases by varying σ from 0 to 2.0. Note that when σ = 0,

PAMSE reduces to MSE. In Fig. 3, we plot the SRC curves

of PAMSE versus σ. As σ increases, PAMSE shows much

higher SRC than MSE for all the three databases. Based on

these curves, we set σ to 0.8 for PAMSE on all the databas-

es, and list the IQA results of PAMSE in Table. 1.

4.4. Comparison and discussions

In this sub-section, we compare the IQA results of SMSE

and PAMSE with MSE and SSIM. The results of some

state-of-the-art IQA methods (e.g., FSIM [30], VIF [18],

IFC [19], rNSE [28] and MAD [10]) are also presented for

reference. We would like to stress that the goal of this work

is not to develop an IQA algorithm which outperforms all

state-of-the-arts. The key message we would like to convey

is that with some small adaptation, an MSE-like image per-

ceptual fidelity measure can be obtained, which is very easy

and efficient to implement while offering very competitive

IQA results.

Table. 1 lists the results (in terms of SRC, PCC and

RMSE) of the competing methods. The results of SMSE

and PAMSE are obtained with the parameters fixed in Sec-

tions 4.2 and 4.3, respectively. For all the other methods,

we used the codes provided by the original authors with the

default parameter setting.

From Table. 1, the following conclusions can be drawn.

1) On all the databases, SMSE and PAMSE outperform

MSE with a large margin. 2) On databases CSIQ and

TID2008, both SMSE and PAMSE have similar results to

the best IQA methods. 3) By averaging the results over the

three databases (weighted by the image number), PAMSE

only lags behind FSIM, which is currently the best IQA

method. 4) Compared with SSIM, which is the represen-

tative of modern IQA measures and has been extensively

studied in the past decade, SMSE gives competitive perfor-

mance in average, while PAMSE performs better than it. In

summary, SMSE and PAMSE are among the state-of-the-art

FR IQA measures.

Figure. 4 shows the scatter plots of the subjective score

versus the predicted score by SSIM and PAMSE on the C-

SIQ database. Each point represents a distorted image. It

can be clearly observed that the distributions by PAMSE is

more consistent with the subjective score than SSIM (i.e.,

the predicted scores are more linear to the subjective s-

cores). Similarity scatter plots are observed for SMSE mod-

els.

Though PAMSE is originated from SMSE, overall it

shows better IQA performance than SMSE. The reason lies

in two folds. Firstly, PAMSE implicitly uses two linear

structure extractors, while SMSE uses only one linear struc-

ture extractor. Secondly, PAMSE is however free of the

explicit use of any structure extractor, which is affected to

some extent by the numerical implementation.

In spite of the promising performance of SMSE and

PAMSE, at first sight the subtraction of the structure error

term (i.e., c = −1) in SMSE and the smoothing Gaussian

filter in PAMSE seem counterintuitive. It’s widely accept-

ed that it’s the structures in natural images that attract hu-
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Table 2. Runtime of the competing IQA methods.

Methods Runtimes (s) Ratio to MSE

MSE 0.0021 1

PAMSE 0.0056 2.66

SMSE with Sd 0.0092 4.35

SMSE with Sl 0.0057 2.72

SMSE with Sg 0.0103 4.84

SMSE with Slog 0.0071 3.32

SSIM [25] 0.0213 10.02

rNSE [28] 0.1167 54.97

FSIM [30] 0.4343 204.56

IFC [19] 0.9372 441.44

VIF [18] 0.9743 458.95

MAD [10] 2.0715 986.43

man’s attention. Intuitively, in SMSE the structure error ter-

m should be ”added”, but not be ”subtracted”. In PAMSE,

the Gaussian filtering smoothes some texture information,

which again seems unreasonable for the IQA tasks. Actu-

ally, both of them are plausible based on the contrast sen-

sitivity property of human visual system (HVS). The con-

trast sensitivity function (CSF) describes the visibility of

signals as a function of spatial frequency [3], and it shows

the reduced sensitivity of HVS at lower and higher frequen-

cies. MSE measures image distortion equally in all frequen-

cies, and thus over-estimates the perceptual distortion. By

subtracting the structure error term or using Gaussian fil-

tering, the contribution of high frequency in measuring the

difference between counterpart images is reduced, which is

consistent with CSF. The low frequency information is re-

mained for the sake of energy preservation. Actually, in

many halftone image quality analysis methods [4, 13, 14],

the CSF filter is used to weight the error in a transformed

domain, and it is often approximated by Gaussian filters,

which are believed to work better for suprathreshold distor-

tions and be more robust to variations in viewing distances.

4.5. Running time

At last, let’s discuss the complexity of SMSE and P-

MASE. Clearly, one very attractive advantage of SMSE and

PMASE is their efficiency compared with other major IQA

models such SSIM, IFC, VIF, rNSE, MAD, and FSIM, etc.

For SMSE, apart from the term ‖r− d‖22, we only need to

compute ‖S(r−d)‖22, which can be obtained by convolv-

ing the error signal (r− d) with the filter corresponding to

operator S, and then calculating the l2-norm of the filter-

ing response. Suppose that the size of the filter is k, then in

SMSE the additional cost to MSE is just O(Nk), which is

significantly lower than other sophisticated IQA methods.

Similar analysis goes to PAMSE.

In Table. 2, we list the running time of the competing

methods to process an image of size 512 × 512. All algo-

rithms were run on a desktop with Intel Core i5-2300 CPU

@2.8GHz and 4G RAM. As can be seen, the time cost of

Figure 4. The scatter plots of the subjective score versus the results

of IQA models on the CSIQ database. The different distortion

types are indicated with various marker.

SMSE and PAMSE is only 2.6 ∼ 4.8 times of that of MSE.

The cost of SSIM is 10 times of that of MSE, while the other

IQA methods are significantly slower than MSE.

5. Conclusions
By adding an l2-norm structure error term to the original

Mean Squared Error (MSE) index, in this paper we pro-

posed a simple yet very effective framework, namely Struc-

tural MSE (SMSE), for image quality assessment (IQA).

When using difference operator and Laplacian operator to

extract the structure error, SMSE becomes the MSE be-

tween Gaussian smoothed reference and distorted images,

and we call the corresponding SMSE measure Percetual-

fidelity Aware MSE (PAMSE). SMSE and PAMSE are very

simple to implement, highly efficient, very effective, and

they are valid distance metrics. In particular, PAMSE is

among the best ones for IQA tasks, works much better

than the well-known SSIM index. Meanwhile, SMSE and

PAMSE have good potentials to be used as objective func-

tions in perceptual quality based image processing tasks.

Appendix A: Proof of Eq. 11
For the convenience of our following development, we

denote r and d as two-dimensional (2D) continuous func-

tions, and h the continuous 2D Gaussian smooth function

with scale σ. We use ∇ and Δ to denote the continuous

counterpart of difference operator Sd and Laplacian opera-

tor Sl, respectively. Based on the Gabor formulas [6, 11],

when σ is small, we have:

h⊗ r = r + σ2Δr + o(σ2) ≈ r + σ2Δr (A1)

h⊗ d = d+ σ2Δd+ o(σ2) ≈ d+ σ2Δd (A2)

In (A1) and (A2), we ignored the higher order terms of σ.

There is:

h⊗ (r− d) ≈ (r− d) + σ2(Δr −Δd) (A3)

We have:

‖h⊗ (r− d)‖22 ≈ ‖(r− d) + σ2(Δr −Δd)‖22
=

∫
V

[(r− d)2 + σ4(Δr−Δd)2
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+ 2σ2(r− d)Δ(r− d)]dV

=

∫
V

[(r− d)2 + σ4(Δr−Δd)2

− 2σ2∇(r− d) ·∇(r− d)]dV

=

∫
V

[(r− d)2 + σ4Δ(r− d)2 − 2σ2|∇(r− d)|2dV

= ‖r− d‖22 + σ4‖Δ(r− d)‖22 − 2σ2‖|∇(r− d)|‖22
(A4)

In the 3rd row of (A4), we use the Gauss theorem, i.e., the

divergence theorem [22]:∫
V

(�a ·∇b+ b∇ · �a)dV =

∫
∂V

b�a · d�s

with �a = ∇b and suppose that
∫
∂V

b∇b · d�s = 0 on the

boundary.

In the discrete case, by replacing Δ and∇ as Sl and Sd,

respectively, we have Eq.11.
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