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Abstract

Data sparsity has been a thorny issue for manifold-based
image synthesis, and in this paper we address this critical
problem by leveraging ideas from transfer learning. Specif-
ically, we propose methods based on generating auxiliary
data in the form of synthetic samples using transformations
of the original sparse samples. To incorporate the auxiliary
data, we propose a weighted data synthesis method, which
adaptively selects from the generated samples for inclusion
during the manifold learning process via a weighted iter-
ative algorithm. To demonstrate the feasibility of the pro-
posed method, we apply it to the problem of face image syn-
thesis from sparse samples. Compared with existing meth-
ods, the proposed method shows encouraging results with
good performance improvements.

1. Introduction
In many practical applications of computer vision and

signal processing, we need to generate new data points be-

yond those in the original data set. This problem is gen-

erally known as data synthesis. For example, given an im-

age sequence of a rotating object, we may need to create

an image corresponding to an unobserved angle based on

the given sequence. This learning problem can be viewed

as estimating a nonlinear function mapping from a learned

parameter space to the sample space (e.g., image space).

We want to emphasize that two key characteristics of data

synthesis distinguish it from the traditional function inter-

polation problem that can be solved, for example, by simple

regression methods: 1) the parameter space is not given and

needs to be learned in conjunction with the nonlinear map-

ping; and 2) the high-dimensionality of the image space is

what really makes the problem challenging.

Many nonlinear synthesis algorithms have been pro-

posed to solve this problem. Particularly, because of their

strong capability of extracting low-dimensional structural

information from high-dimensional data, manifold based

methods are widely applied for synthesis and learning prob-

lems for high-dimensional data sets. Focusing on human

pose estimation and tracking, the works in [10, 11, 14, 19]

achieve good results. However, these works are generally

focused on recovering features of images, e.g., the skeleton

model of body in [14, 19], the location information in [10],

rather than the real image data at the pixel level. Because

the dimension of parameter space is much lower than that

of the image space, the capability of those methods in terms

of synthesizing real high-dimensional data are still yet to be

proven.

On the other hand, the works in [2, 21, 13, 5, 9, 4, 1] aim

at synthesizing images directly. In [21], a Locally-Linear-

Embedding (LLE) based method is proposed to recon-

struct head pose images. In [5], Locally-Smooth-Manifold-

Learning (LSML) is proposed to learn a warping func-

tion from a point on an manifold to its neighbors. In [3],

the mapping from low-dimensional tangent space to high-

dimensional sample space and the corresponding inverse

mapping are learned simultaneously, which is used to re-

cover missing data. Although these methods can synthe-

size full images, they can only handle relatively small local

changes in the images, such as the opening and closing of

eyes or mouths [2, 5], or the random missing pixels in digit

images [3].

Recently, several works also try to synthesize the images

having more substantial global changes. In [22], faces un-

der unknowing lighting are synthesized according to spheri-

cal harmonic basis morphable model. In [13], the nonlinear

mapping is approximated by a mixture of local PCA models

and the dynamical texture image is interpolated based on a

sequence. A method called local generative units and global

affine transformation (LGGA) is proposed in [9], which can

capture the global changes of images, including shifting,

rotation and scaling. The work in [1], on the other hand,

shows robustness to noisy image. However, a common is-

sue for all the methods above is that because the manifold

is fitted locally by linear models, they can produce good re-

sults only if the number of samples are relatively large. In

the case of sparse samples, the underlying manifold will be

poorly captured because enough neighbors of sample can-
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not be found so that a good linear fit will not be feasible.

Figure 1. The scheme of the proposed method.

In this paper, we prove that it is possible to synthesize

some special images based on sparse samples by leverag-

ing the methodology of transfer learning in manifold-based

image synthesis. Specifically, we use the idea of leveraging

auxiliary data to enhance the learning for the target domain

[18, 15, 17, 4, 16, 12]. For example, for the image clas-

sification problem in [12], for those classes with very few

training samples, new training samples are borrowed from

transformed samples generated from other classes. Also in

[4], the visual light face images are synthesized from in-

frared images. Such an auxiliary data based strategy can

also be applied in image synthesis. Given sparse samples,

most regions of the manifold are not adequately covered.

Fortunately, with the help of certain transformations, we

can generate auxiliary data and then obtain a more com-

prehensive albeit noisier coverage of the manifold. The

key difference between the proposed method and the works

mentioned above is that we do not have external data set —

transformations are applied to the original data points in or-

der to generate the auxiliary data. To incorporate the noisy

auxiliary data, we develop a new de-noising scheme into the

manifold based synthesis methods.

The main contributions of our work are: 1) we propose a

novel framework for generating auxiliary data from sparse

image samples based on sample point transformations; 2)

we propose a weighted data synthesis method, which adap-

tively selects useful samples during the manifold learning

process via a weighted iterative algorithm; and 3) in the

case of face synthesis, we demonstrate that under suitable

transformations, the auxiliary data can be viewed as noisy

data on the image manifold, which helps us to estimate the

structure of manifold. The overall idea of our work is illus-

trated in Fig. 1.

The organization of the rest of the paper is shown as fol-

lows. Section 2 gives a brief review of manifold learning

and data synthesize from dense samples. Section 3 presents

the strategy for designing transformations for sparse sam-

ples and the proposed learning algorithm. The transforma-

tions applied to head pose images and the synthesis results

are discussed in section 4. Finally, conclusion and future

work are shown in section 5.

2. Manifold Learning and Data Synthesis from
Dense Samples

The basic assumption of manifold learning is that the

high-dimensional data can be viewed as a manifold embed-

ded in the sample space. Manifold learning aims to find the

low-dimensional structure of data and establish a connec-

tion (e.g., a bijection function) between samples and their

coordinates in the low-dimensional latent space. Accord-

ing to the coordinate in the latent space and the mapping

function, we can synthesize new data.

Let X = {xi}Ni=1 be the high-dimensional data set,

in which xi ∈ RD. Assume they are close to a smooth

d-dimensional manifold M : X �→ Y , in which their

coordinates in the low-dimensional parameter space are

Y = {yi}Ni=1. Here yi ∈ Rd and d � D. What

we want to do include: 1) learning M for dimensional-

ity reduction; 2) finding the corresponding inverse mapping

M−1 for data synthesis. In [5], these two problems can

be addressed simultaneously by learning a warping func-

tion that maps a point on the manifold to its neighbors.

Denote the warping function as W : X �→ X . We have

W(xi, ε) =M−1(yi + ε). Here ε is the distance between

the samples in the latent space. Using the first order Taylor

expansion of M−1, we have W(xi, ε) = xi +H(xi,Θ)ε.

The columns ofH are partial deviations ofM−1 to the ele-

ments of yi. Θ is the parameter vector specifying the para-

metric form ofH.

To this end, we assume that H(xi,Θ) = FiΘ, where

Θ ∈ Rf×d is the parameter matrix we need to learn. Fi ∈
RD×f is the feature matrix extracted from xi. So, the man-

ifold learning becomes a problem about learning parameter

Θ and ε. Denote Ni = {j | xj is the neighbor of xi}. The

difference between yi and yj is εij = yj − yi. The loss

function of manifold learning can be written as follows,

minΘ,yi

∑N
i=1

∑
j∈Ni

‖xj − xi − FiΘ(yj − yi)‖22 (1)

subject to YYT = Id.

Here Y = [y1, ...,yN ]. Id is the d-dimensional identity

matrix. Each term of Eq. (1) measures the error between
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the point xi on the manifold and its local linear estimate.

The constraint in Eq. (1) normalizes the coordinates in the

latent space.

It should be noted that Eq. (1) in its current form is

not well-posed, we we need to add additional constraints

to Y and Θ in order to obtain unique solutions. We address

this issue using a simple strategy for reducing the computa-

tional complexity in the iterative process for the optimiza-

tion problem with details shown in section 3.

Given optimal Θ and yi, the new data corresponding to

ynew can be synthesized as

xnew =
∑

j∈Nnew

xj + FjΘεj,new. (2)

Nnew is a set containing the indices of ynew’s neighbors.

In the case of dense samples, the manifold can be re-

covered with high accuracy. However, when samples are

sparse, the first-order approximation of M−1 will be very

poor, mostly relying sample points that are not close to the

point in question, so that we can no longer use piecewise

linear model to fit the manifold. Our main idea to overcome

this is to introduce auxiliary data points into the data set

resulting in noisy dense samples.

3. Proposed Methods
3.1. Create Auxiliary Data via Transformations

We propose to create auxiliary data by applying cer-

tain class of transformations to the original sparse samples.

Let T : RD �→ RD be a certain class of transformation.

To each xi, its results of transformation are denoted as

Xi = {xim|xim = T m(xi),m = 1, ...,M.}. Here T m

means applying T m times. We can view T as the warping

function of a synthetic manifold Mi. Then, Xi is the sample

set of Mi. In our work, we assume that Mi is in the same

latent space with the target manifold M. It is obvious that

Mi can be defined uniquely according to T and xi. Given a

suitable T we can makeMi satisfy the following condition.

• Condition 1: Mi(xi) = M(xi), and to m =
1, ...,M , there exists an upper bound δ such that

‖Mi(T m(xi))−M(T m(xi))‖ ≤ δ.

In other words, although transformed samples are no longer

on the target manifold in general, they may not be very far

from the target manifold, which can be viewed as “noisy”

samples for the recovery of the target manifold.

Fitting local structure merely is not enough for recover-

ing M in the case of sparse samples. For example, xi and

xj are two original samples. We can apply transformations

respectively to get Mi and Mj in which Xi and Xj meet

condition 1. To recover the manifold between xi and xj , we

need to find a path between them. It requires that the two

synthetic manifolds have some overlaps, so that the path is

composed of Xi and Xj . So, we further introduce following

condition.

• Condition 2: To arbitrary xi ∈ X , we apply trans-

formation T to create new samples Xi, whose element

satisfies condition 1. A sample in Xi is available if the

set of its K nearest neighbors is not a subset of Xi.

In summary, condition 1 ensures that Mi can fit the local

structure of the target manifold. While the condition 2 en-

sures that the samples in Mi are connected with other syn-

thetic manifolds, so that the global structure of the target

manifold can be captured. As a result, the samples of Mi

can be borrowed for learning the structure ofM around xi.

Fig. 2 gives an illustration of proposed method.

Figure 2. The red curve is the target manifold M and the red

squares are sparse samples. The blue and green curves are syn-

thetic manifolds created by two transformations. The “•”s are

transformed samples who are in the regions defined by δ (con-

dition 1). For some samples, their neighbors are close to the other

manifold (condition 2), which is labeled by orange circles. An un-

available transformation is given by blue dot curves. The samples

are blue “◦”s, whose neighbors can only be found in the set created

by the corresponding transformation.

By applying available transformations, we create a series

of synthetic manifolds. All of the synthetic manifolds and

the target manifold we want to recover are fused together

in the same latent space. The auxiliary data we created is

the samples of synthetic manifolds meeting condition 1 and

2. By borrowing auxiliary data from synthetic manifolds,

the partial structural information of synthetic manifolds is

shared by the unknown target manifold. As a result, we can

fit the target manifold with synthetic manifolds, rather than

a linear hyperplane. The principle of this method is based

on transfer learning, which is inspired by the work in [12]

where the feature space of different classes are shared and

their samples can be borrowed by each other. Here, all the

manifolds are in the same latent space and parts of their

samples can be shared with each other. The difference is

that the proposed method is not dependent on external data

set — we apply transformations on the original data set to

generate the auxiliary data.

Another nonlinear manifold learning work appears in

[8], which fits manifold with piecewise polynomial regres-

sion, but it still requires dense samples to estimate the model
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parameters. As a contrast, we do not restrain the form non-

linear regression directly. The form of the regression func-

tion is decided by the transformation, which makes the pro-

posed method more flexible.

A concrete example of the our main idea is illustrated by

face images. For sparse images of the horizontal rotation of

head, we use shifting, flipping and rotation, to create aux-

iliary data. To fuse the manifolds into the same parameter

space, we set the dimension of latent space to d = 2. The

result of dimensionality reduction is shown in Fig. 31. We

observe that the auxiliary data indeed can help to recover

the original manifold.

Figure 3. (a) The learning result based on original samples and

the auxiliary data. Each red square corresponds to the latent vari-

able of original image. The blue “+”s are latent variables of trans-

formed images. (b) The enlarged figure corresponding to the yel-

low circle in (a). The images gotten by shifting, flipping and rota-

tion are labeled by blue, green and pink “+”s. Some examples are

given as well.

3.2. Modifications of the Loss Function

Given auxiliary data {xi, i = 1 + N, ..., N + L} cre-

ated by several transformations {Tm}Mm=1, we get a new

data set, where the first N samples are the original samples

while the rest L ones are auxiliary data. According to the

1The proposed method will be given in Section 3.2. The parameters of

transformations and number of neighbors will be given in Section 4.

analysis above, only the samples in the auxiliary data satis-

fying condition 1 and 2 can be used. The rest are the outliers

which may change the structure of the target manifold. To

select suitable samples, we first modify the neighbor selec-

tion method according to condition 2. The scheme is de-

scribed in Algorithm 1 which removes samples not meeting

condition 2 from the data set.

Algorithm 1: Neighbor Selection
To xi, i = 1, ..., N + L, apply KNN

to get the set of neighbors of xi, Ni.

For i = N + 1 to N + L
If xi is created by Tm, and all

of its neighbors xj , j ∈ Ni are created

by Tm as well, then remove

xi from data set and every Nj , j = 1, ..., N + L.

For samples meeting condition 2, their neighbors are also

selected adaptively. Recently, an adaptive neighbor selec-

tion algorithm is proposed based on PCA in [23]. In [6],

the constraint of sparsity is added on neighbors. Both of

those methods measure the weight of a neighbor based on

its similarity with its center. In our work, we determine the

weight with the help of a nonparametric estimate. For xi,

the normalized weight of its neighbor xik, denoted as âik,

is calculated as

aik = e−
‖xi−xik‖22

2σ2 , âij =
aij∑

k∈Ni
aik

. (3)

Here σ is the bandwidth of the Gaussian kernel. Besides

weighting neighbors, we further introduce weight to each

error term of the loss function. During the learning phase,

the weight corresponding to the large error term should

be small while that corresponding to the small error term

should be large. Weighting neighbors of samples and error

terms ensures that the influence of the samples far from the

target manifold will be suppressed, so that the condition 1

will be satisfied. As a result of the modifications discussed

above, the loss function is now rewritten as

min
Θ,yi,w

N∑

i=1

∑

j∈Ni

âij‖xj − xi − FiΘ(yj − yi)‖22 (4)

+
N+L∑

i=N+1

wi

∑

j∈Ni

âij‖xj − xi − FiΘ(yj − yi)‖22

+λ‖1−w‖1,
s.t. YYT = Id, wi = 0 or 1.

Here w = [wN+1, ..., wN+L]
T is the weight vector denot-

ing the auxiliary data meeting condition 2. 1 is a vector

whose elements are all ones. The last term of the objective

function in Eq. (4) is the regularization term of w, which

ensures that the weight vector is sparse.

2211



The feature Fi corresponds to a kernel function of xi,

and we choose radial basis functions (RBFs) as features. To

each image x we can sample it with overlap and obtain a

matrix Pi ∈ RD×s2 . The t-th row of Pi, denoted as pt,

corresponds to a s× s patch of x. Cluster patches of all the

images into f clusters, whose centers are {μn}fn=1. The

element of Fi is Ftn = e−
‖pt−μn‖22

2h2 .

3.3. Weighted Iterative Manifold Learning

Because of the coping of the three variables, we seek the

optimal solution of Eq. (4) by an iterative method. Ac-

cording to the evaluation about various manifold learning

algorithms shown in [20], Local-Tangent-Space-Alignment

(LTSA) algorithm [24] performs the best. So, we estimate

yi initially by LTSA, and set w = 1, then the objective

function becomes

N+L∑

i=1

∑

j∈Ni

âij‖xj − xi − FiΘεij‖22. (5)

For the convenience of representation, we rewrite Eq. (5) as

following matrix form,

N+L∑

i=1

‖(Δi − FiΘEi)Ai‖2F . (6)

Here Δi ∈ RD×|Ni|, each column of which is xj − xi,

j ∈ Ni. Similarly, Ei ∈ Rd×|Ni|, whose column is εij ,

j ∈ Ni. Ai is a diagonal matrix whose diagonal element is√
âij .

The minimization of Eq. (6) has an analytic solution.

Denote Si = EiAi, we can get a series of matrices {Zij}
as

Zij = S
(j)
i ⊗ Fi. (7)

Here “⊗” means Kronecker multiplication. S
(j)
i is the jth

column of Si. The optimal Θ can be calculated as follows.

Z =
N+L∑

i=1

|Ni|∑

j=1

ZT
ijZij , (8)

vec(Θ) = Z+
N+L∑

i=1

|Ni|∑

j=1

âijZ
T
ijΔ

(j)
i ,

where Δ
(j)
i is the jth column of Δi and vec(Θ) is the vec-

tor form of Θ.

After getting optimal Θ, we then compute the optimal w
by solving following integer programming problem.

ŵ = argmin
w

(e− λ1)Tw, (9)

s.t. wi = 0 or 1, i = N + 1, ..., N + L.

Here, e is the vector of errors, whose element is ‖(Δi −
FiΘEi)Ai‖2F . Furthermore, because the optimal w needs

to be quantized to 0 or 1 for sample selection, Eq. (9) has

a fast thresholding method to solve. Given e, if its ith ele-

ment is larger than λ, then wi = 0, else wi = 1. Based on

the newly selected samples, we go back to calculate their

neighbors and then repeat the steps above. After several it-

erations, the final optimal solution is achieved. The scheme

of the proposed algorithm is given in Algorithm 2.

Algorithm 2: Manifold Learning Algorithm
Initialization:

Given samples {xi}N+L
i=1 ,

apply Algorithm 1 to get neighbors of xi, Ni.

Calculate {âij} by Eq. (3).

Iteration:
For k = 1 to K

1.Apply LTSA to get coordinates {yi}.
2.Minimize Eq. (6) to get Θ.

3.To transformed result xj , j = N + 1, ..., N + L,

if ‖(Δj − FjΘEj)Aj‖2F ≥ λ,

{xi} = {xi} \ xj .

4.Remove corresponding neighbors of xi.

5.Calculate {âij} again.

3.4. Weighted Data Synthesis

When we synthesize new data, we can also introduce

weights to its neighbors for increasing estimation accuracy.

Because the new data is not available, the weight of each

neighbors is measured by ε. Given the coordinate ynew and

the set of its neighbors, Nnew, the normalized weight is

bj,new = e−
D2‖εj,new‖22

2d2σ2 , b̂j,new =
bj,new∑

i∈Nnew
bi,new

. (10)

So, the new data xnew is estimated by

xnew =
∑

j∈Nnew

b̂j,new(xj + Fjεj,new). (11)

4. Experimental Results
To demonstrate the feasibility, we apply the proposed

method on the synthesis of face images2 [7]. The data set

contains 15 image sequences of head rotation from 15 peo-

ple. The sampling rate of horizontal rotation of head is 1

sample per 15◦, and the sampling range is [−90◦, 90◦]. In

such a situation, only 13 images can be used for synthesis.

We resize images to 100 × 90 and create auxiliary data by

following three steps. 1) To each original image, we apply

shifting 5 times to create 5 new images. The shifting step

we choose is 2 pixels per image. 2) To each shifting result,

2http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html
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(a) (b)

(c) (d)

Figure 4. The comparison of synthesis results for various methods. To each sub-figure, the 1st and the 6th column are original images.

From the 2nd to the 5th column are synthesis results gotten by LSML [5] with sparse samples, LLE based method [21], LGGA [9], LSML

with dense samples and proposed method.

we then apply rotation 5 times to create 5 images more, and

the rotation angle we choose is 2 degrees per image. 3) Fi-

nally, all the images are flipped.

The reason for choosing shifting transform is based on

the work in [9] and the experimental result in section 2. Ac-

cording to [9], the manifold of the image shifting sequence

is a curve. Furthermore, we can find in Fig. 3 that a part

of the curve can be viewed as a good local fitting for the

manifold of rotated head image. In our opinion, this is be-

cause that the rotation of head can be approximated by many

small shifting steps. Introducing rotation transform makes

the image robust to subtle changes of face. Applying flip-

ping transform is based on the symmetry of human face.

In feature extraction phase, the size of patch is 15 × 15,

and the number of clustering center is 50. The parameter h
is chosen as one third of the maximum ‖pt − μn‖2. Simi-

larly, another parameter of the proposed algorithm, σ in Eq.

(3), is one third of the maximum ‖xi − xj‖2 as well. The

Lagrange factor in Eq. (4), λ, is set to be 1. In the learning

phase, the number of neighbor is 16 initially in algorithm 1.

After learning manifold, the location of the new image

on the manifold is decided by its coordinates in the tangent

space. With the help of introducing transformed samples,

there are sufficient neighbors for the new image so that it

can be synthesized by Eq. (11). In our work, we choose

|Nnew| = 2 in Eq. (11).
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Given original sparse samples and corresponding auxil-

iary data, we compare the proposed method with other com-

petitors, including the LLE based method [21], LGGA [9]

and the state of the art method, LSML [5]. Specifically,

for showing the influence of auxiliary data on the result of

synthesis, LSML are applied in two cases — purely using

original sparse samples and combining sparse samples with

auxiliary data. Fig. 4 gives the partial experimental results

on different face images. To LLE based method and LGGA,

although they can get good synthetic images sometimes, the

performances of them are not stable. In Fig. 4, both of them

have a risk of getting failures during synthesis.

On the other hand, when samples are sparse, the num-

ber of sample is too small to avoid over-fitting phenomenon

of parameters in the learning phase. As a result, LSML

leads to obvious “ghost effect” — the synthesis result is

similar to that of traditional linear interpolation. Even if ap-

plying LSML with the help of auxiliary data, without adap-

tive strategies for sample and neighbor selection, the perfor-

mance are also inferior to the proposed method. In Fig. 4,

we can find that some LSML results in the situation having

auxiliary data still have “ghost effect”. The reason for this

problem is that the outliers in the auxiliary data are not re-

moved in the learning phase. So, in the synthesis phase, it is

possible that the neighbors we find include outliers. In such

a situation, synthesis results will be corrupted by outliers.

(a) (b) (c) (d)

Figure 5. Each sub-figure shows the enlarged images labeled in

Fig. 4. To each sub-figure, the image labeled by orange frame is

original image. The image labeled by green frame is the synthesis

result of LSML. The image labeled by blue frame is the result of

the proposed method.

Another problem may happen in the result of LSML with

auxiliary data is “missing rotation”. In each sub-figure of

Fig. 4, the synthesis results of LSML looks like the repeat

of original image. Fig. 5 gives enlarged comparison images

for illustrating this phenomenon. In our opinion, this prob-

lem is also caused by outliers. Because the outliers disobey-

ing condition 2 are not removed, the synthetic manifolds are

isolated to each other. As a result, the global structure of

the target manifold cannot be learned by LSML. The illus-

trations of “ghost effect” and “missing rotation” are shown

in Fig. 6. The proposed method, on the other hand, makes

samples sufficient by transformations and removes outliers

during the iterations of learning algorithm. In Fig. 4 and 5,

the synthesis results of the proposed method avoid serious

“ghost effect”. At the same time, the subtle change of im-

age is learned by the proposed method while the synthesis

result of LSML is almost the same with original image.

Figure 6. To each sub-figure, the red squares and corresponding

images are original samples and red curve shows the target man-

ifold. The blue and green “+”s are transformed samples. The or-

ange “+”s and corresponding images are synthetic results based

on wrong samples (green “+”s). The “ghost effect” is caused

by choosing the outliers disobeying condition 1 as samples. The

“missing rotation” is cause by the failure of learning. The outliers

disobeying condition 2 are not removed, which causes that struc-

ture of target manifold is not captured.

We now discuss a limitation of the proposed method —

sometimes the samples cannot be created or borrowed cor-

rectly. In Fig. 4(a), we can find that the original images

do not have hairs in the forehead while the synthetic im-

ages have hairs. This is because the samples are created by

flipping are not on the original manifold perfectly. How-

ever, even though the proposed method is not perfect, it has

better visual effect than its competitors. Besides the com-

parison of visual effect, we give objective measurements for

various methods in Table 1. The objective experiment is de-

signed as follows. After learning the manifold and getting

the coordinates of all the images in the latent space, we re-

move one original image and auxiliary data created from it.

Based on the rest of images and the coordinates of removed

images, we try to synthesize the removed image. The av-

erage mean-square-error (MSE) of the synthesis results of

15 people are measured for various methods. According to

Table 1, the performances of LLE based method and LGGA

is not satisfying because of the failed synthesis results like

Fig. 4 shows. The performance of the proposed method is

superior to others indeed.

2214



Table 1. Average MSE of Synthesis Results for Various Methods

LSML [5] (Sparse Samples) 481.69

LLE Based [21] (Auxiliary Data) 660.43

LGGA [9] (Auxiliary Data) 577.33

LSML [5] (Auxiliary Data) 258.46

Proposed 175.58

5. Conclusion and Future Work
In this paper, a manifold-based face synthesis method

is proposed for the case of sparse samples. By combin-

ing transfer learning strategy with manifold learning algo-

rithm, the samples are supplied by their transformed results,

which provide additional structural information for mani-

fold recovery. Additionally, the auxiliary data is weighted

for outlier detection during the learning phase, which im-

proves learning and final synthesis results. To the data set

having certain special properties that can be used to design

transformations, the proposed method has potential to im-

prove the learning result when the number of samples is

insufficient. The core problem of our work is to find suit-

able transformations for given samples, which is empirical

currently. Designing a strategy for finding suitable transfor-

mations is the direction for our future work.
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