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Abstract

In graph-based semi-supervised learning approaches,
the classification rate is highly dependent on the size of
the availabel labeled data, as well as the accuracy of the
similarity measures. Here, we propose a semi-supervised
multi-class/multi-label classification scheme, dynamic la-
bel propagation (DLP), which performs transductive learn-
ing through propagation in a dynamic process. Existing
semi-supervised classification methods often have difficulty
in dealing with multi-class/multi-label problems due to the
lack in consideration of label correlation; our algorithm in-
stead emphasizes dynamic metric fusion with label infor-
mation. Significant improvement over the state-of-the-art
methods is observed on benchmark datasets for both multi-
class and multi-label tasks.

1. Introduction
In classification, it is often hard to obtain a single fixed

distance metric for points in the entire data space. More-

over, nice properties enjoyed by graph-based (built on the

distance metric) two-class semi-supervised classification

[37] become less obvious in the multi-class classification

situations [11], due to the correlations of the multiple la-

bels.

Supervised metric learning methods often learn a Ma-

halanobis distance by encouraging small distances among

points of the same label while maintaining large distances

for points of different labels [30, 29]. Graph-based semi-

supervised learning frameworks on the other hand utilize a

limited amount of labeled data to explore information on

a large volume of unlabeled data. Label propagation (LP)

[37] specifically assumes that nodes connected by edges of

large similarity tend to have the same label through infor-

mation propagated within the graph. A wide range of ap-

plications such as classification, ranking, and retrieval [38]

have adopted the label propagation strategy. Another type

of semi-supervised learning, co-training [5], utilizes multi-
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view features to help each other by pulling out unlabeled

data to re-train and enhance the classifiers.

The above methods are mainly designed to deal with

the binary classification problem. For the multi-class/multi-

label case, the label propagation algorithm [37] becomes

more problematic, therefore some special care needs to

be taken. A common approach to address the multi-

class/multi-label learning is to use a one vs. all strategy. The

disadvantage of one vs. all approaches is, however, that the

correlations among different classes are not fully utilized.

As discussed in [36], taking the class correlations into ac-

count often leads to a significant performance improvement.

In this paper, we propose a new method, dynamic label

propagation (DLP), to simultaneously deal with the multi-

class and multi-label problem. Our method incorporates the

label correlations and instance similarities into a new way

of performing label propagation. Our intuition in DLP is

to update the similarity measures dynamically by fusing

multi-label/multi-class information, which can be under-

stood in a probabilistic framework. The K nearest neigh-

bor (KNN) matrix is used to preserve the intrinsic structure

of the input data. We present comprehensive experimental

results illustrating the advantages of the proposed method

on multi-class digit categorization, object recognition, and

multi-label text classification.

2. Related Work

As discussed in Section (1), a popular strategy toward

multi-class/multi-label learning is to divide it into a set

of binary classification problems, using techniques such

as one-versus-the-rest, one-versus-one, and error-correcting

coding[1]. These methods however have certain limitations

including: (1) the difficulty to scale up to large data sets, and

(2) inability to exploit the coherence and relations among

classes due to the use of independent classifiers. Also, they

may result in unbalanced classification outputs, especially

when the number of classes is large.

A lot of recent attention has been focused on address-

ing those limitations of semi-supervised multi-class learn-
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ing. The existing algorithms can be roughly classified into

three categories. 1) Density-based: a recent notable ad-

vance in density-based method is a multi-class extension to

the TSVM by [31]; however, its high computational cost

limits it from being widely adopted. 2) Boosting-based:

there are a variety of semi-supervised multi-class extensions

to the boosting methods [25, 21]; these methods differ in

the loss functions and regularization techniques; the disad-

vantage of them is the lack of ability to utilize the correla-

tion between labels and input features (especially for the

unlabeled data), which, to some extent, jeopardizing the

classification accuracy. 3) Graph-based: some recent ad-

vances adopt Gaussian Processes [22, 18] or Markov Ran-

dom Walks [2]. Transduction by Laplacian graph [4, 10] is

also shown to be able to solve multi-class semi-supervised

problems; although these algorithms make use of the rela-

tionship between unlabeled and labeled data, their compu-

tational complexity is demanding, e.g. of O(n3).

However, there are much fewer attempts to tackle semi-

supervised multi-label problem, despite there being a rich

body of literature about supervised multi-label learning.

One popular method is label ranking [8], which learns

a ranking function of category labels from the labeled in-

stances and classifying each unlabeled instance by thresh-

olding the scores of the learned ranking functions. Although

being easy to scale up, label ranking fails to exploit the cor-

relations among data categories. Recently, category corre-

lations are given more attention in multi-label learning. A

maximum entropy method is employed to model the corre-

lations among categories in [36]. [19] studies a hierarchi-

cal structure to handle the correlation information. In [13],

a correlated label propagation framework is developed for

multi-label learning that explicitly fuses the information of

different classes. However, these methods are only for su-

pervised learning, and how to make use of label correlation

among unlabeled instances is still unclear. [17] uses con-

strained non-negative matrix factorization to propagate the

label information by enforcing the examples with similar

input patterns to share similar sets of class labels. Another

semi-supervised multi-label learning technique [7] devel-

ops a regularization with two energy terms about smooth-

ness of input instances and label information by solving

a Sylvester Equation. A similar algorithm [34] solves the

multi-label problem with an optimization framework with

an regularization of Laplacian matrix.

Different from these semi-supervised multi-label meth-

ods, the proposed method explicitly merges the input data

and label correlations. Moreover, by doing projection on the

fused manifolds, DLP further takes advantage of the corre-

lations among labeling information of unlabeled data. Our

work also differs significantly from a very recent algorithm

[14], which emphasizes the learning of fusion parameters

for unlabeled data; the focus here is however the dynamic

update of the similarity functions from both data and label

information. In addition, our method is a unifying frame-

work for both multi-class and multi-label classification.

The current literature addressing combined multi-class

and multi-label problem is still limited. The reason is two-

fold. First, the multi-label problem considers the label cor-

relations, but it may lead to a loss in the discrimination

power of the multi-class classifiers. On the other hand, the

prediction function learned in the multi-class problem often

fails to solve the multiple overlaps of different labels in the

multi-label problem. The proposed dynamic label propa-

gation method (DLP) aims to solve semi-supervised multi-

class and multi-label problem simultaneously by combin-

ing the discriminative graph similarities and the label cor-

relations in a dynamic way, while preserving the intrinsic

structure of input data. These two steps can well balance

the difference in the multi-class and multi-label problems.

3. Label Propagation
First, a brief introduction of the well-known label prop-

agation algorithm is provided in this section. We are given

a finite weighted graph G = (V,E,W ), consisting of a set

of vertices V based on a data set X = {xi, i = 1, . . . , n},
a set of edges E of V × V , and a nonnegative symmetric

weight function W : E → [0, 1]. If W (i, j) > 0, we say

that there is an edge between xi and xj . We interpret the

weight W (i, j) as a similarity measure between the vertices

xi and xj . If ρ is a distance metric defined on the graph,

then the similarities matrix can be constructed as follows:

W (i, j) = h(
ρ(xi, xj)

2

μσ2
), (1)

for some function h with exponential decay at infinity. A

common choice is h(x) = exp(−x). Note that μ and σ
are hyper-parameters. σ is learned by the mean distance to

K-nearest neighborhoods [32].

A natural transition matrix on V can be defined by nor-

malizing the weight matrix as:

P (i, j) =
W (i, j)∑

k∈V W (i, k)
, (2)

so that
∑

j∈V P (i, j) = 1. Note that P is asymmetric after

the normalization.

Denote the dataset as X = {Xl

⋃
Xu}, where Xl repre-

sents the labeled data and Xu represents the unlabeled data.

One important step in label propagation (LP) is clamping,

i.e., the labels of labeled data must be reset after each itera-

tion. For the two-class LP, we refer readers to [37]; for the

multi-class problem, 1−of−C coding representation is of-

ten used, so the label matrix is Y = [Y (l);Y (u)] ∈ R
n×C ,

where n is the number of data points, C is the number of

classes, Y (l) is the label matrix for labeled data, and Y (u)

is the label matrix for unlabeled data. We let Y (l)(i, k) be 1
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if xi is labeled as class k, and 0 otherwise. During each it-

eration, two steps are performed: 1) Labels are propagated

Yt = P ∗ Yt−1. 2) Labels of labeled data Xl are reset.

The main algorithm of label propagation is summarized in

Fig.(1).

1. Construct a probabilistic transition matrix P by (2).

2. Let Y0 = [Y l
0 ;0].

3. Performing the following steps for T steps:

3.a Yt+1 = P ∗ Yt,

3.b Y
(l)
t+1 = Y l

0 .

4. Output YT

Figure 1. Algorithm of Label Propagation (LP).

4. Dynamic Label Propagation
4.1. Local Similarity

Given a dataset X and its corresponding graph G =
(V,E,W ), we construct a KNN graph G = (V, E ,W): the

vertices of G are the same as in G, and weighted edges are

those nearby ones only. In other words, those similarities

between non-neighboring points (in terms of the pairwise

similarity values) are set to zero. Essentially we make the

assumption that local similarities (high values) are more re-

liable than far-away ones; and accordingly local similarities

can be propagated to non-local points through a diffusion

process on the graph. This is a mild assumption widely

adopted by other manifold learning algorithms [24, 20].

Using K nearest neighbor (KNN) to measure local affin-

ity, we construct G with associated similarity matrix:

W(i, j) =

{
W (i, j) if xj ∈ KNN(xi)

0 otherwise
(3)

Then the corresponding KNN matrix becomes:

P(i, j) = W(i, j)∑
xk∈KNN(xi)

W(i, k)
. (4)

Note that P carries the full pair-wise similarity informa-

tion among the data whereas P only encodes the similarity

to nearby data points. However, P incorporates the robust

structural information about the input data space. For clar-

ity, we call P the status matrix and P the corresponding

KNN matrix.

4.2. Label Fusion on Diffusion Space

One disadvantage of label propagation is that it does not

work well on multi-class/multi-label classification problem

due to a lack of interplay among labels within different

classes. In this paper, we propose a dynamic version of

label propagation that aims to improve the effectiveness on

multi-class/multi-label classification. Our main idea is to

have an improved transition matrix by fusing information

of both data features and data labels in each iteration.

Given the kernel Pt, where t denotes the number of it-

erations, we can define the diffusion distance [15] at time t
as:

Dt(i, j) =‖ Pt(i, :)− Pt(j, :) ‖ . (5)

The diffusion process maps the data space into an n-

dimensional space Rn
t in which each data point is repre-

sented by its transition probability to the other data points.

It is reasonable to assume that for each data xt ∈ Rn
t , we

have p(xt) = N (xt|μt, Pt), where μt is unknown. Note

that the label matrix Yt contains information about class la-

bels, and the correlation of these labels KY = YtY
T
t can

be viewed as the similarity between data points in the label

space Qn
t , and data points in this label space Qn

t have the

probability p(yt) = N (yt|0,Kt).
We divide our method into two steps:

1) Kernel Fusion.

The first part of dynamic label propagation is the fusion

of the status matrix Pt and the label kernel KY = YtY
T
t .

A weight α is assigned to the label kernel KY . The fused

kernel is then

Ft = (Pt + αYtY
T
t ). (6)

This operation corresponds to an addition operator in the

diffusion spaces:

zt = xt +
√
αyt. (7)

We can then verify that

p(zt) = N (zt|μt, Pt + αYtY
T
t ) = N (zt|μt, Ft). (8)

This simple fusion technique considers the correlation

among the instance label vectors. The underlying assump-

tion is that two instances with high correlated label vectors

tend to have high similarity in the input data space. The cor-

relation between label vectors can represent the label depen-

dency among instances, especially for the multi-label/multi-

class problem. The advantage of fusing transition kernel

and the label correlation is two-fold: On one hand, two in-

stances with high correlated label vectors are likely to have

high similarity in input data space, this fusion process there-

fore enhances the fitness of the kernel matrix for the input

manifold. On the other hand, the resulting kernel matrix

leads to better label information through next round of label

propagation. In this way, we build up a dynamic interaction

process between the feature space and label space. How-

ever, since the label information is dynamically updated

during the propagation process, the resulting label informa-

tion after the initial several rounds no longer improves the

transition matrix, sometimes even makes it worse. To deal

with this problem, we design a novel fusion-operator based

on the local neighbours as follows .

427



2) Kernel Diffusion.

Assume P0 is the initial status matrix of the input data

calculated using (1) and (2), and P = KNN(P0) by (3)

and (4); We employ this linear operator P to do the projec-

tion

xt+1 = Pzt + λtε, (9)

where ε is white noise, i.e. p(ε) = N (ε|0, 1). Note thatP is

a sparse version of P0 and only local neighbor information

in the space is kept in the operator P:

xt+1(i) =
∑

j∈KNN(i)

P0(i, j)zt(j) + λtε

=
∑

j∈KNN(i)

P0(i, j)(xt(j) + αyt(j)) + λtε

With this linear operation, we have:

p(xt+1|zt) = N (xt+1|Pzt, λtI). (10)

The marginal distribution of xt+1 is

p(xt+1) =

∫
N (zt|μt, Ft)N (xt+1|Pzt, λtI)dzt

= N (xt+1|Pμt,PFt(P)T + λtI). (11)

The above equation implies that, the essence of dynamic

label propagation is to do linear operations on diffusion

space iteratively. Note that xt+1 is a point in the diffu-

sion space. Instead of performing linear projection in the

original data space, we do projection in the diffusion space.

The advantages of projection onto the diffusion space are

two-fold: 1) we avoid the need to perform computational

expensive sampling procedures in the input space; 2) The

resulting variance matrix again is a good diffusion kernel

for label propagation.

The intuition behind this projection lies in the fact that

simple fusion of label correlation in Eqn. (6) would result

in a degeneration at the first round when the learned label

information of unlabeled data is not accurate enough to in-

fer the similarities in the input space. Hence, inspired by

[26, 12], we need to re-emphasize the intrinsic structure be-

tween all the input data by the KNN matrix. From (13), we

can see that, the diffusion process propagates the similari-

ties through the KNN matrix. In this way, we can adjust the

fused kernel matrix to maintain part of the information of

the initial structure.

The direct reflection of this projection on diffusion space

is that , at each iteration, we construct the transition matrix

for next iteration to be:

Pt+1 = P(Pt + αYtY
T
t )PT + λtI. (12)

Thus, we have

Pt+1(i, j) =
∑

k∈KNN(i)

∑
l∈KNN(j)

P0(i, k)P0(j, l)(Pt(k, l)

+ α < Yt(k, :), Yt(l, :) >) + λtδij . (13)

where < x1,x2 > denotes the inner product of two vec-

tors x1 and x2, and δij = 1 if i = j, 0 otherwise. From

Eqn.(13), we see that only information between dominant

neighbours are propagated into the transition matrix of next

iteration. An important observation is that if data i and j
have common dominant neighbours in both similarity met-

rics, it is highly possible that they belong to the same class.

We summarize the details of dynamic label propagation

in Fig.(2).

1. Construct a probabilistic transition matrix P0 by (2).

2. Let Y0 = [Y l
0 ;0].

3. Calculate the KNN matrix P of P0,

4. Performing the following steps for a desired T steps:

4.a Yt+1 = Pt ∗ Yt,

4.b Y
(l)
t+1 = Y l

0 ,

4.c Pt+1 = P(Pt + αYtY
T
t )PT + λtI .

5. Output YT .

Figure 2. Algorithm of Dynamic Label Propagation (DLP).

4.3. Analysis

4.3.1 Convergence Analysis

It is difficult to give a formal theoretical proof of the conver-

gence of DLP. However, empirical experience shows DLP

converges much faster than LP (see Fig.(3) and Fig.(5)).

Usually, LP needs 1, 000 − 5, 000 iterations to converge,

while DLP only needs 10−50 iterations. This is because the

diffusion process projects the fused manifold into a KNN

structure where only local similarities are preserved. The

learned labels can improve the similarity between input in-

stances quickly.

A loose theoretical proof of convergence can be con-

structed based on the spectral analysis of the diffusion pro-

jection P . Since P is a KNN matrix of P0, it is easy to see

that the spectral radius of P is less than 1. We have

Yt ∝ Y (∞)+[(P)t(P0+αY0Y
T
0 )(PT )t]P0Y0+o(t) (14)

where o(t) is an infinitesimal as t approaches infinity, and

Y (∞) ∈ R
n×C is a constant label matrix. We observe

that since the spectral radius of P is less than 1, we have

limt→∞ Pt → 0. Hence, the final label is limt→∞ Yt =
Y (∞), although we do not have a closed form for Y (∞) at

present.

4.3.2 Time Complexity

Traditional Label Propagation algorithm has a complexity

of O(n2), however, since our DLP only diffuses the sim-

ilarities on KNN structures, DLP shares the same scale of

time complexity. For the step of kernel fusion, we only per-

form the addition of two matrices, so the time cost isO(n2).
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For the step of diffusion in Eqn.(12), we decompose it as in

Eqn.(13), from which we observe that only local neighbours

are used to propagate the similarities. An easy way to speed

up the diffusion process is, first we keep a record of the

KNN matrix and then every time we perform the diffusion

process, we extract the fixed local structure from the KNN

structure and only perform multiplication K times for each

pair of data points. Therefore we can update the transition

kernel in (12) in time Kn2+Kn. To summarize, the overall

time complexity of DLP is O(Kn2), where K � n.

4.3.3 Parameter Analysis

There are several parameters to tune in DLP. How to choose

the number of neighbors in the KNN matrix P remains an

open problem. A small K leads to insufficient structural

information in P; a large K value results in an increase in

the time complexity and loss in the sparsity in P . There

is a trade-off between accuracy and complexity. In all our

experiments, we choose K from {10, 20, 30, 40, 50} by 10-

fold cross-validation. Another two important parameters in

DLP are α and λ. α is the weight of label correlation, while

λ represents the importance of regularization. Fortunately,

DLP is not sensitive to these two parameters. So we fix

α = 0.05 and λ = 0.1 in all experiments (see an empirical

illustration in Fig.(6)).

4.4. A Toy Data

We first test our dynamic label propagation on a toy

data set. It consists of five circles (i.e., 5 classes) (see

Fig.(3)(A)). This is a challenging dataset since it contains

multiple classes and only one in each class is labeled. We

test the effect of the two steps in the dynamic label propaga-

tion. We construct the KNN matrix same in [27]. First, we

omit the first step that fuses the label correlation with the

kernel matrix. The other steps are all the same. The result

is shown in Fig.(3).(B). Second, we do the first step to fuse

label correlations but omit the second step of kernel diffu-

sion. The result is shown in Fig.(3).(C). Comparing these

two results, we see that, each step is important to the final

result of DLP. Without the label correlation, DLP fails to

capture the dependence between different classes; without

the kernel diffusion process, the DLP goes wild because the

label correlation in the beginning provides a poor guidance

for the kernel matrix. In addition, we show the classification

results of DLP and LP in Fig.(3)(D)(E). It is observed that

our method only needs a few iterations to converge while

LP gets a reasonable result after thousands of iterations.

5. Experiments
5.1. Semi-supervised Multi-class Learning

We compare our DLP with several popular semi-

supervised learning methods: 1) Label Propagation (LP) ; 2)

A variant of LP on KNN structure(LP+KNN) [23]; 3) Local

and Global Consistency (LGC) [35]; 5) Transductive SVM

(TSVM) 6) LapRLS [3]. Note that for LP and LGC, we use

one-vs-the-rest methods to deal with multi-class problems;

for TSVM and LapRLS, they have their own multi-class ex-

tensions.

5.1.1 Benchmarks

We test our method on the benchmarks in [6]. An extensive

review of the performance of existing algorithms are also

availabel in [6]. All the datasets have 12 splits each of

which has 100 labeled and 1,400 unlabeled instances. To

show the effect of fusing label correlation, we especially

set α = 0 in our method and denote this special method

as DLP0. The comparisons are shown in Tab.(1). We can

see that, our method is still capable of performing binary

classification but it is especially suitable for the multi-class

classification problem, such as in the dataset COIL. Another

important observation is that, although we set α = 0.05 for

DLP, it does not indicate that the label correlation is of little

importance. The only reason for small value of α lies in

difference of the numerical scale of label correlation and

transition probability. We don’t show the results of DLP0

in the subsequent experiments.

5.1.2 Digit Classification

Table 2. Comparison of error rate on the MNIST dataset.

labeled LGC TSVM LapRLS LP LP+KNN DLP

1% 3.96 4.87 2.92 8.57 4.27 2.01
5% 2.14 2.18 1.54 5.82 2.48 0.90

In this section, we test our method on the popular digit

dataset: MNIST1. It consists of 60,000 training and 10,000

test images of ten handwritten digits (0 to 9), with 28 × 28
pixels. In our first experiment, we randomly extract 1%
(600) training images, together with 10,000 test images.

Our second experiment consists of 5% (3000) training im-

ages, together with 10,000 test images. The average error

rates of test samples are reported in Tab(2).

Our method outperforms the existing semi-supervised

learning techniques on multi-class digit recognition. Note

that DLP achieves a significant improvement over the LP

algorithm. Also, as to TSVM and LapRLS, they have much

heavier computational burdens (O(n3)) than that of DLP.

5.1.3 Caltech 101

We also test our algorithm on the well-known Caltech-101

dataset [9] which consists of 101 classes and a collection

of background images. We selected 12 classes (including

animals, faces, buildings, etc.) from Caltech-101, which

1http://yann.lecun.com/exdb/mnist/
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Table 1. A quantitative comparison of error rate on the benchmark datasets.

Methods/Dataset digit1 USPS BCI g241c COIL gc241n text

LGC 4.80 8.39 34.21 28.54 10.72 27.78 23.90

TSVM 6.15 9.77 33.25 18.46 25.80 22.42 24.52

LapRLS 1.81 4.31 27.89 23.45 11.92 24.77 23.32

LP 4.15 7.35 46.22 30.05 11.03 28.11 25.71

LP+KNN 4.01 7.46 40.35 29.49 10.71 27.46 24.07

DLP0 3.65 6.53 35.87 25.53 6.314 25.21 23.78

DLP 1.64 3.00 33.48 21.86 3.57 21.82 22.84
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Figure 3. (A) is the toy data with only one labeled data (the colored dots) for each class. (B) is the classification result without using label correlations. (C)

is the classification result without using diffusion process. (D) is the result of DLP with only 20 iterations. (E) is the result of LP with 5000 iterations.

Table 3. A quantitative comparison of error rate on the Caltech 101 dataset.

Experiments/Methods LGC TSVM LapRLS LP LP+KNN DLP

siftLLC+5% labeled 13.48% 9.82% 7.39% 22.91% 14.22% 2.04%
siftSPM+5% labeled 10.24% 8.79% 7.33% 16.36% 12.38% 1.74%
siftLLC+10% labeled 9.47% 7.50% 5.35% 16.33% 8.96% 0.60%
siftSPM+10% labeled 7.43% 5.42% 4.20% 10.46% 7.38% 0.48%

contains totally 2,788 images. These classes are chosen due

to the relatively large number of availabel images within the

category. The number of images per category varies from

41 to 800, most of which are medium resolution, i.e. about

300× 200 pixels. Fig.4 shows some samples of the subset.

Figure 4. Sample images chosen from Caltech 101.

We use two kinds of variants of SIFT feature: SIFT with

locality-constrained linear coding (siftLLC) [28] and SIFT

with Spatial Pyramid Matching (siftSPM) [16]. The SIFT

features are both extracted from 16 × 16 pixel patches on

a grid with step size of 8 pixels. The codebooks are ob-

tained by standard K-means clustering with the codebook

size 2, 048. The distance between two images is obtained

by the χ2 distance between two feature vectors. Two experi-

ments are conducted: 1)Only 5% of the samples are labeled,

and the remaining samples are tested. 2) 10% samples are

labeled, and the rest are tested. We reported the results of

error rate in Tab(3).
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Figure 5. (A)Error rate versus the iteration numbers for DLP.

(B)Error rate versus the iteration numbers for LP.

We also show the dynamics of label propagation and the

proposed methods. We report the error rate of each itera-

tion of DLP and LP (see Fig.(5)). We can see that, as itera-

tions go on, DLP decreases the error rate while on the other

hand, LP worsens. This is obviously a big disadvantage of

LP for multi-class classification. The 1 − of − C coding

sometimes makes the LP unable to discriminate the multi-

ple class labels. However, our method does not suffer from

this problem because DLP iteratively update the transition

matrix based on local similarity and label information. In
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Figure 6. (A)Error rate versus the parameter α for DLP. (B)Error

rate versus the parameter λ for DLP.

addition, sensitivity test of the two parameters α and λ are

conducted. For the sensitivity of α, we fix λ = 0.1 and vary

α in the range of [0.01, 0.1]. For λ, we fix α = 0.05 and

vary λ in the range of [0.01, 1]. The errors of recognition

are reported in Fig.(6). We can see that, our proposed DLP

is insensitive to α and λ.

5.2. Semi-supervised Multi-label Classification

In this section, we test our method on the task of semi-

supervised multi-label classification. We use the data from

[7]: a subset of RCV 1 − v2 text data which includes

the information of topics, regions and industries for each

document. We first randomly pick 3000 documents, then

choose words with more than 5 occurrences and topics

with more than 40 positive assignments. We compare our

methods with five existing baseline algorithms in semi-

supervised multi-label classification. The first one is a Semi-
supervised Multi-label learning method by solving Sylvester
Equation (SMSE) [7]. Here we use the first version men-

tioned in [7] which needs only one parameter to tune. The

second one is based on Constrained Non-negative Matrix
Factorization (CNMF) [17], which assumes that two in-

stances tend to have large overlap in their assigned labels

if they share high similarity in their input patterns. The

third one is Multi-label Informed Latent Semantic Indexing
(MISL) [33], which maps the input features into a new fea-

ture space which captures the structure of both input data

and label dependency, and then uses SVM on the projected

space. The fourth one is the a recent method TRAM, i.e.,

a transductive multi-label classification algorithm via label

set propagation [14], which estimates the label sets of the

unlabeled instances by utilizing the information from both

unlabeled instances and unlabeled data. The last one is Sup-
port Vector Machine (SVM), in which a linear SVM clas-

sifier is built for each category independently. We evaluate

the performance using a common evaluation metric like in

[13]: F1 Micro which can be seen as the weighted average

of F1 scores over all the categories.

Fig.(7) shows the performance measured by F1 Micro of

six algorithms: DLP, SMSE, CNMF, MLSI, TRAM, SVM

at different ranks when the number of training data is 500 or

2000. Note that a 10-fold experiment using the same train-

ing/test split of the data set is performed and all the param-

eters used in the five algorithms are tuned by grid search.

We can see that our dynamic label propagation can properly

capture the inner structure of label correlation and improve

the classification accuracy. When the number of predicted

labels for each instance increases, our method can still pro-

vide good performance.
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Figure 7. F1 Micro when the number of training samples is 500 or

2000. Higher values indicate better performance.

6. Conclusion
In this paper, we have proposed a novel classification

method named dynamic label propagation (DLP), which

improves the discriminative power in multi-class/multi-

label problems in the framework of semi-supervised learn-

ing. Our method explores the effect of labeled informa-

tion and local structure in improving the transition matrix in

semi-supervised learning. The significant performance im-

provement on toy data and some popular natural object im-

ages has demonstrated the effectiveness of DLP for multi-

class/ multi-label classification. Our future work will fo-

cus on providing deeper theoretical understanding of the

approach.
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