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Abstract

Elongated objects have various shapes and can shift, ro-
tate, change scale, and be rigid or deform by flexing, artic-
ulating, and vibrating, with examples as varied as a glass
bottle, a robotic arm, a surgical suture, a finger pair, a tram,
and a guitar string. This generally makes tracking of poses
of elongated objects very challenging.

We describe a unified, configurable framework for track-
ing the pose of elongated objects, which move in the im-
age plane and extend over the image region. Our method
strives for simplicity, versatility, and efficiency. The object
is decomposed into a chained assembly of segments of mul-
tiple parts that are arranged under a hierarchy of tailored
spatio-temporal constraints. In this hierarchy, segments
can rescale independently while their elasticity is controlled
with global orientations and local distances.

While the trend in tracking is to design complex,
structure-free algorithms that update object appearance on-
line, we show that our tracker, with the novel but remark-
ably simple, structured organization of parts with constant
appearance, reaches or improves state-of-the-art perfor-
mance. Most importantly, our model can be easily config-
ured to track exact pose of arbitrary, elongated objects in
the image plane. The tracker can run up to 100 fps on a
desktop PC, yet the computation time scales linearly with
the number of object parts. To our knowledge, this is the
first approach to generic tracking of elongated objects.

1. Introduction
Elongated objects constitute a large, general class of

structures that extend over image regions. They can move

fast under varying illumination and occlusions, in clutter,

and deform in the camera projective space due to relaxed

rigidity or change in viewpoint. Yet, applications requiring

pose tracking of elongated objects are various and span, e.g.,
interactive video manipulation, telesurgery, gesture-based

control, activity recognition, and animation. Hence, track-

ing elongated objects is a challenging but important task.

Figure 1. Our goal is to track with one algorithm poses of plethora
of elongated objects varying in shape, motion, and rigidity. Our

approach decomposes an elongated object into a chained assembly

of segments of multiple parts that are arranged under a hierarchy of

tailored spatio-temporal constraints leveraging local rigidity over

object segments. As a result, we efficiently track elongated ob-

jects that can shift, rotate, change scale, and be rigid or deform by

flexing, articulating, and vibrating.

However, an algorithm that tracks precisely, robustly, and

rapidly a plethora of elongated objects varying in shape,

motion, and rigidity has not been proposed thus far.

Dedicated trackers have made significant progress in

specific, important areas (e.g., surface deformations of hu-

man face [36], articulating tree-based human pose [28]).

They can self-start but annotating training examples of all

possible objects for learning spatially structured models is

currently difficult. In contrast, structure-free, generic ap-

proaches, which are initialized simply by a single bounding-

box, can localize arbitrary objects that are rigid [19, 34], de-

form less [5, 22, 33, 41], or more [6, 12, 23]. They build

object appearance on-line but strive to be robust against
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object deformations and thus neglect or filter out its pose.

Arguably, the single bounding-box annotation scenario cur-

rently limits their applicability to elongated objects that oc-

cupy rather expanded image regions.

In view of this, the paper addresses a new problem of de-

veloping a generic system for pose-based tracking of elon-

gated objects, which we conformably define as chain-like

image structures. We position our approach between the

structured and structure-free trackers by treating elongated

objects as a structure of chained segments of parts with

fixed appearance. Existing computer vision techniques, a

pictorial structure, dynamic programming, and color his-

tograms, are integrated into a new but simple model, which

is composed of a hierarchy of spatio-temporal constraints

with global orientations over the chained segments, con-

tributing to model-based tracking. Notably, we introduce

a generic, model-based tracker that admits a simple, one-

shot configuration from annotated object parts in the first

frame. Apart from its computational efficiency, it also

tracks objects robustly against partial occlusions and lo-

cal appearance changes due to spatial support through part-

based structure and re-detects them after full occlusions due

to temporal support through fixed appearance. Our system

can be configured to efficiently estimate detailed pose tra-

jectories of elongated objects, as varied as a rigid glass bot-

tle, a flexing tram, a gesturing finger pair, an articulating

robotic arm, a deformable surgical suture, and a vibrating

guitar string, which extend over wider and very thin image

regions, as depicted in Fig. 1.

We achieve this within a MAP-MRF setting of pictorial

structures [10, 11] by developing a deformable model of

chained parts that efficiently leverages object local rigidity
over spatio-temporal domain. Specifically, the fixed appear-

ance of each square-like part is represented by a color his-

togram, which has low computational cost, is invariant to

scale change and to permutation of pixels. This means the

pixels can evolve freely within object parts during tracking,

so achieving robustness to rotation and to local deforma-

tions caused by moderate change in viewpoint. We then

maintain spatial appearance of the whole object by decom-

posing it into a chained assembly of segments of multiple

parts that are arranged under a hierarchy of tailored spatio-

temporal constraints. We reference each segment of parts

with an oriented polar coordinate system, effectively en-

forcing the spatial coherency of parts by promoting these

part configurations that conform to the preferred relative an-

gular deviations and distances over time.

Contributions: Our main contributions are: (i) a pose-

configurable system for generic tracking of elongated ob-

jects, modeled with a hierarchy of tailored spatio-temporal

constraints; (ii) demonstrating that a simple, structured or-

ganization of parts with fixed appearance leads to competi-

tive performance with respect to structure-free, state-of-the-

art methods that learn object appearance on-line. Our other

contribution is to devise the new task of generic tracking

of elongated objects having arbitrary shapes and motions.

We also contribute by demonstrating that even though pic-

torial structures are usually considered slow [17], we inte-

grate them into a hierarchical model that can register object

pose up to speeds far exceeding real-time.

2. Related work
We review related work on region and part-based track-

ers of object poses, and other chain-based assemblies repre-

senting elongated image structures.

Region-based tracking: The seminal work of [8] pro-

posed a mean-shift method that represented a non-rigid ob-

ject by a color histogram, modulated with an ellipsoidal ker-

nel. The tracker determined object location in real-time by

mean-shifting the kernel in the gradient-ascending direction

of the differentiated objective function. Owing to its sim-

plicity, robustness, and speed, it has been popular and has

evolved over the years [7, 14, 24]. In particular, [43] rep-

resents an elongated, rigid object by an asymmetric kernel

and determines its location, scale, and orientation. How-

ever, these algorithms search locally (except [39]) requiring

objects to move slowly. Also, they use a holistic appearance

template that loses spatial information, reduces their robust-

ness to occlusions [1], and renders them infeasible to track

objects that deform heavily. Possibly, these types of objects

may require a part-based approach [4].

Tracking by parts: Part-based trackers can represent

objects locally. Thus, they can learn fewer background pix-

els that otherwise compromise the performance of holistic,

bounding-box trackers [12]. However, they differ much

in the mechanisms for assembling and matching the parts

in the spatio-temporal domain [6]. For instance, parts de-

scribed by fixed, gray histograms voted for object location

in [1]. A human body was localized in [38] with several

parts that were aggregated by greedy coverage of the fore-

ground binary mask, obtained by graph-cuts. Kernels of

parts were jointly mean-shifted in [9] to follow object de-

formations but required precomputing the subspace over

their possible displacements on initial series of images to

guide their joint convergence. Particle filtering [16] was

used in [29] for probabilistic matching of several parts, de-

fined by color histograms, which improved stability over

the holistic template. The parts were linked rigidly, though,

for efficient inference. Their unconstrained flexibility was

then granted in [26] but through multi-stage, disjoint infer-

ence. Particle filters scale exponentially with the dimen-

sionality of the search space, thus with the number of parts,

and are approximative. On the other hand, the prominent

pictorial structures [10, 11] have been used extensively in

object tracking by approximating complete graphs with star

graphs [3, 31] and with other tree graph extensions [42, 44].
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The graphs are trained off-line for specific objects, but can

explain heavy foreshortening [35] and scale linearly with

object parts.

We aim at an efficient and precise framework to track

elongated objects that can vary in number of parts by sev-

eral orders of magnitude. In our setting, the primary advan-

tage over particle filter and other pictorial structure trackers

is that our tracker can render the global solution without

approximative inference nor approximative object structure

and its joint inference scales linearly with the number of

parts. A chain-based pictorial structure thus appears natu-

ral to track elongated regions, and our approach generalizes

to such structures of arbitrary rigidity in a computationally

efficient manner.

Chain structures: Our proposal allows us to draw

analogies to very influential snakes models of image con-

tours [21], which can represent image structures with a

chain graph [2, 15]. Snakes actively adapt to previously

unseen contours to delineate object segments for shape reg-

istration. This is attractive, but they struggle on cluttered

areas [37], so [32] uses region support. Essentially though,

snakes use iterative matching methods with local search,

thus additionally struggling with fast object displacements.

Our work is also related in approach to [17, 40] that use a

chained pictorial structure, and loosely related to [20] that

iteratively infers on a dense graph by evaluating an ensem-

ble of chains. However, [40] tracks non-deformable objects

that shift and rotate, [20] requires a large set of training ex-

amples, and [17, 20] track object keypoints by filtering out

object pose. Our approach generalizes to arbitrary, elon-

gated objects (e.g., curved) that shift, rotate, change scale,

and undergo constrained or heavy deformations. It also

learns object structure over region support with one-shot an-

notation, registers object pose explicitly, uses simple color

histogram features to describe regions, and allows for find-

ing the global solution in a single pass.

3. Approach

We develop a model-based approach that can track the

motion of the pose of an arbitrary, elongated object in the

image plane. We first partition an elongated object Oe

into K segments Oe = {Oi}Ki=1, as depicted in Fig. 2.

Then, each segment i is partitioned further into ki parts

Oi = {pi,j}ki

j=1 specified by square-like windows. Note

that the parts need not be semantic nor have equal windows.

We link the the parts with a chain graph Gc = (V, E), where

nodes V are associated with the parts and edges E are asso-

ciated with the links between consecutive parts in the chain.

Each part pi,j is associated with an observed appear-

ance feature fi,j and with hidden center location lti,j =

[xt
i,j , y

t
i,j ]

T and scale sti,j , forming random variable pti,j =

[lti,j , s
t
i,j ]

T. The variables are indexed with time t = 1, . . .

Object

Segments

Parts

Figure 2. Model hierarchy, with an example of a deformable, elon-

gated object, decomposed into K=3 segments that are referenced

with planar coordinate systems. Each segment is split further

into smaller parts, connected by pairwise distances to control its

stretching and shrinking. Two segments share a part, which is an-

chored at their hinge, denoting heavy deformation (e.g., articula-

tion). The orientation of the coordinate system of each segment is

estimated based on the tracked locations of the centers of the parts.

The coordinate systems are used, in turn, to control the bending of

each segment. In effect, the model captures deformations of the

object and maintains its spatial coherence over time.

and we keep fi,j constant in this work. We index the initial

frame with t = 0. The posterior over our pictorial structure

of Ot
e at frame It yields:

P (Ot
e|It, Ot−1

e ) ∝ (1)

K∏
i=1

ki∏
j=1

P (It|pti,j)︸ ︷︷ ︸
Appearance term

ki−1∏
j=1

P (pti,j , p
t
i,j+1)︸ ︷︷ ︸

Spatial term

P (pti,j , p
t
i,j+1|Ot−1

i )︸ ︷︷ ︸
Temporal term

,

where we set pti,ki
= pti+1,1, i.e. the last part of each seg-

ment is the first part of the next segment in the chain, so

denoting a hinge. Thus, our graph has |V| = ∑K
i=1 ki −

(K − 1) nodes resulting in |V||p|-dimensional state space.

Fixed appearance: The appearance of each variable pi,j
is simply captured with a normalized color histogram fi,j =
hi,j . It takes the following form:

P (It|pti,j) = exp(− 1

νi,j
χ2(hi,j , h

t
i,j,c) ) (2)

where χ2(hi,j , h
t
i,j,c) is the chi-square distance between the

model histogram hi,j , precomputed in the initial frame I0,

and the histogram ht
i,j,c at a candidate location and scale

for part pi,j in the current frame It, with νi,j responsible

for possible appearance variations. Note our approach is

not limited to orientation invariant features though. As we

update the orientation of segments during tracking, orien-

tation variant features (e.g., gradient orientations) could be

updated accordingly [25].

The elongated segments Oi extend over rigid or elastic

regions. Pictorial structures whether model whole segments
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and search exhaustively for their orientations [10, 31], or

split segments further into parts and model their constraints

locally [42]. We also split segments into parts but model

them hierarchically with spatio-temporal constraints, i.e.
with local distances between parts and global orientations

over segments to control their linear and angular deforma-

tions, respectively. Constraining each segment in a chain

with global orientation allows to control its local rigidity

without the need for higher order cliques in the graph, which

is the key to fast inference. Borrowing terminology from

automatic control, we consider the orientation to be a slow-
changing variable, which, in turn, allows us to update it

with one-frame lag without sacrificing the effectiveness of

the approach. In this way, such a general, inertial temporal

prior regularizes the dynamics of an object by favoring shift

motion that is common during tracking [43].

Spatial prior: Neighboring parts in the i-th segment,

pti,j and pti,j+1, are constrained to lie within some prede-

fined euclidean distance dti,j from each other, where:

dti,j =
∥∥lti,j − lti,j+1

∥∥
2

(3)

However, the changing scale of the object affects the dis-

tances, so we obtain:

P (pti,j , p
t
i,j+1) = P (lti,j , l

t
i,j+1|sti,j , sti,j+1)P (sti,j , s

t
i,j+1)

(4)

For simplicity, we model the joint scale prior P (sti,j , s
t
i,j+1)

for each pair of parts in the chain as a uniform distribu-

tion. Hence, we omit it and reduce the spatial term only to

P (lti,j , l
t
i,j+1|sti,j , sti,j+1) as:

P (pti,j , p
t
i,j+1) ∝ P (lti,j , l

t
i,j+1|sti,j , sti,j+1) (5)

∝ N ( dti,j ; ρ
t
i,jμ

t−1
i,j;i,j+1, (ρ

t
i,jσ

t−1
i,j;i,j+1)

2 )

The parameters μt−1
i,j;i,j+1 and σt−1

i,j;i,j+1 in (5), computed in

the previous frame, denote mean distance between locations

lti,j and lti,j+1 of two neighbor parts and its standard devi-

ation, respectively. They are rescaled with ρti,j to capture

their dependence on the local scales of parts. Here, we sim-

ply set the rescaling factor as an arithmetic mean of these

scales ρti,j =
1
2 (sti,j + sti,j+1).

Shift-geared temporal prior: We reference each seg-

ment i with a 2D coordinate system (CS), having initial ori-

entation Θ0
i w.r.t. the image coordinate system. This allows

for determining local angular relations of the neighboring

parts, which are defined by the angular offsets θi,j;i,j+1 in

the CS as arccos between the vector [1, 0] (defined in the

CS) and the normalized vector l0i,j+1 − l0i,j . The bending of

all the parts in the segment is then controlled during track-

ing with the temporal term as:

P (pti,j , p
t
i,j+1|Ot−1

i ) =M(θti,j;i,j+1; θi,j;i,j+1+Θt−1
i , κi)

(6)

whereM denotes the von Mises distribution and κi denotes

angular stiffness. The stiffness penalizes angular devia-

tions from θi,j;i,j+1 (with offset orientation Θt−1
i ) caused

by deformation and rotation of the segment. Therefore, our

model favors such arrangements of parts of the segment,

which maintain predefined geometrical configuration, pre-

suming that the orientation Θt−1
i does not change much be-

tween successive frames. The stiffness parameters κi can

be adjusted to account for the anticipated change in angular

speed of Θt−1
i between frames.

Configuration: Our system admits a simple, intuitive

procedure for configuring the pose of an elongated object

Oe in the initial frame I0. We: (1) split Oe into |V| parts

p0i,j by specifying their locations and sizes, (2) link neigh-

bor parts with a chain Gc, (3) and specify K segments of

parts with their corresponding orientations Θ0
i . Then, the

features fi,j , mean pairwise distances μ0
i,j;i,j+1, and an-

gular offsets θi,j;i,j+1 from Θ0
i are computed from these

one-shot annotations (as special case, straight objects en-

force θi,j;i,j+1 = 0, independent of annotation).

Inference: We match our model (1) to each

frame It by inferring on its negative log-posterior

− log(P (Ot
e|It, Ot−1

e )) with dynamic programming to

obtain the MAP configuration of the elongated object

Ot
e,MAP . The inference is fast and its complexity scales

linearly with the number of object parts |V|.
Update: The global scale st of the whole object is com-

puted as the average over scales of all windows of parts and

passed through the IIR filter as st = (1 − r)st−1 + rst

with the forgetting factor r. Alternatively, the scales could

be updated individually for each particular part or segment,

depending on a scenario. The parameters of (5) are then up-

dated with the filtered scale as μt
i,j;i,j+1 = stμt−1

i,j;i,j+1 and

σt
i,j;i,j+1 = stσt−1

i,j;i,j+1.

The updated orientation Θt−1
i in (6) will be the reference

for θi,j;i,j+1 in segment i ∈ 1, . . . ,K in the next frame

It+1. Knowing the inter-frame correspondences between

the MAP locations of parts Lt−1
i and Lt

i (Fig. 3) of i-th
segment, Θt

i is obtained through Kabsch algorithm [18] that

estimates segment’s rotation Rt
i in the least-squares sense

by solving1:

argmin
Rt

i

ki∑
j=1

∥∥∥l̂ti,j − stRt
i l̂
t−1
i,j

∥∥∥
2

2
(7)

Note, that the points l̂ti,j and l̂t−1
i,j are translated to the ori-

gins of their respective CSs, with necessary rescaling of

the latter. The stiffness parameters κi remain constant, as

they are assumed invariant to any object deformations and

change in viewpoint.

1For ease of readability, we drop the index t−1 in the notation of scale

change and rotation from frame t− 1 to t.
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s(t),R
(t)
i

lt−1
i,1 lt−1

i,2

lt−1
i,3lt−1

i,4

lti,1

lti,2

lti,3

lti,4

Figure 3. Synthetic example of i-th segment of heavily deformable

object, whose scale st increases. The segment, consisting of

ki = 4 parts, deforms and rotates by Rt
i between two succes-

sive frames. The corresponding locations of parts between frames,

translated back to the origin of the 2D CS, allow for recovering

segment’s rotation Rt
i despite its incident deformation. The dotted

links connect it to neighbor segments, which rotate independently

of the i-th segment.

4. Experimental results

In this Section, we experimentally challenge the versa-
tility of our model (1). We show that our pose-configurable

system can be used successfully to track elongated objects

in the image plane, which can shift, rotate, change scale, be

rigid and deform by flexing, articulating, and vibrating.

We also quantitatively evaluate our tracker on PROST

dataset [34] with challenges of fast viewpoint changes, mo-

tion blur, heavy scale and illumination changes, and fre-

quent occlusions. The tracker is compared against state-of-

the-art trackers on PROST that learn their appearance on-

line. We demonstrate that our spatio-temporal model with

remarkably simple, fixed appearance term leads to compet-

itive or better tracking performance. As the occlusion event

is not modeled explicitly, we enforce constant appearance

so that the tracker is robust against occlusions and thus can

recover easily by redetecting the object.

Implementation details: In all experiments, we have

the following, fixed settings. For (2), we use 512-

dimensional RGB color histograms hi,j (8 bins per channel),

with weighting νi,j = 2.0. The mean distance in (5) is com-

puted from the initial locations of the parts as μ0
i,j;i,j+1 =∥∥l0i,j − l0i,j+1

∥∥
2
, while the standard deviation σ0

i,j;i,j+1 as

the average of their window radii that are close to Θ0
i . The

angular stiffness parameters κi of (6) correspond to 60◦.
States of each part are defined over a regular, sparse 3D

grid with size twice (×2) the size of the part. The scale is

partitioned as ×0.9, ×1.0, ×1.1 and filtered with r = 0.1.

Our tracking algorithm is a C++ single-threaded imple-

mentation (without SSE). It ran on a plain PC equipped with

Intel Xeon@2.4 GHz, 4 MB cache, and 3.5 GB RAM. The

frame processing speed scales linearly with the number of

parts but also depends on their window sizes (optionally, the

latter could be factored out with [30]).

Qualitative evaluation: We demonstrate that our

method applies to tracking elongated objects of various

shapes, which are rigid or deform by flexing, articulating,

and vibrating in the image plane. The instances are tracked

in the video sequences Liquor [34], Surgical suture [27],

Robotic arm, Toy tram, Guitar string2, shown in Fig. 4.

In Liquor, the tracker is very successful despite multi-

ple and heavy occlusions of the glass bottle and is not con-

fused by another bottle, which is fairly similar in color. In

Robotic arm, the tracker follows the 2D pose of the artic-

ulating robotic manipulator composed of two segments. In

Surgical suture, the suture is a very long object, which is

thin and deforms heavily and unsystematically. By split-

ting the suture into piece-wise linear segments, our pose-

configurable system can follow it very precisely. Despite no

constraints at the ends of the suture, the tracker stabilized

both ends correctly, which is a challenging task [15]. We

posit this satisfactory behavior owes to the fact that, while

some segments rotate, others only shift, and thus our hier-

archical, spatio-temporal model renders the tracker stable.

In Toy tram, our model can explain the bending and scale

change of the tram and is robust against moderate out-of-

plane rotations affecting its appearance. In Guitar string,

the tracker is able to precisely register intricate deforma-

tions of the string with very little information available. The

parts have only few pixels. In this case though, the tracker

ran with fixed scale to prevent the model from shrinking on

the textureless, string region. For comparison, the same se-

quence with scale update is shown in Fig. 5.

Quantitative evaluation: We evaluate quantitatively

our approach on PROST. We can easily configure our

region-based model to rigid objects with K=1 segment at

initial orientation Θ0
1, and partition it evenly into k1 = 3

parts, i.e. such that the parts span the segment with no (or

very small) overlap (see, e.g., top rows in Fig. 4, 5). We

then use the following evaluation measures:

• Intersection-over-union, as in [34],

• Mean distance precision, as in [5].

Specifically, the first criterion renders a detection as true

positive when its bounding box overlaps with the ground

truth bounding box by > 50%. The recall performance is

reported as the number of true positives over the sum of true

positives and false negatives. The second criterion com-

putes the �2-distance between the centers of detected and

ground truth bounding-boxes.

To make the comparison fair, we fix the scale of our

tracker and always output the same size of the ground truth

bounding-box. Note that in the first frame of each sequence,

our tracker outputs center location of the whole object that

is slightly misaligned (by several pixels) from the center of

2Last 3 video sequences were collected from YouTube.
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Figure 4. Our qualitative results on sequences (best viewed in color), enumerated from top to bottom. We display each example individually

for better visualization. The left column shows initialized layouts of chained segments of evenly annotated parts. Their corresponding

orientations, updated over time, are depicted on image sides together with frame number and frame rate. (i) The glass bottle is configured

with K = 1 segment of k1 = 3 parts. (ii) Articulating robotic arm is split into K = 2 segments of k1 = 6 and k2 = 5 parts. (iii) We split

surgical suture into K = 6 segments of ki = 11 parts. (iv) The tram only bends so we configure it with K = 1 segment of k1 = 5 parts.

(v) One can expect the vibrating string to deform only slightly, so we configure it with K = 1 segment, as well. We split it into 114 parts,

as we observed that its registered motion was more realistic with the increased number of its ”mini-parts”.

the ground truth bounding-box, as it averages the locations

of all its parts. For this reason, we precompute this mis-

alignment vector in the first frame and fix it for the whole

duration of the sequence. Then, in subsequent frames, the

tracker shifts our center by the above, constant offset.

The quantitative results are shown in Table 1. Our tracker

with constant appearance yields competitive performance

with respect to TLD [19] and GD [22], while outperform-

ing others, and processes videos at ∼ 100 fps. GD used

scale update for evaluation though, while TLD struggles

with deformable objects [19]. Our method performs best

(top table) on the Liquor sequence with blur and multiple,

partial and full occlusions and on the Lemming sequence

with blur and heavy scale changes. Interestingly, it outper-

forms FT [1], which likewise splits an object into parts and

fixes their appearance. For the sake of coherency of the ex-

periments, we also ran our algorithm to detect scale change.

We observed comparable performance (see, e.g., top row in

Fig. 4) and the frame rate was ∼ 45 fps. Our tracker was

worse on the Box sequence (similarly to FT), in which the

box drastically changed its appearance due to heavy illumi-

nation change on its reflective surface (Fig. 5). Hence, our

model should benefit from additional features in the appear-

ance term. This work aimed at a general method with the

focus on the strong spatio-temporal and basic appearance

models that jointly led to state-of-the-art results at very high

frame rate.

5. Conclusions

This paper proposes a tracker that: (i) is modular, with

one-shot learned spatio-temporal model and without ded-

icated model of dynamics, (ii) explicitly estimates various

motions in the image plane, including deformations, by out-

putting detailed 2D pose (locations and scales of parts and

orientations of segments), (iii) is robust against appearance

changes resulting from change of viewpoint and occlusions,

(iv) yields simple implementation with low computational

cost allowing rates up to 100 fps, (v) scales efficiently

from low- to high-dimensional state spaces, thus demon-

strating that our single model can be easily reconfigured
from one elongated object to another, (vi) uses a remark-

ably simple, fixed appearance term yet providing competi-

tive state-of-the-art results on the challenging benchmark.
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Figure 5. Our current limitations (best viewed in color). Top: Since we integrate color histograms into our appearance term, the tracker

struggles with heavy illumination changes, present in the Box sequence (e.g., frames #349, #353). Bottom: Unlike snakes models, the

tracker is confused on textureless regions and shrinks when it updates scale. In Guitar string, it cannot discern between the correct and

smaller scale of the parts of the guitar string (with the same configuration as in Fig. 4) and blindly rescales the pairwise distance constraints.

Integrating other features into the appearance term (e.g., optic flow [34] or gradients [25]) might correctly address these challenges.

Complementary to on-line appearance update algo-

rithms, our future work will pursue development of on-
line reconfiguration update mechanisms for updating object

rigidity constraints over time. Since the proposed generic

tracker allows for attributing local rigidity constraints over

the spatio-temporal space occupied by various elongated

objects, it thus opens opportunities to investigate dynamic

adaptation of rigidity constraints for more robust tracking.
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