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Abstract

Inverted indexing is a popular non-exhaustive solution
to large scale search. An inverted file is built by a quantizer
such as k-means or a tree structure. It has been found that
multiple inverted files, obtained by multiple independent
random quantizers, are able to achieve practically good re-
call and speed.

Instead of computing the multiple quantizers indepen-
dently, we present a method that creates them jointly. Our
method jointly optimizes all codewords in all quantizers.
Then it assigns these codewords to the quantizers. In exper-
iments this method shows significant improvement over var-
ious existing methods that use multiple independent quan-
tizers. On the one-billion set of SIFT vectors, our method
is faster and more accurate than a recent state-of-the-art
inverted indexing method.

1. Introduction

Inverted indexing [32] is of central importance in modern
search engines for both text retrieval [4] and image/video
retrieval [29]. In text search engines like Google [5], a doc-
ument is represented by a vector of weighted word frequen-
cies. Inverted indexing is built as a vocabulary of words, and
each word has a list of the documents that contain this word.
Online, the search engine retrieves the lists corresponding
to the query words and ranks the returned documents. This
is a non-exhaustive solution because only a very small por-
tion of documents are checked. Inverted indexing provides
a practical solution to large scale problems.

The above approach has been adapted to image/video
retrieval by introducing “visual words” [29]. The visual
words (codewords) are obtained by quantizing visual vec-
tors, e.g., via k-means [29], k-means trees [24], or other
tree structures [11, 10, 20]. The inverted indexing is built as
a codebook of the codewords. Each codeword has a list of
all vectors (or their IDs) belonging to this codeword. Given
a query vector, the system finds the codeword of the query
and checks those items in the list of this codeword. The
checking can be distance computation (using raw vectors,
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binary embedding [17], or product-quantized codes [19]) or
with geometric considerations [17, 33].

An effective way to improve the recall of inverted in-
dexing methods is to use multiple quantizers (also known
as multiple hash tables [8, 26]). Multiple quantizers intro-
duce redundant coverage among the lists. A query is com-
pared to the items in multiple (overlapping) lists to reduce
the chance of missing true neighbors. The Locality Sen-
sitive Hashing (LSH) [16, 8, 2] is a widely used multiple-
quantizer method1. In LSH each quantizer (hash table) is
binning a low dimensional random subspace. In [28, 23]
multiple randomized k-d trees are used and have shown ad-
vantages over LSH. In [26] Paulevé et al. compare the per-
formance of lattices, trees, and k-means as the hash tables.
They recommend using randomly re-initialized k-means as
the multiple quantizers. This method is named as “k-means
LSH” or KLSH [26].

In the spirit of hash, all the above multi-quantizer meth-
ods create the quantizers independently and randomly. The
KLSH method [26] enjoys an advantage that its individu-
al quantizer is (locally) optimal in the sense of minimizing
quantization error [14]. But we point out that for KLSH,
the codewords from different codebooks tend to be similar.
This is because the k-means algorithm tends to put the code-
words around densely distributed data even in different ran-
dom trials. Actually, the codewords can be different from
each other only because of the local optimality of the k-
means nature. The similar codewords would reduce the re-
dundant coverage and limit the gain of multiple quantizers.

To illustrate, we consider simple 1-d data subject to a
two-peak distribution (Fig. 1). Suppose we want two quan-
tizers each with two codewords. If each quantizer is con-
structed randomly and independently as in KLSH, the two
codewords in a quantizer will always be placed near the t-
wo peaks. The space partitioning of the two quantizers are
almost the same (Fig. 1 left), and the gain of having the
second quantizer is lost. If a query is located very close to
the partitioning boundary, the recall of retrieving the true
k-NNs can be low.

1LSH has also been used as compact binary encoding for distance rank-
ing [30]. Unless specified, in this paper we refer to LSH as a multiple-
quantizer method that uses inverted indexing, as it was described in [8, 2].
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Figure 1. KLSH vs. joint quantizers. We illustrate two quantizers
with two codewords in each quantizer. Top: the locations of the
four codewords (c1 to c4). Middle and Bottom: quantizer 1 and
quantizer 2, with the partitioning boundaries. When a query (q)
is near any partitioning boundary, the independent quantizers may
miss many true neighbors, while the joint quantizers can retrieve
more true neighbors because the query is well inside at least one
partition.

In the above example, we can instead generate all the
four codewords jointly via a single pass of k-means clus-
tering. These four codewords are distant from each other
(Fig. 1 right). Then we construct each quantizer by mutual-
exclusively selecting two codewords with some care, and
the two resulting quantizers can be substantially different.
Any query that lies near the partitioning boundary of one
quantizer can still find its k-NNs through the other quantiz-
er, and the recall is improved.

With this motivation, in this paper we propose joint in-
verted indexing - a novel multiple-quantizer method. Rather
than construct quantizers independently, we create them
jointly. We divide this challenging problem into two sub-
problems, each of which is formulated as optimization. We
first jointly optimize all the codewords of all quantizers.
The optimized codewords are then assigned to the quan-
tizers, with a consideration that the total distortion of all
quantizers is small.

Experiments on million/billion-scale datasets show that
our method performs significantly better than a various
multiple-quantizer methods like LSH [2], randomized trees
[28, 23], and KLSH [26].

On a one-billion SIFT set, our method is faster and more
accurate than a recent state-of-the-art method called “invert-
ed multi-index” [3]. When searching in one billion items
for the first nearest neighbor of a query, our method takes
less than ten milliseconds using a single thread and achieves
over 90% recall in the first retrieved one hundred items (de-
tailed in Sec. 4 and Table 3). The superiorities of our
method to [3] are at the cost of more memory consumption.
It depends on applications whether this is desired. But we
believe accuracy and speed are both of central importance
in many practices, and our method can be favored in these

cases.

2. Related Work

Recent progress on large scale search are mainly in two
ways: exhaustive and non-exhaustive. One could efficiently
exhaust millions of items using compact encoding like bina-
ry embedding (e.g., [30, 31, 13, 15]) or product quantization
[19, 12]. But for larger datasets, non-exhaustive search is
still highly desired, and compact encoding is often used for
re-ranking the retrieved data [17, 19, 3]. In this paper, we
focus on non-exhaustive search based on inverted indexing.

Inverted indexing could be built using a quantizer like
k-means [22], a binary tree [10, 7], hierarchical k-means
[11, 24], or a lattice [1]. An index represents a cluster, a tree
leaf, or a bin. The k-means quantizer is (locally) optimal in
terms of quantization distortion [14].

It is an attractive way to use multiple quantizers to im-
prove search accuracy. The LSH method [16, 6, 8] random-
ly generates L hash tables, each of which is binning a low
dimensional subspace. For each single hash table, an in-
verted indexing system is built with each bin as an index,
and each index has a list containing all the vectors in the
bin. This is repeated for each of the L hashing tables. Giv-
en a query, the algorithm retrieves L lists and checks all the
items in them.

Instead of binning, the methods in [28, 23] use random-
ized trees. Each single tree is generated by random projec-
tion. In [28] it is empirically observed that if the trees are
independently rotated, the error rate is smaller when visit-
ing shallow nodes in all trees than deeply backtracking a
single one. In [23] this way is found superior to LSH.

The KLSH method [26] uses randomly re-initialized k-
means to build each quantizer. The experiments in [26] (al-
so in this paper) show this is superior to various alternatives
including lattices and trees. But as discussed in the intro-
duction, the codewords in the multiple quantizers can be
similar in random trials.

Most recently, an inverted multi-index method [3] has
been proposed. This is actually a single quantizer method,
whose quantizer is the Cartesian product of multiple sub-
quantizers. As such, each codeword is indexed by the
Cartesian product of multiple sub-indices. The quantiza-
tion of the space can be much finer (e.g., than classic k-
means). The finer quantization, in conjunction with a soft-
assignment scheme, has shown great superiority to a single
k-means quantizer [3]. This is a methodology different from
multiple quantizers. We will compare with this method ex-
perimentally.

3. Joint Inverted Indexing

We first introduce the formulation of the method, and
then present the algorithm.
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3.1. Formulation

Denote the number of quantizers as L, and the number
of codewords in each quantizer as K . We assume K and
L are pre-defined and application-based (e.g., in [26] K=2n

and L=16).

Background It is well-known that a k-means quantizer
attempts to minimize the quantization distortion [14]:

min
{ck}

K∑
k=1

∑
x∈Ck

d(x, ck), (1)

with: Ck = {x | d(x, ck) < d(x, ck′ ), ∀k′ �= k} .
Here x belongs to the training dataset, ck is a codeword,
Ck is a cluster, and d(·, ·) is the squared Euclidean distance
between two vectors. The optimization is w.r.t. the set of
codewords {ck}. The distortion in (1) can be optimized via
the classical EM-alike algorithm: alternatively update the
codewords {ck} and assign data to the clusters {Ck}.

For L independent k-means quantizers as in KLSH [26],
we can formulate them as minimizing the total distortion of
all quantizers:

min
{cl

k
}

L∑
l=1

⎛
⎝ K∑

k=1

∑
x∈Cl

k

d(x, clk)

⎞
⎠ , (2)

with: Cl
k =

{
x | d(x, clk) < d(x, clk′ ), ∀k′ �= k

}
.

Here we use Cl
k and clk to denote the l-th quantizer’s cluster

and codeword. If all the codewords {clk | 1 ≤ k ≤ K, 1 ≤
l ≤ L} are initialized randomly, minimizing (2) is equiva-
lent to independently minimizing L separate problems as in
(1). This is the way of KLSH. If it were not for the local
optimality of k-means clustering, all the quantizers should
be identical.

Joint Codewords Optimization In (2) the codewords in
one quantizer are unaware of those in other quantizers. So
the independent optimization of any two quantizers may
push the codewords towards similar positions due to the k-
means nature. To overcome this issue, we propose to opti-
mize all the codewords jointly.

We notice that in multiple inverted files, it is sufficient
for a true datum to be correctly retrieved if it is covered by
one of the L lists. Motivated by this, it is reasonable for us
to consider the smallest distortion of a datum x among all
L quantizers. Formally, we consider:

min
l

(
min
k

d(x, clk)

)
, (3)

or equivalently min(l,k) d(x, c
l
k), as the smallest distortion

of x. To jointly optimize all codewords of all quantizers,
we propose to minimize the sum of the smallest distortion

of all data:
∑

x

(
min(l,k) d(x, c

l
k)
)
. It is easy to show that

this problem is equivalent to optimizing:

min
{clk}

L∑
l=1

K∑
k=1

⎛
⎝ ∑

x∈S(l,k)

d(x, clk)

⎞
⎠ , (4)

with:

S(l,k) =
{
x | d(x, clk) < d(x, cl

′
k′ ), ∀(l′, k′) �= (l, k)

}
.

Unlike in (2) where each x has been counted L times, in
(4) each x has been counted only once. Replacing (l, k)
by a one-to-one mapping to an integer j: M(l, k) �→ j ∈
[1, L×K], we can rewrite (4) as this optimization problem:

min
{cj}

L×K∑
j=1

⎛
⎝∑

x∈Sj

d(x, cj)

⎞
⎠ (5)

with: Sj = {x | d(x, cj) < d(x, cj′ ), ∀j′ �= j} .
Comparing (5) to (1), one can find the problem (5) is a s-
ingle pass of k-means with L×K clusters, so can be eas-
ily optimized. We denote the optimized codewords as
C = {cj | 1 ≤ j ≤ L×K}.

The above joint codewords optimization has not yet con-
sidered the belonging of any codeword to the quantizers. A
naive way is to randomly assign the codewords in C without
replacement2 to the L quantizers. We call this way as “Joint
(rand-assign)”. In experiments, this simple way has already
shown better search performance than KLSH (detailed in
Sec. 4, Fig. 6). This implies that the joint codewords op-
timization is an effective method for multiple quantizers.
This is due to two nice properties of joint codewords opti-
mization: (i) each x is expected to be accurately quantized
at least once, in the sense of optimizing (4); (ii) the code-
words among the quantizers are guaranteed to be sufficient-
ly different from each other.

Joint Codewords Assignment Suppose the set C has
been fixed, i.e., the problem in (4) (or equivalently (5)) has
been optimized. It is still possible for us to improve the per-
formance of “Joint (rand-assign)” by a better assignment.

Notice that the quantization distortion of any individual
quantizer has not been considered in (4). For a better as-
signment, we consider the total distortion of all quantizers
subject to a constraint. Formally, we consider:

min
L∑

l=1

⎛
⎝ K∑

k=1

∑
x∈Cl

k

d(x, clk)

⎞
⎠ , (6)

with: Cl
k =

{
x | d(x, clk) < d(x, clk′ ), ∀k′ �= k

}
s.t. clk ∈ C, and clk �= cl

′
k′ ∀(l′, k′) �= (l, k). (7)

2The term “without replacement” indicates each sample can only be
selected once.
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(a) Codewords Generation (b) Codewords Grouping (c) Codewords Assignment quantizer 2 quantizer 3

quantizer 1

Figure 2. Joint Inverted Indexing. We illustrateL=3 quantizers with K=8 codewords in each quantizer. Each dot represents a data point. (a)
Codewords Generation. All L×K codewords in all quantizers are generated simultaneously by k-means clustering. Each � represents a
codeword. (b) Codewords Grouping. The codewords are grouped into K balanced groups. (c) Codewords Assignment. A quantizer is
constructed by randomly selecting one codeword from each group without replacement. The codewords in quantizer 1, 2, 3 are represented
by �, ©, � respectively. Each quantizer is shown on the right.

The objective function in (6) is the total distortion of all
quantizers as in (2). The constraint in (7) means that the
codewords must be mutual-exclusively selected from the
fixed C. As such, the codewords must be subject to the
jointly optimized codewords in (4).

The constraint (7) leads to a fundamentally different op-
timization problem in (6). Because the set C has been fixed,
the codewords cannot be arbitrarily updated (e.g., via aver-
aging in-cluster data). In fact, in (6) we can only optimize
w.r.t. the one-to-one mapping M(l, k) �→ j. This is a com-
binatorial problem and an (even locally) optimal solution
can only be approximately achieved.

3.2. Algorithm

Based on the above formulations, we present an algorith-
m to jointly generate the quantizers. It has three steps:

Step 1 - Codewords Generation. L×K codewords are
generated by a single pass of k-means (Fig. 2(a)). This
solves the optimization problem in (5) and gives the set C.

Step 2 - Codewords Grouping. We divide the L×K
codewords into K groups (each group contains L code-
words) (Fig. 2(b)). This is achieved by a balanced clustering
algorithm like a binary tree. We group the codewords by a
random projection tree [9].

Step 3 - Codewords Assignment. A K-codeword quan-
tizer is generated by randomly selecting one codeword from
each of the K groups without replacement. We repeat this
for L times and construct all the L quantizers (Fig. 2(c)).

Discussions:
Intuitively, to make a quantizer with small distortion, we

expect the K codewords of this quantizer to be dispersed.
So we group the codewords by a second pass of clustering
(in Step 2, by a tree), and randomly select one codeword
from each group to form a quantizer (in Step 3). As such,
we can avoid the codewords in any quantizer from being too

K=29 K=212

Joint (rand-assign) 9.612± 0.006 8.225± 0.002
Joint 9.466± 0.005 8.111± 0.001

Table 1. The total distortion of “Joint (rand-assign)” and “Joint” in
SIFT1M. We use L=16 quantizers. For each K, the distortion is
averaged on 10 random trails subject to the same fixed constraints.
The standard deviation is also evaluated. All numbers in the table
have a unit of ×1011.

concentrated. We can expect such a quantizer to have small-
er distortion than a quantizer that randomly selects from
the whole set C (as in “Joint (rand-assign)”). We denote
the way in Step 1-3 as “Joint”, and quantitatively compare
the total distortion of “Joint (rand-assign)” and “Joint” on a
SIFT1M dataset [19] in Table 1. We see that when subjec-
t to the same constraint, the “Joint” way has smaller total
distortion. Table 1 also gives the standard deviations (std)
of total distortion in 10 random trails for both methods (all
trails subject to the same constraint). We see that it is very
hard for different random trails to substantially impact the
distortion. We have also tried to optimize the total distortion
by greedily swapping pairs of codewords between quantiz-
ers. But we find even tens of thousands of swaps can only
lead to ignorable reduction to the total distortion (� std).
This is perhaps due to the combinatorial nature of the prob-
lem. So we does not apply this greedy way.

Visualization:

We visualize the behaviors of KLSH [26] and our
method by a toy example. In Fig. 3 we randomly gener-
ate 500 data points subject to a 2-d Gaussian Mixture Mod-
el (GMM). For this database we build 3 quantizers with 8
codewords in each quantizer (L = 3, K = 8).

We can see that in KLSH some codewords of different
quantizers are very similar. In Fig. 4(a) we show the be-
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(a) KLSH (b) Joint

quantizer 2
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codewords

Figure 3. A toy data of 2-d GMM distribution. (a) Quantizers of
KLSH. (b) Our quantizers. Top: the locations of all codewords in
all quantizers. Bottom: the space partitions by individual quantiz-
ers. Each dot represents a data point. The codewords in quantizer
1, 2, 3 are represented by �, ©, � respectively.

(b) Joint(a) KLSH

missed

retrieved

query

Figure 4. Visualization of querying. (a) KLSH, (b) our method.
Given a query (�), the cell where the query lies in each quantizer
is shown by the partitioning boundary. A dark dot • represents a
successfully retrieved nearest neighbor, and a red cross × repre-
sents a missed neighbor.

havior of these quantizers to a typical query point: due to
the similar codewords, the gain of the multiple quantizers is
limited. Many true k-NNs of this query are not retrieved.

In contrast, all the codewords are jointly optimized by
our method (Fig. 3(b)). Given the query point, the clusters
can cover more potential candidates (Fig. 4(b)) and retrieve
more true k-NNs.

4. Experiments

We evaluate on three public datasets from [19, 18]: (i)
SIFT1M with one million 128-d SIFT vectors [21]; (ii)
GIST1M with one million 960-d GIST vectors [25]; and
(iii) SIFT1B with one billion SIFT. All datasets have pro-
vided independent queries for evaluation (10,000 in the two
SIFT sets and 1,000 in the GIST set).

All on-line experiments are conducted on a workstation
with an Intel Xeon 2.67GHz CPU (using a single thread)
and 96GB RAM. All algorithms are implemented in C++.
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Figure 5. Comparisons with multiple-quantizer methods on (a)
SIFT1M, (b) GIST1M, and (c) SIFT1B. All the methods are us-
ing L=16 quantizers. R and N are averaged over all queries. The
parameter settings control the fineness of the quantization. For
m-HKM, we use two levels of k-means with k centers each lev-
el. For m-RPT and RKD, we use trees of h levels. For LSH, we
use d-dimensional subspaces [2]. The parameters are given near
each marker. Note a straight line that links two markers is only for
illustration - there is no value recorded on the line.
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Comparisons with Multiple-Quantizer Methods We
compare our method with the following multiple-quantizer
methods: LSH [6], randomized k-d trees (RKD) [28], and
KLSH [26]. We also compare with two alternatives: mul-
tiple hierarchical k-means (m-HKM) and multiple random
projection trees (m-RPT). They are straightforward exten-
sions of hierarchical k-means [23] and random projection
trees [9] by independently and randomly generating multi-
ple quantizers.

Both KLSH and our method should scan all codewords
given a query. This can be time-consuming when the num-
ber of codewords is large, e.g., in SIFT1B. To speedup, in
this set for both KLSH and our method, we adopt a k-d tree
[10] to approximately search for the codeword of a query.
The performance on SIFT1B is reported based on this im-
plementation.

In Fig. 5, we adopt the evaluation setting as in the KLSH
paper [26]. We evaluate the recall R versus N , where N is
the number of data retrieved by all L lists (i.e., N is the size
of the union set of the L lists [26]). The number N is con-
sidered because it is the number of data actually checked
(e.g., re-ranking or geometric consistency checking [17]).
We treat the 100 nearest neighbors of each query as the
ground truth. In Fig. 5 all methods use the same number
of quantizers (L). Each method is evaluated using several
parameter settings. The parameters control the fineness of
the quantization (e.g., the number of codewords, leaves, or
bins). See the caption of Fig. 5 for the details of the param-
eters.

Fig. 5 shows that our joint quantizers outperform KLSH
and other alternatives. Fig. 5 also shows that KLSH is better
than the other competitors that use independent quantizer-
s. This implies KLSH benefits from the k-means quantizers
that give smaller distortion than the other independent quan-
tizers.

In Fig. 6 we further compare with the “Joint (rand-
assign)” way. As discussed in Sec. 3.2, “Joint (rand-
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Figure 7. Recall vs. L. (a) SIFT1M (N = 5000). (b) SIFT1B
(N = 10000). Because all methods studied cannot retrieve ex-
actly N candidates, in this figure the recall is linearly interpolated
from the recall obtained by the nearest two values of N .

parameters N R time (ms)

Joint K=218 6.44×105 0.849 5.6

KLSH K=218 6.37×105 0.763 5.6

RKD h=18 6.42×105 0.379 3.4

LSH d=26 6.50×105 0.186 3.4

Table 2. Retrieval time on SIFT1B. The parameters of each method
are set such that N � 6×105. We use L=16 here.

assign)” is a way that has jointly optimized codewords but
has larger total distortion than the “Joint” way (Table 1).
Fig. 6 shows that even the “Joint (rand-assign)” way out-
performs KLSH. This implies the jointly optimized code-
words are very essential for good performance. Fig. 6 al-
so shows that the “Joint” way is better than “Joint (rand-
assign)”. This implies that given the jointly optimized code-
words, the search accuracy can be improved by reducing the
total distortion.

In Fig. 7 we investigate the recall versus the number of
quantizers (L) at a given numberN . We see that our method
consistently outperforms KLSH and other competitors for
different L.

Table 2 shows the retrieval time per query in SIFT1B.
The retrieval time is the time used to retrieve the L lists, and
is without data re-ranking (the case with re-ranking will be
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methods parameters R@100 R@300 R@1000 time(ms) RAM (GB)

Multi-D-ADC N=10000 0.748(0.740) 0.749 0.751 6.8(7) 20
Multi-D-ADC N=30000 0.885(0.885) 0.886 0.887 16.9(16) 20
Multi-D-ADC N=50000 0.929 0.932 0.934 27.9 20
KLSH-ADC K=219 0.836 0.854 0.861 5.6 80
KLSH-ADC K=218 0.860 0.882 0.889 7.8 80
KLSH-ADC K=217 0.894 0.917 0.924 11.8 80
Joint-ADC K=219 0.884 0.904 0.911 5.6 80
Joint-ADC K=218 0.920 0.945 0.952 7.8 80
Joint-ADC K=217 0.938 0.964 0.972 11.8 80

Table 3. Comparisons in SIFT1B. The ADC are all using 16 bytes per vector. For Multi-D-ADC, we use the second-order index with k=214

as in [3]. The values in brackets are reported in [3], showing our re-implementation is very comparable to [3].

shown in Table 3). We set the parameters of each method
such that the number N of each method is about the same.
We see that both our method and KLSH slightly trade some
retrieval time for substantially higher recall.

Comparisons with Inverted Multi-Index [3] We also
compare with inverted multi-index [3], a recent state-of-
the-art inverted indexing method. As discussed in Sec. 2,
this method is actually a single quantizer method with fin-
er quantization and soft-assignments. This is a different
scheme with multiple-quantizer methods including KLSH
and ours. We compare with this method by experiments,
using a protocol as the one in [3].

We compare with the “Multi-D-ADC” version of [3] (its
best performed version). We briefly introduce it as below.
This method uses a soft-assignment way [27]. Due to it-
s finer quantization, this method retrieves a large number
(often thousands) of very short lists, until the total number
of data in all lists reaches some given N . All the retrieved
data in these lists are re-ranked, using the compact encod-
ing method of product quantization (PQ) [19]. The Multi-
D-ADC in [3] encodes the residual vector to a codeword
and re-ranks the data using the asymmetric distance com-
putation (ADC) [19]. The term ‘-D-ADC’ implies residual
encoding.

Because it can be more complicate to encode residual
vectors in multiple quantizers (KLSH and ours), we sim-
ply use PQ to encode the original vector (it is observed that
encoding the original vector is inferior [3]). Then we use
ADC to re-rank the retrieved data. We term these methods
as KLSH-ADC and Joint-ADC (ours).

Following [3], in this experiment we consider the first
nearest neighbor of a query as the ground truth. The accu-
racy is measured by “R@n”, that is, the recall at the top-n
ranked data after re-ranking. In Table 3 we show the query-
ing time and recall in SIFT1B. The querying time consists
of both retrieval time and re-ranking time. Both KLSH and
our method use L=16 quantizers here. Because both KLSH

and our method cannot retrieve exactly N data, their perfor-
mance is tuned by K .

Table 3 shows that our Joint-ADC outperforms Multi-D-
ADC in both speed and accuracy. The Multi-D-ADC can
improve its performance on “R@n” by increasing N . But
because the short lists in its finer quantizer are “too short”,
this operation retrieves a very large number of lists and takes
more time (cache-unfriendly). On the contrary, our method
(and KLSH) retrieves a fixed number (L) of longer lists,
and spends some more time on the ADC re-ranking. The
systematic comparisons in Table 3 show that our method is
a better practice.

The inverted multi-index is a soft-assignment method
with a single but very fine quantizer. In [3] it has been
shown that this method is faster and more accurate than oth-
er soft-assignment methods with a coarser quantizer, such
as the IVFADC/IVFADC+R methods [18, 19]. So we omit
the comparisons with these methods in this paper.

Discussions All the multiple-quantizer methods (includ-
ing LSH, RKD, KLSH, and ours) require considerable
memory consumption. Each single quantizer uses one in-
verted file that stores all the vector IDs. For a one-billion
set, each ID takes 4 bytes ( 1

8	log2 109
). So each inverted
file consumes 109×4 bytes. So it takes 64GB to store all
L=16 inverted files, plus 16GB due to ADC (independent
on L). On the contrary, the inverted multi-index method [3]
is memory efficient as a single quantizer method. It takes
only 4GB for storing IDs (still plus 16GB due to ADC). In
this sense, our method trades memory consumption (∼4×)
for both faster speed and higher accuracy. But we believe
this is a desired property in many practices. Further, be-
cause [3] is a single-quantizer method, it is still an open
problem of improving its performance if more memory is
available. One may increase the number of bytes (for re-
ranking) used in Multi-D-ADC. But re-ranking takes effec-
t only when the true neighbors have been included in the
short lists. Table 3 shows R@n of Multi-D-ADC becomes
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saturated (e.g., from 0.748 to 0.751) when n increases. This
implies Multi-D-ADC could hardly be improved by using
more bytes for reranking. Besides, using more bytes also
consumes more time in re-ranking.

As a k-means-based method, our method requires con-
siderable off-line training time. The training time is mainly
on obtaining the L×K codewords in the single pass of k-
means. But as in most k-means practices, we empirically
find it is not necessary to use all data for training. E.g., in
the experiments on the SIFT1B set, we only use 10% ran-
dom samples for training the codebooks. For the results re-
ported in this paper, the training time of SIFT1B is around
4-6 hours (8-core), depending on the parameters. We be-
lieve this off-line cost is acceptable, given the good on-line
querying performance of the algorithm.

In this paper all the on-line querying performance are
evaluated using a single thread. Our method is friendly to
multi-core implementation as a multi-quantizer method. We
will study this topic in the future.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point
search in lattices. IEEE Transactions on Information Theory,
48(8):2201–2214, 2002.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. Com-
munications of the ACM, 51:117–122, 2008.

[3] A. Babenko and V. S. Lempitsky. The inverted multi-index.
In CVPR, 2012.

[4] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information
retrieval, volume 463. 1999.

[5] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual web search engine. Computer networks and ISDN
systems, 30(1):107–117, 1998.

[6] M. S. Charikar. Similarity estimation techniques from round-
ing algorithms. In ACM Symposium on Theory of Comput-
ing, pages 380–388, 2002.

[7] S. Dasgupta and Y. Freund. Random projection trees and low
dimensional manifolds. In STOC, 2008.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In Symposium on Computational Geometry, pages
253–262, 2004.

[9] Y. Freund, S. Dasgupta, M. Kabra, and N. Verma. Learn-
ing the structure of manifolds using random projections. In
NIPS, 2007.

[10] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM
Trans. Math. Softw., 3:209–226, 1977.

[11] K. Fukunaga and P. M. Narendra. A branch and bound algo-
rithm for computing k-nearest neighbors. IEEE Trans. Com-
puters, 24:750–753, 1975.

[12] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quan-
tization for approximate nearest neighbor search. In CVPR,
2013.

[13] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In CVPR, 2011.

[14] R. Gray. Vector quantization. ASSP Magazine, IEEE, 1(2):4–
29, 1984.

[15] K. He, F. Wen, and J. Sun. K-means Hashing: an Affinity-
Preserving Quantization Method for Learning Binary Com-
pact Codes. In CVPR, 2013.

[16] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[17] H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In ECCV, pages 304–317, 2008.

[18] H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. TPAMI, 33:117–128, 2011.

[19] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg. Search-
ing in one billion vectors: re-rank with source coding. In
ICASSP, pages 861–864, 2011.
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