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Abstract

Recently, sparse representation has been introduced for
robust object tracking. By representing the object sparsely,
i.e., using only a few templates via �1-norm minimization,
these so-called �1-trackers exhibit promising tracking re-
sults. In this work, we address the object template build-
ing and updating problem in these �1-tracking approaches,
which has not been fully studied. We propose to perform
template updating, in a new perspective, as an online in-
cremental dictionary learning problem, which is efficiently
solved through an online optimization procedure. To guar-
antee the robustness and adaptability of the tracking algo-
rithm, we also propose to build a multi-lifespan dictionary
model. By building target dictionaries of different lifespans,
effective object observations can be obtained to deal with
the well-known drifting problem in tracking and thus im-
prove the tracking accuracy. We derive effective observa-
tion models both generatively and discriminatively based on
the online multi-lifespan dictionary learning model and de-
ploy them to the Bayesian sequential estimation framework
to perform tracking. The proposed approach has been ex-
tensively evaluated on ten challenging video sequences. Ex-
perimental results demonstrate the effectiveness of the on-
line learned templates, as well as the state-of-the-art track-
ing performance of the proposed approach.

1. Introduction
Visual object tracking, which aims to estimate the target

state (e.g. position and size) in video sequences, is a very

important research topic in the computer vision field. It has

many applications like visual surveillance, vehicle naviga-

tion and human computer interaction [25]. Although many

algorithms have been proposed in the last decades, object

tracking still remains a very challenging problem for real-

world applications due to the difficulties like background

cluttering, image noises, illumination changes, object oc-

clusions and fast motions, as shown in Figure 1.

Recently, sparse coding based methods have been suc-

Figure 1. Typical difficulties in object tracking problem. (1)

Image noises and background cluttering (top-left image), (2) illu-

mination changes (top-right image), (3) object occlusions (bottom-

left image), and (4) fast object motions (bottom-right image). The

tracking results using fixed templates, fully updated templates, up-

date method in [19], [26], [22], [13] and the proposed method in

this work are respectively plotted in teal, olive, purple, cyan, blue,

green and red colors. Best viewed in original color PDF file.

cessfully applied to visual tracking problem [19, 20, 5, 28,

13]. The basic assumption in these methods is that the tar-

get can be represented as a linear combination of only a few

elements in a template set. Then the confidence of a target

candidate can be modeled using the reconstruction error of

the sparse representation. Denoting a template set of the tar-

get with m elements as T = [t1, t2, . . . , tm]∈R
n×m, and

a target candidate as y∈R
n, which is used as the observa-

tions to estimate the object state x (see Section 3.3 for more

details), the sparse representation of the candidate using the

templates is obtained by solving

min
c
‖Tc− y‖22 + λ‖c‖1, (1)

where c ∈ R
m is the coefficient vector for the sparse rep-

resentation, and λ is the regularization parameter to control

the sparsity of c. Based on the derived result, the confi-

dence of the candidate y with respect to the target state x is

naturally modeled as,
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p(y|x) = 1

Γ
exp(−α‖Tc− y‖22), (2)

where α is a constant and Γ is a normalization factor to

make p(y|x) a valid probability distribution.

Built on this idea, previous works on sparse coding based

object tracking have mainly focused on two problems. One

is how to design the object templates. Methods using global

object templates [19, 26], local image patches [13], or a

combination of them [28] have been proposed. The other

problem is how to solve the minimization problem to per-

form efficient tracking, and relevant solutions include Inte-

rior Point method [19], Accelerated Proximal Gradient ap-

proach [5], Least Angle Regression algorithm [28, 13], and

Augmented Lagrange Multiplier method [26].

Supposing that we have already designed the object tem-

plates and used them to track the target via a certain op-

timization procedure, how can we update the object tem-

plates effectively and efficiently? This is also a very impor-

tant problem but has not been paid much attention in pre-

vious �1-trackers. Existing �1-trackers address the template

update problem usually by adopting some classic methods

(e.g. fixed templates with no updates [28] or incremental

update with replacing [19, 27]) or some intuitive strategies

[13, 26]. In this paper, we propose to perform the tem-

plate update problem in the tracking scenario as an online

incremental dictionary learning problem. We also explore

the temporal nature of the object templates and propose to

learn a multi-lifespan dictionary to improve the adaptability

and robustness of a tracking algorithm. We apply the online

multi-lifespan dictionary learning model into the Bayesian

sequential estimation framework and design effective ob-

servation models both generatively and discriminatively for

a particle filter implementation. Extensive experiments on

public benchmark video sequences demonstrate the effec-

tiveness of our online learned templates, and the state-of-

the-art tracking performance of the proposed approach.

2. Related Work
Object tracking methods can be roughly grouped into

two categories: generative and discriminative. Generative

methods, which use a descriptive appearance model to rep-

resent the object, perform tracking as a searching problem

over candidate regions to find the most similar one. Ex-

amples of generative tracking methods are eigentracker [6],

mean shift tracker [7], and fragment tracker [1]. Discrimi-

native methods formulate object tracking as a binary classi-

fication problem and find the location that can best separate

the target from the background. Examples of discriminative

tracking methods are online boosting tracker [11], ensemble

tracker [3], and multi-instance learning tracker [4].

With recent advances in sparse representation, sparse

coding based object trackers demonstrate to be a promis-

ing tracking framework [19, 20, 5, 28, 13, 27, 26]. In the

�1-tracker first proposed by Xue and Lin [19], a combina-

Table 1. Comparison of object templates in popular �1-trackers.
Method Efficiency Building Updating Robustness Adaptivity

Xue and Lin[19] Low Manually Intuitively Low Low
Xue and Lin[20] Low Manually Intuitively Low Low

Bao et al. [5] High Manually Intuitively Low Low
Zhang et al. [27] Low Manually Intuitively Low High
Zhang et al. [26] High Manually Intuitively Low High

Jia et al. [13] High Learned Learned Low High
Zhong et al. [28] High Manually Intuitively High Low
Proposed Method High Learned Learned High High

tion of object templates and trivial templates is employed

to tackle the occlusion problem. To make the templates di-

rectly robust to occlusion, local image patches can be used

as the object dictionary [13, 28]. In order to improve the ef-

ficiency of the optimization process, Xue and Lin [20] fur-

ther propose a minimal error bounded strategy is to reduce

the number of the �1-norm related minimization problem,

and later some other efficient optimization procedures are

further adopted to solve the problem [5, 28, 13, 26].

Besides template design and optimization method, tem-

plate update is even a more important problem in the sparse

coding based tracking framework. Although fixed object

template may work well for short video sequences when

the target stays nearly unchanged, it may be incompetent

for long sequences where the target often undergoes differ-

ent kinds of changes (see Figure 1). To adapt to appear-

ance changes of the target during tracking, the templates in

[19, 20, 5, 26] are updated based on the weights assigned to

each template, and the similarities between templates and

the current estimation of the target candidate. In [28], the

global object templates are kept fixed during tracking to en-

sure the discriminative power of the model, while the local

patch templates are constantly updated to adapt to object

changes. In order to incrementally update the templates, a

more reasonable strategy can be found in [13], where old

templates are given slow update probabilities and the in-

cremental subspace learning algorithm in [22] is employed

which restricts the template vectors to be orthogonal.

Table 1 gives a comparative summary of the object tem-

plates used in most popular �1 trackers. Although all these

methods provide different strategies contributing to tem-

plate update, most of them use some predefined templates

and update them intuitively, which may not fully unleash

the potential capability of templates. The proposed online

learning based template building and updating algorithm,

which is both robust and adaptive for tracking, well ad-

dresses the problems of object templates in the �1 trackers.

3. Proposed Approach
Given the object tracking results, the main objective of

this paper is to online automatically learn “good” object

templates, which can, in turn, benefit the ongoing object

tracking process with improved robustness and adaptabil-

ity. Our core idea to achieve this objective is trying not

to impose heavy constraints on the template building and
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Figure 2. Overall description of the proposed approach. We perform template update as an online dictionary learning problem and

propose to learn a multi-lifespan dictionary, i.e. the Short Lifespan Dictionary (SLD), the Middle Lifespan Dictionary (MLD) and the Long

Lifespan Dictionary (LLD), to model the object. The SLD learned from samples densely collected from the previous frame makes the best

adaptation to the target. The LLD learned from the most accurate samples collected from all the frames ensures the robustness of the model.

The MLD, between the SLD and the LLD, balances the adaptability and robustness of the final model. The Online Multi-lifespan Dictionary

Learning (OMDL) model, together with the background samples collected in the previous frame, is used to deduce observation models

both generatively and discriminatively. These observation models are then applied into the Bayesian sequential estimation framework using

particle filter implementation to perform adaptive and robust object tracking.

updating process and making them most suitable for track-

ing. To this end, we formulate this template building and

updating problem as online dictionary learning, which au-

tomatically updates object templates that can better adapt to

the data for tracking. In order to further improve the robust-

ness and adaptability of the learned templates, we explore

the temporal property of the learned dictionary and pro-

pose to build a dictionary with multiple lifespans to possess

distinct temporal properties. Based on the learned multi-

lifespan dictionary, we deduce effective observation mod-

els both generatively and discriminatively, and deploy them

into the Bayesian sequential estimation framework to per-

form tracking using a particle filter implementation. Note

that Li et al. [15] also use multiple detectors with differ-

ent lifespans. Their objective is to improve the computation

efficiency of the multi-lifespan detectors which are used se-

quentially in a cascade particle filter. Our multi-lifespan

model, however, mainly aims to ease the contradiction be-

tween the adaptivity and robustness of template based ob-

ject tracking algorithms, and the multi-lifespan dictionaries

are fused in parallel in a multi-state particle filter. Figure 2

gives the overall description of our approach, the details of

which are elaborated in the following subsections.

3.1. Tracking as Online Dictionary Learning
In sparse coding based tracking algorithms, a target can-

didate is represented as a linear combination of a few ele-

ments from a template set. The building and updating of

this template set, therefore, have great impact on the final

tracking results. Previous works usually build this template

set by directly sampling from the initialization of tracking,

and then use some intuitive strategies to update the set dur-

ing tracking [19, 28, 13]. From a different viewpoint, here

we want to automatically learn this template set to make

it best adapt to the video data to be tracked. We do not

want to impose any constraints on the learned templates,

but only expect that they can better represent the target that

have been tracked and will be tracked.

Suppose all the possible target candidates are within a

template set Y={y1, . . . ,yN}, where yi∈Rn denotes one

n-dimensional sample and N is the template size which can

be very large, since samples are continually obtained when

a new frame has been tracked. A good template set should

then have the minimal cost to represent all the elements in

this set. Denote the representation cost function as:

f(D) � 1

|Y|
∑
y∈Y

l(y,D), (3)

where D∈R
n×m is the learned template set, distinguished

from the predefined template set T as in previous works,

and l(·) is the loss function such that l(y,D) is small if

D is “good” at representing the candidate y. In a sparse

coding based object tracking framework, the loss function

can be naturally modeled as:

l(y,D) � min
c∈Rm

1

2
‖y −Dc‖22 + λ‖c‖1. (4)

To prevent the �2-norm of D from being arbitrarily large,

which may lead to arbitrarily small values of c, it usually

constrains its columns d1, . . . ,dm to have �2-norms less
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than or equal to 1. The constraint set of D thus can be

represented as:

D � {D ∈ R
n×m, s.t. ∀j ∈ {1, . . . ,m}, ‖dj‖2 ≤ 1}. (5)

Now, putting everything together, the template learning can

be formulated as the following optimization problem,

D∗ = argmin
D

1
|Y|

∑
y∈Y

l(y,D)

s.t. l(y,D) = min
c

1
2‖y −Dc‖22 + λ‖c‖1

D ∈ D.
(6)

The above problem is also referred to as Dictionary Learn-

ing which has found many applications in signal processing

[2, 24, 23], machine learning [8, 18] and lately computer

vision for face recognition [16] and image restoration [17].

Generally, it can be optimized using a two-step iterated pro-

cedure: the first step fixes D and minimizes the cost func-

tion with respect to the coefficient vector c; and the second

step fixes the coefficient vector c and performs gradient de-

scent like methods to minimize the cost function.

In our scenario for template updating in online object

tracking, since the target candidates are obtained consec-

utively, the above two-step iterated procedure must be re-

designed to be performed in an online manner to learn the

dictionary incrementally. In Algorithm 1, we summarize

this redesigned procedure of online dictionary learning for

template update. The learning procedure receives the dictio-

nary learned in the previous frame as input, and updates the

dictionary incrementally according to the samples collected

in the current frame. In the algorithm, Step 1 is solved us-

ing the LARS method [9] and Step 2 admits an analytical

solution. The involved matrix inversion is calculated in an

online manner using the Sherman-Morrison formula [21]

to make the learning process more efficient. The introduced

variables Ct and Yt are intermediate results associated with

the dictionary Dt and are stored for incremental learning.

The initial value for D0, C0 and Y0 are obtained from the

tracker. To improve the robustness of the learned dictio-

nary, multiple samples are collected around the tracking re-

sult xt in frame It, and M is the parameter to control the

explicit number of the collected samples. Note that here we

do not impose any constraints on the explicit dictionary for-

mat, which can be object templates, image patches or even

extracted features.

3.2. Multi-lifespan Dictionary Building
The adaptability and robustness are the two key charac-

teristics that a tracker should possess. Adaptability means

that the tracker should accommodate to target appearance

changes quickly, while robustness refers to the ability to

keep on working under different situations. These two

characteristics, however, often contradict with each other

in many tracking algorithms. As for template based ob-

ject tracking, if the template is updated with a faster speed,

the tracker can better adapt to the changes of the target but

Algorithm 1 Online dictionary learning for template update

Input: frame data It, tracking results xt, learned dictionary

Dt−1, Ct−1, Yt−1 in the previous frame, λ (regulariza-

tion parameter), M (sample drawing number).

Output: learned dictionary Dt in the current frame.

1: Initialization: Dt ← Dt−1,Ct ← Ct−1,Yt ← Yt−1.

2: for i = 1→M do
3: Step 1: fix Dt to find the best coefficients,

c
(i)
t = argmin

c∈Rn

1

2
‖y(i)

t −Dtc‖22 + λ‖c‖1.

4: Step 2: fix {c(i)t } to update the dictionary,

Ct ← Ct − Ctc
(i)
t c

(i)�
t Ct

1+c
(i)�
t Ctc

(i)
t

,Yt ← Yt + y
(i)
t c

(i)�
t ,

Dt = argmin
D∈D

i∑
j=1

1

2
‖y(j)

t −Dc
(j)
t ‖22 + λ‖c(j)t ‖1,

=
(∑i

j=1 c
(j)
t c

(j)�
t

)−1 (∑i
j=1 y

(j)
t c

(j)�
t

)
,

= CtYt.

5: end for
6: Save dictionary Dt, intermediate variable Ct and Yt.

may be more likely to drift due to noises accumulated along

with fast updating. On the contrary, if the template is up-

dated with a slower speed, the tracker is not easy to drift but

may not catch up with the changes of the target. Based on

the formulation of template update using online dictionary

learning, we explore the temporal properties of the learned

dictionary and propose to build a multi-lifespan dictionary

learning model to further improve the tracking effectiveness

and guarantee adaptability and robustness simultaneously.

In order to explore the properties of the online learned

dictionary, we represent it using a 5-tuple based on its learn-

ing procedure, i.e.,

D =
〈
Dt,Ct,Yt, {y(i)

ts:te}Mi=1, λ
〉
, (7)

where {y(i)
ts:te}Mi=1 denotes all the candidates sampled to

train the dictionary and completely determinate the learned

dictionary together with regularization parameter λ. Here

the subscript ts and te, i.e. the start and end frame num-

ber of candidates, reflect the temporal property of the train-

ing data. By collecting training candidates from different

temporal intervals with a corresponding sampling strategy1,

we can learn dictionaries of multiple temporal properties.

Multi-lifespan dictionaries provide a very good solution to

the contradiction when simultaneously pursuing the adapt-

ability and robustness of the tracker.

As show in Figure 2, we simultaneously learn three dif-

ferent lifespan dictionaries, the Short Lifespan Dictionary

(SLD), the Middle Lifespan Dictionary (MLD), and the

1Here sampling strategy refers to different sampling variance and can-

didate number M in each frame.
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Figure 3. Online dictionary learning for template update. Line

1: tracking results; Line 2-4: examples of the learned dictionaries

at frame 100; Line 5-7: collected negative samples used for the

discriminative observation model (see Section 3.3).

Long Lifespan Dictionary (LLD). The SLD is trained using

the candidates densely sampled only in the previous frame

(i.e., ts= t−1) and made the best adaptation to the target

in current frame. The LLD, on the contrary, is trained us-

ing accurately sampled candidates in all previous frames to

establish a robust object appearance model (i.e., ts=1). Be-

tween the SLD and LLD, the MLD tries to build an interme-

diate model that compromises the modes built by SLD and

LLD (i.e., ts=t/2). Denoting SLD, MLD and LLD respec-

tively as DS , DM and DL, the final online multi-lifespan

dictionary learning model (OMDL) is represented as:

D∗ =
{
DS ,DM ,DL

}
. (8)

In Figure 3, we give some examples of the three lifespan

dictionaries learned using the online dictionary learning al-

gorithm. It can be observed that the SLD successfully cap-

tures a more adaptive object appearance model, while the

LLD builds a more robust object appearance model. The

MLD obtains a good intermediate object model that bal-

ances the models built by LLD and SLD.

3.3. Bayesian Sequential Estimation
We deploy the OMDL model into the Bayesian se-

quential estimation framework, which performs tracking by

solving the maximum a posterior (MAP) problem,

x̂t = argmax
xt

p(xt|y1:t), (9)

where y1:t = {y1, . . . ,yt} represents all the observation

candidates until the current frame. The posterior probabil-

ity p(xt|y1:t) is calculated recursively by the Bayesian the-

orem using particle filter [12],

p(xt|y1:t)∝p(xt|yt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (10)

where p(xt|xt−1) is the dynamic model and p(xt|yt) is the

observation model. We employ the affine transformation to

model the object motion between consecutive frames. The

observation model, which is of fundamental importance to

the success of the tracker, is modeled using the OMDL in

both generative and discriminative manners.

The generative observation model using OMDL first

solves the problem

min
c
‖DP

t c− yt‖22 + λ‖c‖1, (11)

where DP
t =

[
DS

t ,D
M
t ,DL

t

]
. Based on the solution of this

problem, the general observation model is built as:

g(yt|xt) =
∑

I∈{S,M,L}
exp

(−α‖DI
t c

I − yt‖22
)
, (12)

where superscript I denotes the corresponding decomposi-

tion of Dt and c, and α is a constant as in Eqn. (2). Here

we fuse the reconstruction confidences of the OMDL model

equally to build the general observation model. Although

more sophisticated strategies, e.g. weighted fusing based on

the reconstruction error, can be adopted, we find this simple

strategy works well in the experiments.

The discriminative observation model using OMDL first

collects some background samples (denoted as DN
t , see

Figure 3) around the target in the previous frame and then

selects the discriminative features by solving the problem

min
s
‖D∗t T s− p‖22 + λ‖s‖1, (13)

where D∗t = [DP
t ,D

N
t ] and p is the label vector for D∗t (+1

for object samples and -1 for background samples). The so-

lution of this problem is a vector s with indexes of non-zero

elements indicating selected features, which can be used to

form the projection matrix P by removing all-zero rows of

matrix S = Diag(s 	= 0). After solving

min
c
‖D′tc−y′t‖22+λ‖c‖1,with D′t=PD∗t ,y

′
t=Pyt, (14)

the discriminative observation model is built as:

d(yt|xt)=exp
(−β(‖D′Pt cP−y′t‖22−‖D′Nt cN−y′t‖22

))
, (15)

where the superscript P and N are used to decompose D′t
and c. The final observation model is then represented as,

p(yt|xt) ∝ g(yt|xt)d(yt|xt). (16)

4. Experiments
We implement the proposed approach in MATLAB and

run the experiments on an Intel Core 3.4 GHz PC with 4

GB memory. The regularization parameter λ in the sparse

coding problems is fixed as 0.01. We use global object tem-

plate normalized to 32× 32 pixels as the training data to

learn the multi-lifespan dictionary model. The dictionary

numbers for the SLD, MLD and LLD are all set to 20 and

incrementally learned with 128, 8 and 1 sample(s) respec-

tively at every frame. The number of the negative samples

collected at each frame is set to 60. The constant α and β
to control the Gaussian kernel shape are set to 2.0 and 6.0

respectively. Note that these parameters are fixed in all the

experiments.

We first conduct experiments to compare the tracking

results using six different template update methods. Then

we evaluate the tracking performance of our approach com-

pared with six state-of-the-art tracking algorithms. At last,

we give some analyses and discussions of our method.
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(h) Tracking Precision on animal

Figure 4. Tracking error and precision of seven different methods for template update. The experiment is conducted on four challeng-

ing video sequences, including car11, shaking, faceocc2 and animal. Best viewed in original color PDF file.

4.1. Template Update Method Evaluation
Template update is very important for object tracking,

especially in complex scenes where the target undergoes

great changes. We compare our dictionary learning method

for template update (DLU) with six typical ones, including

no updates (NU, using fixed templates), fully update (FU,

updating the whole templates using the tracking results in

the current frame), the intuitive update method in [19] (IU1)

and [26] (IU2), the incremental subspace learning method

in [22] (IU3) and [13] (IU4). In order to concentrate on the

template update method and make a fair comparison, the

templates in these seven methods are all built from global

target appearances and the number of templates is set to

60. The effectiveness of the obtained templates is judged by

their descriptive power of the target, which is evaluated us-

ing the same measure generated from Eqn. (2). The experi-

ments are performed on four challenging image sequences,

car11, shaking, faceocc2 and animal (see Figure 1) with the

same initial rectangles in the first frame, which cover most

challenging situations for template updating.

We employ two well-accepted metrics, center location

distance and overlap ratio, to respectively evaluate the track-

ing error and precision of the seven template update meth-

ods. The center location distance is normalized by the ob-

ject size. In Figure 4, we plot the full quantitative ex-

perimental results of the seven methods on the four test

sequences. Our dictionary learning method for template

update obtains the minimal tracking error and the highest

tracking precision on aggregate, especially on the test se-

quence animal, where all the other template update meth-

ods fail to follow the deer running at high speed from the

fifth frame but only leaving our method to track the tar-

get until the end of the sequence. It is really surprising

that the incremental update method in [22], which uses the

eigenvector of the target samples as template and updates

it incrementally in the eigenspace, performs poorly on the

four test sequences and even is no better than the fixed tem-

plate method and fully update method. The reason behind

this may be that forcing the template to be orthotropic can-

not well adapt to the challenging tracking situations with

non-white image noises, especially when using these tem-

plates to perform sparse representation [23]. This may be

the reason why Xu et al. [13] proposes a modified template

update method to better deploy the subspace learning into

sparse representation. From Figure 4 it is observed that

fixed templates and fully update method may perform well

when the target does not change much. But with the accu-

mulation of tracking errors and when the target undergoes

great changes, these two methods tend to perform worse

than other four methods using incremental template update.

Note that in the car11 sequence, all the seven methods

fail to track the car at about the 300th frame when the car

suddenly turns right. This is because a generative observa-

tion model may not be enough to perform robust tracking,

which is also the reason why we deduce two different kinds

of observation models for the final algorithm in Section 3.3.

4.2. Tracking Performance Evaluation
We further evaluate the performance of our final tracking

approach on 10 video sequences popularly used in previ-

ous works [14, 4, 5, 28, 13, 10], including sylv, bike, david,

woman, coke11, jumping, and the four sequences used in

the first experiment. These ten video sequences together

present an even wider range of challenges to a tracking al-

gorithm (see Figure 5). The tracking results are compared
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Table 2. Average tracking errors (in pixels). The best and second

best results are respectively shown in red and blue colors.

Sequence Frag IVT MIL VTD �1 MTT Ours

sylv 0.245 0.875 0.156 0.220 0.961 0.260 0.139
bike 2.109 0.075 0.083 0.086 0.082 0.070 0.054

car11 1.436 0.062 0.848 0.065 0.378 0.403 0.161
david 0.946 0.057 0.194 0.351 0.210 1.103 0.110

woman 1.302 1.590 1.351 1.126 1.305 2.281 0.135
animal 0.934 0.101 0.182 0.056 0.059 0.047 0.047
coke11 1.247 0.894 0.381 0.759 0.954 0.338 0.178
shaking 0.704 1.005 0.222 0.279 1.286 0.336 0.161
jumping 0.169 0.094 0.245 1.121 1.417 0.666 0.081
faceocc2 0.137 0.101 0.252 0.117 0.149 0.097 0.113

Average 0.923 0.485 0.391 0.418 0.680 0.560 0.118

Table 3. Average tracking precision. The best and second best

results are respectively shown in red and blue colors.

Sequence Frag IVT MIL VTD �1 MTT Ours

sylv 0.617 0.450 0.751 0.810 0.323 0.770 0.833
bike 0.136 0.983 0.917 1.000 0.908 1.000 1.000

car11 0.097 1.000 0.102 0.972 0.682 0.687 0.781
david 0.089 0.905 0.537 0.615 0.435 0.320 0.779

woman 0.256 0.204 0.209 0.309 0.215 0.198 0.440
animal 0.099 0.887 0.747 0.972 0.972 1.000 1.000
coke11 0.051 0.119 0.271 0.068 0.085 0.559 0.678
shaking 0.222 0.025 0.414 0.784 0.011 0.099 0.578
jumping 0.690 0.959 0.233 0.230 0.118 0.198 0.984
faceocc2 0.767 0.772 0.537 0.743 0.419 0.929 0.826

Average 0.302 0.630 0.472 0.650 0.417 0.576 0.790

with six state-of-the-art algorithms, the fragment tracker

(Frag) [1], the incremental visual tracking (IVT) algorithm

[22], the multi-instance learning (MIL) tracker [4], the vi-

sual tracking decomposition (VTD) method [14], the latest

�1-tracker (�1) [5] and its multi-task tracking (MTT) version

[27]. The implementations of these algorithms are all pro-

vided by their corresponding authors with suggested param-

eter settings. To make a more fair comparison, we set the ro-

tation parameters in the motion model of IVT, �1, MTT and

ours to be zero, since Frag, MIL and VTD do not rotate the

object samples and the ground-truths of the test sequences

also do not consider the rotation of the target. All the seven

algorithms are initialized with the same initial bounding box

according to the ground-truth, with other parameters set as

suggested by their corresponding authors. We analyze the

experimental results both quantitatively and qualitatively.

Table 2 and 3 list the average tracking errors and preci-

sions for all seven algorithms. The proposed tracking ap-

proach, on the whole, performs well against other six al-

gorithms, especially on the sequence sylv, woman, animal,
coke11, and jumping, on which some other algorithms may

fail to follow the targets but ours can successfully track them

until the end of the sequence. The IVT, VTD and MTT

also perform well on these ten sequences and can track the

targets in most situations. Together with the results in the

first experiment, it can be concluded that the incremental

subspace learning method in IVT is more suitable to model

the tracking confidence directly using the reconstruction er-

ror over all the orthorhombic templates, rather than a few

templates, which may lose too much information. The tem-

plates learned using our dictionary learning method, on the

contrary, can well adapt to the tracking data, especially in

the sparse coding based tracking framework. In Figure 5,

some example tracking results are drawn to given a more

vivid comparison. Due to the page limitation, we provide

more experimental results in the supplementary material.

4.3. Speed Analysis and Discussions
Our tracking algorithm runs at about 2.5 fps in the cur-

rent MATLAB implementation without using optimization

technologies like parallel computing or GPU acceleration.

Table 4 lists the speed of several popular �1-trackers by run-

ning the codes provided by the corresponding authors on

our test platform. For the first two �1-trackers in Table 4,

whose implementations are not publicly available, we cal-

culate their speed based on the report from [5]. It can be

observed that our algorithm is faster than most other track-

ers. The main reason is that our approach does not need to

add the trivial templates as those adopted in [19, 20, 5, 27]

due to the design of observation model. Therefore, although

we use multi-lifespan dictionaries, the total number of tem-

plates is greatly reduced, e.g., from 1084 (60+32×32) to 60.

What is more, currently our learning for template update is

performed frame-by-frame for easy implementation, which

may not be necessary for tracking. It can be performed only

every several frames, e.g., every five frames like in [28] and

[13]. In that implementation, the speed of the learning pro-

cedure can be further improved.

Table 4. Running speed comparison of several popular �1-trackers.
Algorithm [19] [20] [5] [27] [28] [13] Ours

Speed 0.01fps 0.05fps 1fps 2fps 2.5fps 2.5fps 2.5fps

5. Conclusions and Future Work
We study the template update problem in the sparse

coding based object tracking framework. We formulate

the template update problem as online dictionary learning,

which make the template better adapt to the tracking data.

We propose to learn a multi-lifespan dictionary to simulta-

neously ensure adaptability and robustness of the tracker.

The online learned multi-lifespan dictionary has been de-

ployed into the Bayesian sequential estimation framework

using particle filter to perform tracking. Extensive experi-

ments on challenging image sequences demonstrate the ef-

fectiveness of the proposed method. Currently, the lifespan

dictionary is only learned from global object templates, and

in our future work, we plan to add local image patch based

dictionary to further improve the tracking performance.
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(a) sylv, in-plane and out-of-plane rotations (b) bike, background cluttering and fast motions

Frag IVT MIL VTD L1 MTT Ours

(c) car11, background cluttering and illumination changes

(e) woman, occlusions and viewpoint changes

(g) coke11, complex backgrounds and rotations

(i) jumping, fast motions and blurs

(f) animal, fast motions and blurs

(d) david, scale variations and viewpoint changes

(h) shaking, dynamic illumination changes and scale variations

(j) faceocc2, occlusions and rotations

Figure 5. Example tracking results of the seven different algorithms. Our tracking algorithm performs well against the six state-of-

the-art tracking algorithms, and works robustly and adaptively under a lot of difficult situations, like complex backgrounds ((c) and (g)),

illumination changes ((c) and (h)), rotations ((a) and (g)), fast motions ((b) and (c)), scale variations ((d) and (h)), viewpoint changes ((d)

and (e)), and occlusions ((e) and (j)). Best viewed in original color PDF file.
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