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Abstract

In this paper we tackle the problem of facial action unit
(AU) recognition by exploiting the complex semantic rela-
tionships among AUs, which carry crucial top-down infor-
mation yet have not been thoroughly exploited. Towards
this goal, we build a hierarchical model that combines the
bottom-level image features and the top-level AU relation-
ships to jointly recognize AUs in a principled manner. The
proposed model has two major advantages over existing
methods. 1) Unlike methods that can only capture local
pair-wise AU dependencies, our model is developed upon
the restricted Boltzmann machine and therefore can exploit
the global relationships among AUs. 2) Although AU re-
lationships are influenced by many related factors such as
facial expressions, these factors are generally ignored by
the current methods. Our model, however, can successfully
capture them to more accurately characterize the AU rela-
tionships. Efficient learning and inference algorithms of the
proposed model are also developed. Experimental results
on benchmark databases demonstrate the effectiveness of
the proposed approach in modelling complex AU relation-
ships as well as its superior AU recognition performance
over existing approaches.

1. Introduction

The facial action units (AUs), as defined in the Facial

Action Coding System (FACS) [4], refer to the local facial

muscle actions. The AUs occur in different combinations

and can lead to a huge variety of complex facial behav-

iors. Automatic analysis of these facial action units is of

great importance in a wide range of fields such as behav-

ioral understanding, video conference, affective computing,

human-machine interface and so on.

Facial action units have been mainly treated as unrelated

entities and recognized individually, based on either shape
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Figure 1: Examples showing: 1) some AU combination patterns

are frequently observed. Each bar shows the intensity of pres-

ence for the corresponding action unit. Five AUs are illustrated

in the images. 2) AU relationships depend on facial expressions.

Consider “raise brow” and “stretch mouth”. They tend to be both

absent during happiness, both present during surprise, and either

present during anger or fear.

or appearance features. However, AUs are NOT indepen-

dent from one another. On the one hand, facial action units

generally do not occur alone and some combinations of ac-

tion units are frequently observed. As illustrated in Figure

1, when you smile, you “raise cheek” and “pull lip corners”.

When you are surprised, you “stretch mouth”, “raise brow”

and “raise eye lid”. These AUs tend to occur simultane-

ously to express different human emotions. On the other

hand, some AUs must or must not be present at the same

time due to the limitations of facial anatomy. For instance,

“stretch mouth” prevents “raise cheek”. Meanwhile, it is

difficult to “wrinkle nose” without “raise cheek”. While the

presence or absence of each action unit can be inferred from

the low-level facial shape and appearance changes, it is also

significantly influenced by the states of the related action

units. Therefore, an automatic facial action unit recognition

system should not only rely on the low-level features, but

also take advantage of the high-level semantic relationships

among all the action units.

Despite the importance, AU relationships are difficult to
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capture and have not been fully exploited by the existing

works. First, current models such as the Bayesian networks

(BN) [20] are based on the first-order Markov assumption

and therefore can only capture local, i.e. pairwise relation-

ships between action units. Moreover, finding the optimal

structure of a large AU network is difficult. An advanced

AU recognition algorithm should efficiently and effectively

capture not only local but also global dependencies among

AUs. Second, the relationships among action units are in-

fluenced by many factors, including the expression, identity,

age and gender of the subject. For instance the dependence

between “stretch mouth” and “raise brow” is significantly

affected by the human expression. As shown in Figure 1,

these two action units are likely to be both absent during

happiness, both present during surprise, and mutually ex-

clusive during anger or fear. Current works ignore these

factors, which could lead to incorrect estimation of the AU

relationships.

Unlike a regular BN, the restricted Boltzmann machine

(RBM) and its variants can model higher-order dependen-

cies among random variables by introducing a layer of la-

tent units. RBMs have been widely used for modeling com-

plex joint distributions over structured variables such as im-

age pixels [6]. This motivates us to propose a hierarchi-

cal model to simultaneously address all the above issues.

Unlike [20], we introduce RBM to model the action units,

thereby capturing not only local but also global AU depen-

dencies. To the best of our knowledge, this is the first time

RBM is used to model the action units. Furthermore, a

3-way RBM [14] is applied to incorporate the related fac-

tors that can affect AU relationships. Finally, the proposed

model combines bottom-level image measurements with the

top-level prior AU semantics in a principled manner, and we

propose efficient algorithms for its learning and inference.

The remainder of this paper is organized as follows. Sec-

tion 2 presents an overview of the related works. We briefly

review the restricted Boltzmann machine in Section 3 and

then introduce our algorithm in detail in Section 4. Experi-

ments and discussions will be illustrated in Section 6. The

paper is concluded in Section 7.

2. Related Works
A number of approaches have been proposed for facial

action unit recognition and they generally involve two steps:

bottom-level facial feature extraction and top-level AU clas-

sifier design.

Facial features: The facial features for AU recognition

can be grouped into appearance features and geometric fea-

tures. The appearance features capture the local or global

appearance changes of the facial components. Widely used

features in this category include the Haar feature [25], local

binary patterns (LBP) [7], Gabor wavelets [2], the canoni-

cal appearance feature [11] and others. Geometric features

represent the changes in the direction or magnitude of the

skin surface and salient facial points caused by facial mus-

cular activities. These geometric changes can be measured

via dense optical flows [10] or the displacement of facial

feature points [23, 11], etc.

AU classifiers. With the features, action units can be

classified using two types of approaches. The first type of

approaches treats action units as unrelated entities. The ac-

tion units are recognized independently and statically us-

ing different classification models such as Neural Network

[10, 19], Support Vector Machine [11, 1], AdaBoost, sparse

representation based model [12], rule based model [15], etc.

The common weakness of these methods is that they ignore

the semantic relationships among the action units and there-

fore may generate inconsistent AU predictions. The second

type of methods overcomes these limitations by modeling

AU dependencies. Pantic et al. [16] propose to capture the

AU relationships with a set of explicit rules and the AUs

are recognized using a fast direct chaining inference pro-

cedure. Furthermore, temporal rules are also introduced in

[15]. However, only a small number of rules are defined

and the uncertainties of the rules are not well handled. Sta-

tistical methods are also proposed. Tong et al. [20] apply

the Bayesian network (BN) to model the semantic relation-

ships among the AUs. The dependencies among the AUs

are discovered by learning the structure and the conditional

probabilities of an AU network. Dynamic Bayesian net-

work (DBN) is also proposed to further capture the tempo-

ral relationships among AUs in [21]. Nevertheless, due to

the Markov assumption, both BN and DBN are limited to

capture the local relationships between pairs of AUs such

as co-occurrence, co-absence and mutual exclusion. Mo-

rover, it is difficult to obtain the optimal structure especially

when working with a large number of AUs. Another issue

of BN based models is that they fail to capture expression

dependent AU dependencies. By drawing upon recent suc-

cessful applications of the restricted Boltzmann machine,

our model is able to capture not only local but also global

AU dependencies. Furthermore we can also incorporate re-

lated factors to improve the understanding of the relation-

ships among action units.

Another related work worth mentioning is proposed in

[18], where a deep belief network is used to model the facial

expressions and the latent units are used to capture higher

level image representations. However, our model is essen-

tially different from theirs since we use the latent units to

model the dependencies among the action units.

3. Restricted Boltzmann Machine
The proposed algorithm is inspired by the nice property

of RBM that it is able to model high-order dependencies.

Before introducing the proposed algorithm, we briefly re-

view RBM and its learning method.
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RBM is composed of a layer of visible variables v ∈
{0, 1}n and a layer of hidden variables h ∈ {0, 1}m. A

graphical depiction of RBM is shown in Figure 2, where

each latent node is connected to each visible node. RBM

is essentially an undirected graphical model, of which the

total energy is defined in Equation 1. θ = {W,b, c} are

the parameters. Wij measures the compatibility between

visible node vi and latent node hj . {bi} and {cj} are the

biases of the visible and latent units respectively.
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Figure 2: Restricted Boltzmann Machine

E(v,h; θ) = −
∑

i

∑

j

viWijhj −
∑

i

bivi −
∑

j

cjhj (1)

Different from a Bayesian network which factorizes the

joint distribution into the product of local probabilities, the

distribution of the visible units of RBM is calculated by

marginalizing over all the hidden units with Equation 2,

where Z(θ) is the partition function. This allows to capture

global dependencies among the visible variables instead of

local relationships.

P (v; θ) =

∑
h exp(−E(v,h|θ))

Z(θ)
(2)

Given the training data {vi}Ni=1, the parameters are

learned by maximizing the log likelihood with Equation 3.

θ∗ = argmax
θ
L(θ); L(θ) = 1

N

N∑

i=1

logP (vi; θ) (3)

The gradient with respect to θ can calculated with Equa-

tion 4, where 〈·〉p represents the expectation over distribu-

tion p.

∂L(θ)
∂θ

= 〈∂E
∂θ
〉p(h|v,θ) − 〈∂E

∂θ
〉p(h,v|θ) (4)

Calculating the gradient involves inferring P (h,v)
which is intractable. However it can be efficiently estimated

with the contrastive divergence algorithm (CD) [5], and the

basic idea to approximate P (h,v) with a one step Gibbs

sampling from the data.

4. A Hierarchical Model for AU Recognition
RBM provides us with an effective tool to model high-

order dependencies among the visible inputs. In this sec-

tion we introduce our proposed algorithm. We first present

our hierarchical model for AU recognition and then discuss

each part of the model in detail.

Figure 3 shows the structure of the proposed model,

which consists of three layers. The middle layer contains

the binary visible units {a1, · · · , an}, representing the state

of AU1 to AUn. A layer of binary latent units {h1, · · · , hm}
are imposed upon the action units. Like an RBM, each la-

tent unit is connected to all the AU nodes and therefore

is used to model their global relationships. The variables

{x1, · · · , xd} in the bottom layer stand for the image fea-

tures. They are attached to each AU variable, providing

low-level evidences.
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Figure 3: Proposed hierarchical model for joint facial action units

recognition. Left: graphical depiction of the model. Right: the

captured AU combination patterns of two latent units implied by

their parameters.

The total energy of the model is defined in Equation

5, where {bi} and {cj} are the biases for the AU nodes

and latent nodes respectively. The first set of parameters

{W 1
ij} measures the compatibility between each pair of la-

tent and visible units (ai, hj), and the second set of param-

eters {W 2
it} measures the compatibility between each pair

of feature xt and the ith AU label ai.

E(x,a,h; θ) = −
∑

i

∑

j

aiW
1
ijhj −

∑

j

cjhj

−
∑

i

biai −
∑

i

∑

t

W 2
itaixt (5)

The proposed model can be decomposed into two parts

with the first part consisting of the top two layers and the

second part consisting the bottom two layers. In the follow-

ing we discuss each part in detail.

Top down – capturing global relations among AUs.

Unlike a regular BN, RBM is able to capture higher-order

dependencies among the visible variables by connecting all

the visible units through the latent units. Instantiating the

visible units with the AU labels, we are able to capture

the global relationships among the facial action units. Fol-

lowing this path, the top two layers of the proposed model

assumes an RBM-like structure, with each latent unit con-

necting to all the action units to model their dependencies.
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These two layers constitute the top part of the model and

encode the high-level semantic relationships among AUs,

enabling us to infer the presence or absence of each AU in

the top-down direction.

The captured AU relationships can be implicitly inferred

from the model parameters {Wij} (bias terms are omitted

without loss of generality). To gain some insight as to how

they are related, consider the mth latent unit hm. Its com-

patibility with each action unit is measured by the pairwise

energy E(hm, ai) = −Wimaihm, i = 1, · · · , n. We can

see that larger Wim would lead to lower energy (thus higher

probability). Therefore the larger Wim is, the more likely

ai will be present. Conversely, the smaller Wim is, the more

likely ai will be absent. As a whole, vector [Wim]ni=1 cap-

tures a specific presence and absence pattern of all the ac-

tion units. Figure 3 graphically depicts the corresponding

parameter vectors [Wim]ni=1 ( [Wi2]
n
i=1) for hm (h2). In

this case, hm captures the pattern where a1 is very likely

to occur, {a2, a3, an} tends to occur yet are less likely than

a1, and {a4, a5} are very likely to be absent.

Bottom up – AU recognition from image features. The

bottom two layers integrate the image shape or appearance

features for AU recognition in the bottom-up direction. The

features are attached to each AU node, and the relation be-

tween the features and the corresponding AU label is de-

fined with the energy E(ai,x) = −∑
t W

2
itaixt. If we re-

move the top layer, the second part is essentially equivalent

to a set of linear AU classification models.

As a whole, the proposed model captures the information

from both the top-down and bottom-up directions. Impor-

tantly, the captured relationships among the action units are

global.

4.1. Model Learning

Learning of the proposed model amounts to parameter

estimation. With the training data {(xi,ai)}Ni=1, parame-

ters are learned in a discriminative manner by maximizing

the log conditional likelihood as shown in Equation 6. It is

maximized with the stochastic gradient descent method in

which the gradient can be calculated with Equation 7.

θ∗ = argmax
θ
L(θ);L(θ) = 1

N

N∑

i=1

logP (ai|xi; θ) (6)

∂L(θ)
∂θ

= 〈∂E
∂θ
〉p(h|a,x,θ) − 〈∂E

∂θ
〉p(h,v|x,θ) (7)

Calculating the gradient involves inferring P (h|a,x, θ)
and P (h,a|x, θ). P (h|a,x, θ) can be analytically calcu-

lated with Equation 8, where σ(x) = 1/(1+e−z) is the sig-

moid function. p(h,a|x, θ) is also intractable to compute.

Therefore we extend the CD algorithm to learn the pro-

posed model. The basic idea is to approximate p(h,a|x, θ)
by sampling h with Equation 8 and then sampling a with

Equation 9. The detailed algorithm for learning the param-

eter W1 is shown in Algorithm 1. Other parameters can be

Algorithm 1 Revised contrastive divergence algorithm for

learning the proposed model

1: Input: Training data {ai ∈ R
1×n,xi ∈ R

1×d}Ni=1

2: Output: Model parameters W1 ∈ R
n×m

3: repeat
4: Randomly pick a training instance (a,x)
5: Sample h+ ∼ P (h|a,x) with Equation 8

6: Calculate the positive gradient D+ = aTh+

7: Sample a− ∼ P (a|h+,x) with Equation 9

8: Sample h− ∼ P (h|a−,x) with Equation 8

9: Calculate the negative gradient D− = a−Th−

10: Update W1 = W1 + η(D+ −D−)
11: until Convergence

estimated in the similar manner.

P (hj |a,x) = P (hj |a) = σ(−cj −
∑

i

W 1
ijai) (8)

P (ai|h,x) = σ(−bi −
∑

j

W 1
ijhj −

∑

t

W 2
itxt) (9)

Note that in this case the proposed model has the same

formulation as a hidden conditional random field (HCRF),

yet has a different structure from a regular HCRF. A regular

HCRF impose an layer of latent units between the input and

output to better model the intermediate feature structures. In

our model however, the latent units are imposed in the top

layer to capture the global relationships among the action

units.

4.2. Inference

Given the query sample x during testing, we classify

each action unit ai by maximizing its posterior probability

given x with Equation 10.

a∗i = argmax
ai

P (ai|x) (10)

Computing P (ai|x) requires marginalizing over all the

latent variables {hj}mj=1 and other action units {as}s�=i

which could be intractable. However it can be effi-

ciently performed with the Gibbs sampling method by it-

eratively sampling h from P (h|a,x) and sampling a from

P (a|h,x). Sampled instances of each ai are used to calcu-

late the corresponding marginal probability. Detailed steps

are presented in Algorithm 2.

5. Incorporating Related Factors
The relationships among the action units depending on

factors such as the expression, age and gender of the sub-

ject. These factors are usually widely available during train-

ing but not available during testing. Hence they are also

known as privileged information [24]. In this section we
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Algorithm 2 Inference of P (a|x) with Gibbs Sampling

1: Input: Test sample x; Parameters W1, W2, b, c
2: Output: P (ai|x) for i = 1, · · · , n
3: for chain = 1→ C do
4: Randomly initialize a0

5: for t = 0→ N do
6: Sample ht ∼ P (h|at,x) with Equation 8

7: Sample at+1 ∼ P (a|ht,x) with Equation 9

8: end for
9: end for

10: for i = 1→ n do
11: Collect the last K samples of ai from each chain

12: Calculate P (ai|x) based on the collected samples

13: end for

demonstrate how we incorporate these factors during train-

ing to facilitate the estimation of the AU dependencies.

Here we focus on the facial expressions, but the same ap-

proach is readily applicable to capture other related factors.

Denote the facial expression with a discrete variable l =
[l1, · · · , lK ] , with lk = 1 representing the presence of the

kth expression. Inspired by the 3-way restricted Boltzmann

machine [14], the basic idea is to modulate the connection

between each pair of action unit and latent unit (ai, hj) with

the expression variable l, as shown in Figure 4a. Each clique

in this case contains three variables (ai, hj , lk), and their

energy is defined as E(ai, hj , lk) = −W 1
ijkaihj lk. We

can see that the expression variable multiplicatively inter-

acts with both the action unit variable and the latent vari-

able to determine the energy of the model, and the parame-

ters {W 1
ijk} now form a 3D tensor instead of a matrix in the

previous case. The graphical depiction of a more complex

example is shown in Figure 4b, which contains two latent

units, two action units and two expressions.

Since the image features also provide evidence about the

expression, we also connect the feature variable x with the

expression variable l. The shorthand depiction of our pro-

posed model to capture related factors is shown in Figure

4c. In the top level, the expression is incorporated to mod-

ulate our estimation of the AU relationships. In the bottom

level, the image features provide information about both the

type of expression and the AUs.

The total energy of the model is defined in Equation 11,

with an additional term−∑
k

∑
t W

3
ktlkxt modeling the re-

lationship between x and l, and −∑
k dklk modeling the

bias of the expression node. Parameters are learned by max-

imizing the log conditional likelihood of both a and l with

Equation 12.

Similarly, the CD algorithm can be extended to learn this

model by iteratively sampling h̃ from P (h|a, l,x) and sam-

pling (ã, l̃) from P (a, l|h,x). We follow the same pro-

cedure proposed in [14] to estimate the parameters. The
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Figure 4: (a) Every clique in the proposed model contains a la-

tent unit, an action unit and an expression unit. lk multiplicatively

modulate the connection between hj and ai. (b) An example with

two action units, two latent units and two expressions. (c) Short-

hand notation of the proposed model.

only revision we make is that during each step, we com-

pute P (h|a, l,x) and P (a, l|h,x), instead of P (h|a, l) and

P (a, l|h).
E(x,a,l,h; θ) = −

∑

i

∑

j

∑

k

W 1
ijkaihj lk

−
∑

i

∑

t

W 2
itaixi −

∑

k

∑

t

W 3
ktlkxt

−
∑

j

cjhj −
∑

i

biai −
∑

k

dklk (11)

θ∗ = argmax
θ

N∑

i=1

logP (ai, li|xi, θ) (12)

Given a query sample x during testing, each action unit

ai is also classified by maximizing its marginal posterior

probability: a∗i = argmaxai
P (ai|x), which can still be

efficiently calculated with the Gibbs sampling method.

6. Experiments

The goal of our experiments is to evaluate whether our

proposed models can improve AU recognition over existing

approaches by incorporating global AU semantics and re-

lated factors. For easy notation, we denote the proposed

model described in Section 4 as HRBM, and the model

described in Section 5 which incorporates expression in-

formation as HRBM+. We mainly compare our mod-

els with the baseline proposed by Tong et al. [20], which

uses a Bayesian network to capture the AU relationships

(BN). Since they only reported results on the Cohn-Kanade

database (CK), results of BN on other data sets in our ex-
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periments are reproduced with their provided code. We also

compare with other related works. For efficiency, the raw

features are first fed into a set of Support Vector Machines

(SVM), each of which is trained independently to recognize

one action unit. The output scores of these SVMs are then

used as the input feature for other models. To make a thor-

ough comparison, we test their performances on both posed

and non-posed facial behavior databases.

6.1. Implementation Details

For the proposed models HRBM and HRBM+, parame-

ters were randomly initialized in training. During our exper-

iment we found that the recognition performance was not

sensitive to the number of latent units. We chose 40 latent

units in all our experiments. To infer the AU labels with

Gibbs sampling, we used 5 Gibbs chains with each chain

containing 10,000 steps. It took less than 0.2 seconds to in-

fer all the AU labels for one instance on 2 cores of an Intel

Core2 CPU E8400 @ 3.0GHz with 4 GB of memory.

6.2. Performance for Posed Facial Actions

First we evaluate the proposed models against the base-

lines on the extended Cohn-Kanade database (CK+) [11, 8],

which contains 593 posed facial activity videos from 210

adults. Among all the participants, 9% are female, 81% are

Euro-American, 13% are Afro-American and 6% are from

other groups. All the peak frames are fully FACS coded.

Seven expressions are labeled for 327 videos and they are

happy, anger, surprise, fear, contempt, sad and disgust. All

the rest sequences are treated as the eighth unknown expres-

sion in our experiment.

Following the procedure in [11], we extract both the ap-

pearance and shape features to recognize AUs of the peak

frames in this database. Let {(xi, yi)}ci=1 and {(x0
i , y

0
i )}ci=1

denote the facial feature points for a peak frame I and the

corresponding neutral frame I0, respectively. The shape

feature for I is defined as [x1−x0
1, y1−y01 , · · · , xc−x0

c , yc−
y0c ]. To extract the appearance feature, we first compute the

mean shape of all the images and then align both image I
and neutral image I0 into the based shape through a patch-

based piece-wise affine warping procedure [3]. We apply

principal component analysis to their difference and select

the components that remain at least 90% of the information.

The coefficients of these principal components are used as

the appearance feature.

The experiments are based on the leave-one-subject-out

configuration. We use F1-score to evaluate the performance

of all models since it is a relatively fair measure for unbal-

anced data. The detailed results of different models for each

action unit are illustrated in the left bar graph of Figure 5,

and the average scores are shown in Table 1.

First, we can see that all the three models that cap-

ture AU relationships improve the performance of the base-

Table 1: F1-score of different models on CK+

Method SVM BN HRBM HRBM+

Average F1-score 74.70% 76.70% 79.21% 82.44%

line SVM for almost all the action units in different de-

grees. In particular, significant improvements are achieved

for AUs that are difficult to recognize by individual clas-

sifiers (e.g. AU11, AU15, AU26). This demonstrates that

the top-down information of AU relationships are especially

useful when an AU is difficult to recognize from the mea-

surements in the bottom-up direction. Second, by modeling

higher-order AU interactions, HRBM further improves the

performance of the BN-based method. Similarly, HRBM

significantly outperforms BN for poorly recognized AUs.

For instance, HRBM improves the F1-score of BN from

36.51% to 49.09% for AU11, and 68.37% to 76.38% for

AU15. Overall HRBM outperforms BN by about 2.5%. Fi-

nally, by properly incorporating the expression information

only during training, HRBM+ further improves the recogni-

tion performance of HRBM by more than 3%. In total, the

proposed algorithm improves the baseline SVM by about

7.5% and improves the performance of BN by about 6%.

6.3. Performance for Non-Posed Facial Actions

To evaluate the generalization performance to real-world

conditions, the next experiment is performed by applying

the models trained on CK+ to the SEMAINE database [13].

Unlike CK+, the expressions of users in SEMAINE are nat-

urally induced by operators during the conversation. There-

fore the dataset contains speech related mouth and face

movements, and significant amounts of both in- and out-

of-plane head rotations. All these make the recognition task

much more challenging. So far a total of 180 frames from

8 sessions of SEMAINE are FACS coded with experts, and

in this experiment we recognize 10 AUs that are present for

at least 15 times.

Following the work in [7], we use the Local Binary Pat-

tern (LBP) feature in this part of experiment. The LBP fea-

ture is extracted in the same manner as [7]. The average

F1-scores of different models are shown in Table 2, and the

F1-scores for each individual AU are given in the right bar

graph in Figure 5.

Table 2: F1-score of different models on SEMAINE

Method SVM BN HRBM HRBM+

Average F1-score 47.70% 51.09% 54.76% 56.14%

Similarly, while all the other three models improve the

performance of the baseline SVM for all action units, the

improvement achieved by HRBM is more than that of

BN. In addition, by capturing the expression information

HRBM+ further increases the average F1-score of HRBM

by about 2%. In total, the proposed method outperforms
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Figure 5: Comparison of different models for each action unit in terms of F1-score. Left: results on CK+. Right: results on SEMAINE.

the baseline by about 8.5%. This demonstrates that the

proposed algorithm can also more effectively benefit AU

recognition than the BN-based method in real-world envi-

ronments.

6.4. Comparison with Related Works

The proposed model outperforms BN for recognizing ac-

tion units in both posed and non-posed facial behaviors. To

gain some rough idea about the performance of our pro-

posed model, we compare our method with some earlier

works as listed in Table 3. On each dataset we use the same

features, the same experimental configuration and the same

evaluation criteria as the related works.

Several models were also used to capture AU relation-

ships on CK dataset, including the Bayesian network (BN)

and the dynamic Bayesian network (DBN). BN used in [20]

captures the static relationships among AUs. DBN used in

[21] further incorporates the temporal information of AUs.

For comparison we reproduced the same features that were

used by BN or DBN following [20] and applied HRBM

Table 3: Comparison with Related Works

Author Method F1 AUC KSS

CK: image sequences

Tong et al. [20] BN - - 78.08%

Tong et al. [21] DBN - - 79.71%

This work HRBM 79.50% - 79.83%

CK+: peak frames

Lucey et al. [11] SVM - 94.5 -

This work HRBM+ 82.44% 96.7 -

SEMAINE: image frames

Jiang et al. [7] SVM 60.83% - -

This work HRBM+ 60.79% - -

CK+: peak frames

Lucey et al. [11] SVM - 94.5 -

This work HRBM+ 82.44% 96.7 -

FERA: image frames

Li et al. [9] DBN 50.88% - -

This work HRBM 52.35% - -

F1 = F1-score, AUC = area under the ROC curve, KSS = Hanssen

-Kuiper Skill Score (true positive rate - false positive rate)

for AU recognition. Since the expression is ambiguous be-

tween the neutral and peak frame, we did not implement

HRBM+. From the results we can see that HRBM outper-

forms the performance of BN in [20]. Note that even with-

out incorporating the dynamic information, our model can

achieve slightly better performance than DBN.

So far no works have been done to capture AU relation-

ships on CK+ or SEMAINE. Instead we compare our model

with some individual AU classifiers. On CK+, Lucey et al.
[11] used SVM to perform AU recognition and achieved an

average (AUC) area under the ROC curve of 94.5. In com-

parison, HRBM+ can achieve an AUC of 96.7. Using cross

validation within the SEMAINE dataset, Jiang et al. [7] rec-

ognized the upper face AUs with the LBP features and re-

ported an average F1-score of 60.83%. Although HRBM+

is trained on CK+ and tested on SEMAINE, it can achieve

a comparable F1-score of 60.79% for the same upper face

AUs. Finally, the proposed algorithm is also implemented

on FERA [22], where we achieve a 2% improvement com-

pared to a DBN model used by Li et al. [9]. All the above

results demonstrate the competitive and promising perfor-

mance of our proposed model on different datasets and dif-

ferent conditions, compared to other approaches.

6.5. Semantic Relationship Analysis

In addition to evaluating the AU recognition perfor-

mance of the proposed model, we proceed to showing the

captured semantic AU relationships. As discussed in Sec-

tion 4, each latent unit captures a specific AU presence or

absence pattern that is implied by the parameters {Wij}.
Large W indicates high probability of occurrence and small

W indicates high probability of absence. Parameters corre-

sponding to two latent units of HRBM learned on the CK+

dataset are graphically illustrated in Figure 6. Unlike BN

which can only encode pairwise AU dependencies, the pro-

posed model captures higher-order presence or absence pat-

terns that involve all the action units. For example in Figure

6, the first latent unit encodes the pattern that a person is

likely to “lower brow”, “wrinkle nose”, “pull lip corner”

and “drop jaw”, but is unlikely to “depress lip corner” and

“raise chin”.
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Figure 6: Two semantic AU relationship patterns captured by two

latent units of HRBM. X-axis – AU index. Y-axis – value of pa-

rameter W . Large W indicates high probability of occurrence.

Small W indicates high probability of absence.

7. Conclusion

In this paper we have proposed a hierarchical model

which systematically integrates the low-level image mea-

surements with the high-level AU semantical relationships

for AU recognition. While existing methods can only cap-

ture local pairwise AU dependencies, the proposed model

is built upon the restricted Boltzmann machine, and lends

itself to capture higher-order AU interactions. The model is

further developed to capture related factors such as the fa-

cial expressions to achieve better characterization of the AU

relationships. Experimental results on both posed and non-

posed facial action datasets demonstrated the power of the

proposed model in capturing AU relationships as well as its

advantage over existing methodologies for AU recognition.

Moreover, the proposed methods are readily applicable to

other applications that involve multiple related outputs.
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