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Abstract

As a special topic in computer vision, fine-grained visual
categorization (FGVC) has been attracting growing atten-
tion these years. Different with traditional image classifi-
cation tasks in which objects have large inter-class varia-
tion, the visual concepts in the fine-grained datasets, such
as hundreds of bird species, often have very similar seman-
tics. Due to the large inter-class similarity, it is very difficult
to classify the objects without locating really discriminative
features, therefore it becomes more important for the algo-
rithm to make full use of the part information in order to
train a robust model.

In this paper, we propose a powerful flowchart named
Hierarchical Part Matching (HPM) to cope with fine-
grained classification tasks. We extend the Bag-of-Features
(BoF) model by introducing several novel modules to inte-
grate into image representation, including foreground in-
ference and segmentation, Hierarchical Structure Learn-
ing (HSL), and Geometric Phrase Pooling (GPP). We ver-
ify in experiments that our algorithm achieves the state-of-
the-art classification accuracy in the Caltech-UCSD-Birds-
200-2011 dataset by making full use of the ground-truth
part annotations.

1. Introduction
Classifying images according to their semantic mean-

ing is a basic task in the computer vision community. It

is a basic way towards image understanding and implies a

wide range of commercial applications. Among them, fine-

grained visual categorization (FGVC) is a special case, in

which the visual concepts in different categories are very

similar. Sometimes, it is even very difficult for a human to

Raw Image Data

SIFT[14]

LLC[19]

SPM[13]

Image 
Representation

Max-Pooling

Image Descriptors

Spatial Pyramid

Feature Codes

Raw Image Data Human Annotations

Inferred Foreground

Part Segmentation

Image Descriptors

Image 
Representation

SIFT[14] GCut[15]

LLC[19] UCM-SG

GPP[20] HSL

Max-Pooling

Hierarchical StructuresVisual Phrases

Feature Codes

(a) (b)

Figure 1. Comparison of the proposed HPM model (b) and the

Bag-of-Features (BoF) framework (a) (best viewed in color PDF).

distinguish, say, hundreds of species of birds.

As one of the most popular algorithms for image classifi-

cation, the Bag-of-Features (BoF) model [7] has been wide-

ly used in many image applications. In essential, the BoF

model represents each image as a long vector, and adopts

a machine learning algorithm to train a classifier. Based
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on manufactural local features, it suffers from the well-

known semantic gap between low-level features and high-

level concepts. Although in recent years researchers have

proposed new approaches to deal with the above problem

[3] [4] [11] and verified that these modules help to boost

the classification performance [20], the connection between

image representation and visual concepts is still weak. It

is also observed [18] that traditional classification model

works poorly on the fine-grained tasks, due to the limited

use of really discriminative features located on special parts

of the objects.

In this paper, we propose a novel flowchart named Hi-

erarchical Part Matching (HPM) to cope with fine-grained

classification problems. We make full use of the ground-

truth part annotation to help us obtain better image align-

ment and segmentation, and provide a much more descrip-

tive image representation by building mid-level structures

on local features as well as segmented regions. The new

modules added in the HPM model (see Figure 1) could be

summarized as follows. First, we use the ground-truth an-

notation to infer the object (foreground) on the image and

segment it into semantic parts. Second, we propose the Hi-

erarchical Structure Learning (HSL) algorithm to find mid-

level concepts beyond basic parts. Third, we use the Geo-

metric Phrase Pooling (GPP) algorithm to capture mid-level

structures in the local feature groups. Integrating all the

modules above gives a powerful model, which achieves the

state-of-the-art classification performance in a challenging

fine-grained image collection. The main contribution of this

paper is to provide an intuitive, simple and efficient way of

using ground-truth part annotations, and emphasize the im-

portance of part detection in the fine-grained classification

tasks with surprising boost in classification accuracy.

The rest of this paper is organized as follows. Section 2

gives a survey of the related works. Section 3 introduces the

fine-grained dataset and the baseline algorithm used in ex-

periments. Next, we introduce the Hierarchical Part Match-

ing (HPM) model by individually presenting three modules:

foreground inference and segmentation in Section 4, the Hi-

erarchical Structure Learning (HSL) algorithm in Section 5,

and the Geometric Phrase Pooling (GPP) algorithm in Sec-

tion 6. After experimental results are shown in Section 7,

we draw the conclusions and summarize the future works

in Section 8.

2. Related Works

2.1. The Bag-of-Features Model

The Bag-of-Features (BoF) model [7] is one of the most

popular algorithms for image classification. The flowchart

of the BoF model is illustrated in Figure 1(a). Starting from

raw image data, we first extract SIFT [14] descriptors as

local features. and train a visual vocabulary or codebook

using K-Means clustering. Locality-sensitive Linear Cod-

ing (LLC) [19] is then used to quantize the local descriptors

onto a sparse histogram in the feature space. We use max-

pooling for a statistical summarization, and Spatial Pyramid

Matching (SPM) [13] for a naive spatial context modeling.

Finally, the representation vectors are fed into a linear SVM

for training and testing.

2.2. Fine-Grained Visual Categorization

Fine-grained visual categorization (FGVC) is an emerg-

ing research area in computer vision, in which a dataset

typically contains hundreds of categories sharing similar se-

mantics. For example, the Caltech-UCSD Birds-200-2011

dataset [18] contains 200 bird species, and there are 120 d-

ifferent kinds of dogs in the Stanford Dogs dataset [12]. To

cope with the fine-grained classification tasks, researcher-

s have proposed many novel algorithms, such as visual

attributes [8], random templates [22], hierarchical match-

ing [6] and part-based one-vs-one features [2].

2.3. Foreground Inference and Segmentation

In the fine-grained image classification tasks, almost al-

l the categories share similar background clutters, and ob-

jects often vary from each other only in some small regions

named “parts”. Therefore it is very important to distinguish

the objects from background and segment them into seman-

tic parts. For foreground inference, a popular tool is the

Grab-Cut [15] algorithm, which iteratively infers the fore-

ground region from an initial mask. For part-based segmen-

tation, we can use the Ultrametric Contour Map (UCM) [1]

as an unsupervised algorithm for to calculate the closed

boundaries. There are also works proposing multi-label seg-

mentation to combine above steps as one [5].

2.4. The Geometric Phrase Pooling Algorithm

The basic units in the BoF model are visual words, which

are too far away from visual concepts. As a mid-level struc-

ture bridging low-level features and high-level semantics,

visual phrases are verified useful in various image applica-

tions [23] [25]. The Geometric Phrase Pooling (GPP) al-

gorithm [20] is an efficient phrase extraction and pooling

approach, in which we define visual phrases as local groups

of visual words, and perform an efficient pooling algorith-

m to enhance the similarity in both geometric and feature

spaces.

3. Dataset and Baseline System
3.1. The Dataset

In our experiments, we use the Caltech-UCSD Birds-

200-2011 (CUB-200-2011) dataset [18], which contains

200 bird species and 11788 images in total. Also, a man-

ually labeled bounding box and at most 15 landmark points
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Figure 2. Samples from the Caltech-UCSD Birds-200-2011

dataset [18]. Upper: images from the same category (001. Black-

footed Albatross) showing large intra-class variation. Lower: im-

ages of different species showing small inter-class variation.

are provided for each image. It is a very challenging dataset.

For the sample images shown in Figure 2, it is even difficult

for humans to recognize them accurately. The main reason

for choosing this dataset is to use the ground-truth annota-

tions which are very important to our approach.

3.2. The Baseline System

We use the Bag-of-Features (BoF) model as our baseline

system. Here, we build a mathematical notation system for

this model.

In the Birds dataset, a ground-truth bounding box is

provided for each image. We use the image region with-

in bounding box, and resize it into the same size, i.e., width

and height do not exceed 300. In this way we obtain the

raw image denoted as I:

I = (aij)W×H (1)

where aij is the pixel at position (i, j), and it is a 3-

dimensional vector for RGB-images. Also, at most L land-
mark points are annotated for each image (L = 15 in

the Birds dataset), Denote the points as {pl}, where l =
1, 2, . . . , L.

We extract SIFT descriptors [14] on the raw image and

obtain a set of local descriptors:

D = {(d1,R1) , (d2,R2) , . . . , (dM ,RM )} (2)

where dm and Rm denote the description vector and oc-
cupied region of the m-th descriptor, respectively. M is

the total number of descriptors, which could be hundreds or

even thousands under dense sampling. The description vec-

tor dm is a D-dimensional vector, where D = 3× 128 =
384 using OpponentSIFT (OppSIFT) [16] on RGB-images.

After descriptors have been extracted, they are quantized

to be compact. For this purpose, we train a codebook C
using descriptors from the whole dataset. C is a B × D
matrix consisting of B vectors with dimension D, each of

which is called a codeword. The number of codewords, or

the codebook size B, is 2048 in our experiments.

Next, descriptors are represented using the codebook.

This process is called coding, for we are encoding each de-

scriptor into a sparse histogram on the feature space. Giv-

en a codebook with B codewords, the quantization vec-

tor or feature vector for a descriptor dm would be a B-

dimensional vector wm, which is named the corresponding

visual word of descriptor dm. Denote W as the set of

visual words:

W = {(w1,R1) , (w2,R2) , . . . , (wM ,RM )} (3)

Now, we aggregate the local visual words for global im-

age representation. The max-pooling strategy calculates

the maximal response on each codeword:

f = max
1�m�M

wm (4)

where the notation maxm denotes the element-wise maxi-

mization. A 3-layer Spatial Pyramid Matching (SPM) [13]

follows by dividing the image into hierarchical subregion-

s for individual max-pooling and concatenating the pooled

vectors as a super-vector. Finally, the super-vectors are fed

into a linear SVM for classification.

4. Foreground Inference and Segmentation
4.1. Foreground Inference

A notable property of fine-grained datasets is the high

similarity in backgrounds (non-object regions). Take the

Birds dataset as an example. Water surfaces, trees and

grasses appear in almost all the categories. As they intro-

duce irrelevant features into the BoF model, it is reasonable

to perform foreground inference and extract features only

on the object (foreground regions).

We use the Grab-Cut algorithm [5] for foreground infer-

ence. The initial mask is constructed using ground-truth

annotations, i.e., the bounding box and landmark points.

We set the pixels outside the bounding box as definite
background, inside as possible foreground and the pix-

els around landmarks as definite foreground. We run the

the Grub-Cut algorithm in no more than 10 iterations to pro-

duce the inference result. Figure 3 illustrates the inference

process.

4.2. Energy Function and Segmentation

As the regular Spatial Pyramid often fails to align corre-

sponding regions in the fine-grained tasks, we need a more

accurate spatial segmentation to capture the semantic parts

of the objects. The proposed segmentation algorithm starts

with calculating the Ultrametric Contour Map (UCM) [1],

which generates closed contours with decreasing boundary

intensities to cut the image into smaller and smaller regions.

Denote the intensity map as U:

U = (uij)W×H (5)
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(a) (b) 

(c) (d) 

Figure 3. The foreground inference process (best viewed in color

PDF). (a) the original image. (b) bounding box (red) and small ar-

eas around part locations (green). (c) the initial mask in Grab-Cut,

in which black, red and green regions are definite BG, possible FG

and definite FG, respectively. (d) the inferred foreground (white).
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Figure 4. Construction of the graph G. Left: a small patch on the

UCM, where each grid is a pixel. The numbers on the grids are

boundary intensities. Right: the constructed subgraph with edge

weights shown on the arcs. The step penalty λ is 0.01 here.

where uij is the boundary intensity at position (i, j).
Based on the UCM, we construct a directed graph G =

{V, E ,W}, where V = {vij} consists of all the pixels, and

E is composed of edges connecting adjacent pixels:

E = {(vij → vi′j′) | |i− i′|+ |j − j′| = 1} (6)

The weight of an edge is determined by the boundary inten-

sity at the tail node (pixel):

w(vij → vi′j′) = ui′j′ + λ (7)

Here, λ is called the step penalty, which takes the geomet-

ric distance into consideration. Figure 4 shows a sample

graph G constructed on a small patch.

After the graph is complete, we take the landmark points

as source nodes, and calculate their shortest paths to oth-

er nodes (pixels). The Dijkstra algorithm gives a solu-

tion within O(LN log(N)) time, where L is the number of

(a) (b)

Figure 5. Segmentation illustration. (a) Inferred foreground and

UCM (darker pixel, larger intensity). (b) Heatmap of distance

from ‘beak’ (upper left), ‘breast’ (bottom left), ‘back’ (upper right)

and ‘tail’ (bottom right), respectively. Pixel-wise minimization on

all the distances yields the segmentation results (centered).

points and N = W ×H is the image size. Denote the dis-

tances as {d(pl, vij)}, where pl is the l-th part location, and

vij is an arbitrary node in graph G. For later convenience,

we define {d(0, vij)} as the background distances, which

takes 0 if vij is a background node and +∞ otherwise.

The segmentation process is to assign each node (pixel)

to one of the landmarks. Denote an assignment as S:

S = (sij)W×H (8)

where sij is the index of assigned landmark of node vij ,

0 � sij � L, and sij = 0 implies assigning vij into back-

ground. To judge the quality of the segmentation, we define

an energy function which is the summation of distance be-

tween each pixel and the assigned node:

f(S) =
∑
i,j

d
(
psij , vij

)
(9)

(9) is easily solved using independent minimization:

s�ij = arg min
0�l�L

d(pl, aij) (10)

The segmentation process is illustrated in Figure 5.

5. Hierarchical Structure Learning
Denote the set of all pixels as I. Segmentation algo-

rithm divides I into at most L foreground parts and one

background region:

I =

L⋃
l=0

Il (11)

where Il represents the l-th segmented region for l > 0,

and I0 is the background. All the segmented regions are

exclusive, i.e., Il1 ∩ Il2 = ∅ for l1 �= l2.
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It is worth noting that the segmented regions are basic

body parts, i.e., ‘nape’, ‘left eye’, ‘right leg’, etc. Semanti-

cally, there exist mid-level concepts consisting of basic part-

s. For example, the concept ‘eyes’ consists of ‘left eye’ and

‘right eye’, and ‘head’ is composed of ‘forehead’, ‘crown’,

‘beak’, and ‘eyes’. To combine the basic parts, close ge-

ometric locations and similar appearance features are the

necessary conditions. Therefore, we need to quantize the

geometric and feature distances for pairwise parts.

We use the set of descriptors {dm,Rm} as defined in

Equation (2), the landmark points {pl} and the segment-

ed regions {Il} to calculate the distances. For an image in

which Il1 and Il2 are both non-empty, the geometric dis-
tance between them is formulated as:

distg(Il1 , Il2) =
[(
pXl1 − pXl2

)2
+

(
pYl1 − pYl2

)2]1/2
(12)

and the feature distance is calculated as:

distf(Il1 , Il2) =
∥∥∥∥∥ avg
Rm∩Il1

�=∅

dm − avg
Rm∩Il2

�=∅

dm

∥∥∥∥∥
2
(13)

Integrating (12) and (13) yields the total distance:

dist(Il1 , Il2) =
distg(Il1 , Il2)
max distg(I) +

distf(Il1 , Il2)
max distf(I) (14)

where both distances are normalized. Finally, we average

the total distance over all the images and obtain the part
distance for l1 and l2.

dist(l1, l2) = avg
Il1

,Il2
�=∅

dist(Il1 , Il2) (15)

We define a mid-level part Ls as a set of basic parts:

Ls = {ls1 , ls2 , . . . , lsT } (16)

where 2 � T � L, and the cost for constructing Ls as:

cost(Ls) =

∑
1�i<j�Tdist

(
lsi , lsj

)
1
2T (T − 1)

(17)

Now, the Hierarchical Structure Learning (HSL) al-

gorithm is very easy to implement.

1. Initialization. Start from the original part set P =
{1, 2, . . . , L} and a pre-defined learning parameter μ.

2. Learning. Enumerate all the subsets Ls ⊆ P , and

calculate the cost function c = cost(Ls). If c � μ,

then Ls is accepted as a mid-level part.

3. Construction. Organize all the original and learned

parts as a hierarchical structure.

No. μ Learned Mid-Level Parts

#0 0.0 No mid-level parts are learned.

#1 0.1 eyes (left/right eye), legs (left/right leg),

wings (left/right wing).

#2 0.3 eyes, legs, wings, neck (nape/throat).

#3 0.5 eyes, legs, wings, neck,

head (beak/crown/forehead/eyes),

body (back/belly/breast/tail).

#4 1.0 eyes, legs, wings, neck, head, body,

(wings/legs), (body/wings/legs), ALL.
Table 1. The learning parameter μ and the learned mid-level parts.

Bolded are the semantic name of the learned parts.

Denote P̃ =
{
1, 2, . . . , L, L+ 1, . . . , L̃

}
as the set of all

the original and learned parts, where L̃ � L.

Obviously, as the learning parameter μ increases, the

learned structure will become more and more complex. We

list some values of μ and the learned structures in Table 1.

We can observe that the learned mid-level parts are seman-

tically nameable (bolded in the table). Also, we can learn

a hierarchical structure (more than 2 layers) when μ = 0.5
and μ = 1.0. Both the above observations reveal the effec-

tiveness of our algorithm.

The learning process of the HSL algorithm requires

to enumerate all the subsets Ls ⊆ P , resulting in a

O
(
L× 2L

)
time complexity, which grows exponentially

with the number of basic parts, L. Fortunately, L is often

very small, e.g., no more than 20, in common objects. Our

algorithm requires about 100 seconds in the case of L = 20,

and less than 3s in the birds dataset (L = 15). Considering

that the hierarchical structure is calculated only once, we

can claim that our algorithm is very efficient.

6. Geometric Pooling Strategy
We return to the original image I. After descriptor ex-

traction and feature encoding, we obtain the set of descrip-

tors D defined in (2) and the corresponding set of visual

wordsW defined in (3), respectively. Also, we have at most

L̃ regions
{I1, I2, . . . , I˜L} for each image.

The Naive Pooling (NP) strategy summarizes each re-

gion by finding all the related features:

Wl = {(wm,Rm) | Rm ∩ Il �= ∅} (18)

and performing max-pooling:

f
(W)
l = max

(wm,Rm)∈Wl

wm (19)

Despite its simplicity, the Naive Pooling strategy fails

to capture the geometric information, which could be very

useful for fine-grained recognition. Figure 6 shows such ex-

amples with dominant geometric features, such as ‘crown’
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(a) (b) 

Figure 6. Examples illustrating Geometric Phrase Pooling (best

viewed in color PDF). Upper: bird species varying from each oth-

er mainly in ‘crown’ shape (left pair) and ‘tail’ length (right pair).

Middle: examples of Geometric Visual Phrases (GVP), in which

red circles are central words and yellows are side words. The GVP

in the last case is irregular, for the definition limits the side word-

s on the same region (the long ‘tail’ here) as the central word.

Bottom: the regions (of same color) with largest discriminativity

increases. The differences in ‘crown’ and ‘tail’ are detected.

shape and ‘tail’ length. In this respect, we adopt the Geo-

metric Phrase Pooling (GPP) algorithm [20], which defines

visual phrases as neighboring word groups, and perform-

s an efficient pooling algorithm to enhance the correlation

between local word pairs.

In precise, GPP is performed within each segmented re-

gion Il and the corresponding setWl. For each visual word

(wm,Rm) in Wl, we search for its K nearest neighbors in

Wl and form a word group:

Pl,m = {(wl,m,0, ll,m,0) , . . . , (wl,m,K , ll,m,K)} (20)

Pl,m is the m-th Geometric Visual Phrase (GVP) in Wl,

in which wl,m,0 = wm is the central word, and others are

side words. K is the order of Pl,m, which is 20 as in [20].

Figure 6 illustrates some examples of visual phrases.

The Geometric Phrase Pooling (GPP) algorithm calcu-

lates the following representation vector on Pl,m:

pl,m = wl,m,0 + max
1�k�K

wl,m,k (21)

and summarizes all the phrases using max-pooling:

f
(P)
l = max

(wm,Rm)∈Wl

pl,m (22)

Here, we conduct an experiment to show the effective-

ness of GPP. On the image pairs shown in Figure 6, we cal-

culate the distance φl between the corresponding regions

using visual words or phrases, respectively, and consider φl

as the model’s discriminativity metric:

φ
(W)
l =

∥∥∥f (W)
l (I1)− f

(W)
l (I2)

∥∥∥2

2
(23)

φ
(P)
l =

∥∥∥f (P)
l (I1)− f

(P)
l (I2)

∥∥∥2

2
(24)

We calculate the discriminativity increase φ
(P)
l −φ

(W)
l , and

circle out the regions with largest values in Figure 6. The

results reveal that GPP actually discovers useful geometric

properties and combines them with the texture features.

7. Experiments
This section gives classification results on the Caltech-

UCSD Birds-200-2011 dataset [18]. To make comparison,

we keep the same settings as the baseline algorithms:

• Local descriptors. We use the VLFeat [17] library to

extract OppSIFT descriptors [16]. The spatial stride

and window size for dense sampling are 5 and 6, re-

spectively.

• Codebook learning. We train a 2048-entry codebook

with K-Means clustering. The number of descriptors

collected for training is around 2 million.

• Feature encoding. We use LLC [19] for sparse coding

with K = 5 as in the same literature.

• Feature construction. The feature vectors in the basic

and mid-level regions are individually computed using

max-pooling, and then concatenated as a super-vector.

We normalize the super-vector using the separate nor-

malization strategy proposed in [21].

• Classification. We use LibLINEAR [9], a scalable

SVM implementation for training and testing.

• Accuracy evaluation. We select fixed numbers (5, 10,

20, 30) of images for training the classification mod-

el, and test it on the remaining images to calculate the

average classification accuracy by category. A fixed

training/testing split [18] is also used.

7.1. Annotation: Manual vs. Automatic

Many people have been debating on whether to use

human annotations in fine-grained visual categorization

(FGVC) tasks [18] [24] [6] [22]. Here we provide twofold

clues by testing our model on automatically annotated parts

and lighter manually annotated parts.

We use DPM [10], a part-based object detection model,

for automatic part annotation. The templates of birds with

9 unnameable parts are trained on the PascalVOC 2007 and

PascalVOC 2010 databases, respectively. Also we construct
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Algorithm Detail Explanation Accuracy

Baseline BoF model without parts 13.64%
VOC07 trained in VOC 2007 (9 parts) 9.43%
VOC11 trained in VOC 2011 (9 parts) 11.09%
3 parts preserving 3 out of 15 parts 21.37%
6 parts preserving 6 out of 15 parts 23.91%

Table 2. Comparison of classification accuracies (%) with 5
training samples per category. The automatic part-based model

produces even worse results than the baseline, while it is possible

to obtain better results with few manual annotations.

# training 5 10 20 30

Baseline 13.64 20.25 28.36 33.63
FG Inference 19.25 27.66 37.08 43.06
Part Seg. 28.55 40.46 52.52 58.09

Table 3. Classification accuracies (%) with foreground inference

and segmentation. FG Inference: a 3-layer SPM on the fore-

ground. Part Segmentation: spatial pooling on the segmented

regions.

# training 5 10 20 30

Structure #0 28.55 40.46 52.52 58.09
Structure #1 29.29 41.62 53.36 59.24
Structure #2 29.75 42.03 53.55 59.32
Structure #3 30.33 42.66 53.94 59.86
Structure #4 27.38 38.64 50.22 56.11

Table 4. The mid-level parts help to improve the classification
accuracies (%). See Table 1 for the structure details.

two lighter sets of manual annotations by preserving 3 or 6
landmark points and discarding others. The classification

results are listed in Table 2.

It is observed that the parts detected by the DPM mod-

el [10] provide limited help to fine-grained concept recogni-

tion. On the other hand, even partial manual annotations (3
or 6 parts) is valuable for visual categorization. Therefore

we propose to use the ground-truth annotations temporarily

in the fine-grained recognition, and improve the quality of

object detection using the clues learned in the classification

tasks.

7.2. Model and Parameters

First, we test the effectiveness of foreground inference

and segmentation and list the results in Table 3. The clas-

sification accuracy is highly boosted when better alignment

is provided on the objects.

Second, we test the Hierarchical Structure Learning (H-

SL) algorithm. We use the learned structures in Table 1 and

list the corresponding results in Table 4. Using mid-level

parts as extra bins, we improve the classification accuracy

by a margin. Exceptions come from the last case (Structure

# training 5 10 20 30

No Phrase 30.33 42.66 53.94 59.86
GPP(5,5) 31.69 43.80 55.26 60.80
GPP(5,10) 32.23 45.10 56.11 61.93
GPP(5,20) 34.13 47.29 58.60 64.01
GPP(5,40) 36.09 48.87 60.56 65.62

Table 5. Classification accuracies (%) with and without Geo-

metric Phrase Pooling. In parentheses are the numbers of coding

bases for central and side words.

# training 5 10 20 30

Wah [18] 10.05 - - -

Wang [19] 13.64 20.25 28.36 33.63
Xie [20] 15.34 22.91 31.01 36.17
Ours (Mean) 36.09 48.87 60.56 65.62
Ours (StdDev) ±0.31 ±0.60 ±0.50 ±0.46

Table 6. Classification accuracies (%) on the Birds dataset using

random data split. LLC [19] is the baseline system.

Wah [18] Zhang [24] Wang [19] Berg [2] Ours

17.31 24.21 33.91 73.30 66.35
Table 7. Classification accuracies (%) on the Birds dataset using

the fixed training/testing data split provided by [18]. In the fixed

split, there are about 30 images per category for training the model.

#4) which is much too complex. Therefore, we preserve

Structure #3 for the next experiments.

Finally, we test the accuracy gain from the Geometric

Phrase Pooling algorithm. Results are listed in Table 5. We

see that GPP indeed provides a better solution for spatial

context modeling. We choose 5 and 40 as the numbers of

coding bases for central and side words, respectively.

Both the SPM algorithm and our model (HPM) build hi-

erarchical structures for feature pooling. We make full use

of the ground-truth annotations, and extract semantic part-

s as spatial pooling bins. In this way, our algorithm sig-

nificantly outperforms the baseline system in fine-grained

image classification. HPM is not only a supporter of SP-

M which verifies that well-aligned parts and well-organized

structures are useful for discrimination, and also a contra-

dictor showing that global feature is not always better than

local ones (See Structure #3 and #4 in Table 1 and 4. #4 us-

es global features and produces much lower accuracies than

#3).

7.3. Comparison to Previous Works

Finally, we compare HPM with existing works using
ground truth part annotations. We inherit the best pa-

rameters from the previous section, i.e., Part Segmentation,

Structure #3 in HSL, and numbers of coding bases (5,40)
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for GPP. Table 6 and 7 show the results on random and fixed

data splits, respectively. HPM overwhelmingly outperforms

the previous algorithms except the POOF proposed in [2].

The great improvement in classification accuracy comes

from the full use of ground-truth part annotations.

8. Conclusions and Future Works
In this paper, we present a novel flowchart named Hierar-

chical Part Matching (HPM) for fine-grained visual catego-

rization (FGVC). HPM contains three modules to enhance

the BoF model. First, using the Grab-Cut algorithm and the

Ultrametric Contour Map, we develop an effective algorith-

m for foreground inference and segmentation, generating

more accurate object alignment. Second, we propose the

Hierarchical Structure Learning (HSL) algorithm for find-

ing mid-level concepts beyond basic parts. The learned

parts are semantically nameable. Third, we use the Geo-

metric Phrase Pooling (GPP) algorithm for spatial context

modeling. Integrating all the modules makes HPM a pow-

erful model, which shows notable improvements over the

existing works on the Birds dataset.

Despite the leap in classification accuracies, our HPM

model is still imperfect. For example, biological taxonomy

provides a scientific classification system for all the bird

species (available on Wikipedia). It implies a hierarchical

classifier, on which we could apply various techniques such

as transfer learning for fine-grained understanding. We will

investigate these problems in our future works and look for-

ward to a better model for fine-grained recognition.
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