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Abstract

Recently dense trajectories were shown to be an efficient
video representation for action recognition and achieved
state-of-the-art results on a variety of datasets. This pa-
per improves their performance by taking into account cam-
era motion to correct them. To estimate camera motion, we
match feature points between frames using SURF descrip-
tors and dense optical flow, which are shown to be com-
plementary. These matches are, then, used to robustly es-
timate a homography with RANSAC. Human motion is in
general different from camera motion and generates incon-
sistent matches. To improve the estimation, a human de-
tector is employed to remove these matches. Given the es-
timated camera motion, we remove trajectories consistent
with it. We also use this estimation to cancel out camera
motion from the optical flow. This significantly improves
motion-based descriptors, such as HOF and MBH. Experi-
mental results on four challenging action datasets (i.e., Hol-
lywood2, HMDB51, Olympic Sports and UCF50) signifi-
cantly outperform the current state of the art.

1. Introduction
Action recognition has been an active research area for

over three decades. Recent research focuses on realistic

datasets collected from movies [20, 22], web videos [21,

31], TV shows [28], etc. These datasets impose significant

challenges on action recognition, e.g., background clutter,

fast irregular motion, occlusion, viewpoint changes. Local

space-time features [7, 19] were shown to be successful on

these datasets, since they avoid non-trivial pre-processing

steps, such as tracking or segmentation. A bag-of-features

representation of these local features can be directly used

for action classification and achieves state-of-the-art perfor-

mance (see [1] for a recent survey).

Many classical image features have been generalized

to videos, e.g., 3D-SIFT [33], extended SURF [41],

HOG3D [16], and local trinary patterns [43]. Among the

local space-time features, dense trajectories [40] have been

shown to perform best on a variety of datasets. The main

Figure 1. First row: images of two consecutive frames overlaid;

second row: optical flow [8] between the two frames; third row:

optical flow after removing camera motion; last row: trajectories

removed due to camera motion in white.

idea is to densely sample feature points in each frame, and

track them in the video based on optical flow. Multiple

descriptors are computed along the trajectories of feature

points to capture shape, appearance and motion informa-

tion. Interestingly, motion boundary histograms (MBH) [6]

give the best results due to their robustness to camera mo-

tion.

MBH is based on derivatives of optical flow, which is a

simple and efficient way to suppress camera motion. How-

ever, we argue that we can still benefit from explicit camera

motion estimation. Camera motion generates many irrele-
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Figure 2. Visualization of inlier matches of the robustly esti-

mated homography. Green arrows correspond to SURF descriptor

matches, and red ones to dense optical flow.

vant trajectories in the background in realistic videos. We

can prune them and only keep trajectories from humans or

objects of interest, if we know the camera motion (see Fig-

ure 1). Furthermore, given the camera motion, we can cor-

rect the optical flow, so that the motion vectors of human ac-

tors are independent of camera motion. This improves the

performance of motion descriptors based on optical flow,

i.e., HOF (histograms of optical flow) and MBH. We illus-

trate the difference between the original and corrected opti-

cal flow in the middle two rows of Figure 1.

Very few approaches consider camera motion when ex-

tracting feature trajectories for action recognition. Uemura

et al. [38] combine feature matching with image segmen-

tation to estimate the dominant camera motion, and then

separate feature tracks from the background. Wu et al. [42]

apply a low-rank assumption to decompose feature trajec-

tories into camera-induced and object-induced components.

Recently, Park et al. [27] perform weak stabilization to re-

move both camera and object-centric motion using coarse-

scale optical flow for pedestrian detection and pose estima-

tion in video. Jain et al. [14] decompose visual motion into

dominant and residual motions both for extracting trajecto-

ries and computing descriptors.

Among the approaches improving dense trajectories, Vig

et al. [39] propose to use saliency-mapping algorithms to

prune background features. This results in a more compact

video representation, and improves action recognition accu-

racy. Jiang et al. [15] cluster dense trajectories, and use the

cluster centers as reference points so that the relationship

between them can be modeled.

The rest of the paper is organized as follows. In sec-

tion 2, we detail our approach for camera motion estima-

tion and discuss how to remove inconsistent matches due to

humans. Experimental setup and evaluation protocols are

explained in section 3 and experimental results in section 4.

The code to compute improved trajectories and descriptors

is available online.1

1http://lear.inrialpes.fr/˜wang/improved_trajectories

Figure 3. Examples of removed trajectories under various camera

motions, e.g., pan, zoom, tilt. White trajectories are considered

due to camera motion. The red dots are the trajectory positions in

the current frame. The last row shows two failure cases. The left

one is due to severe motion blur. The right one fits the homography

to the moving humans as they dominate the frame.

2. Improving dense trajectories
In this section, we first describe the major steps of our

camera motion estimation method, and how to use it to im-

prove dense trajectories. We, then, discuss how to remove

potentially inconsistent matches based on humans to obtain

a robust homography estimation.

2.1. Camera motion estimation

To estimate the global background motion, we assume

that two consecutive frames are related by a homogra-

phy [37]. This assumption holds in most cases as the global

motion between two frames is usually small. It excludes in-

dependently moving objects, such as humans and vehicles.

To estimate the homography, the first step is to find the

correspondences between two frames. We combine two ap-

proaches in order to generate sufficient and complementary

candidate matches. We extract SURF [3] features and match

them based on the nearest neighbor rule. The reason for

choosing SURF features is their robustness to motion blur,

as shown in a recent evaluation [13].

We also sample motion vectors from the optical flow,

which provides us with dense matches between frames.

Here, we use an efficient optical flow algorithm based on

polynomial expansion [8]. We select motion vectors for

salient feature points using the good-features-to-track cri-

terion [35], i.e., thresholding the smallest eigenvalue of the

autocorrelation matrix.
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Figure 4. Homography estimation without human detector (left) and with human detector (right). We show inlier matches in the first and

third columns. The optical flow (second and fourth columns) is warped with the corresponding homography. The first and second rows

show a clear improvement of the estimated homography, when using a human detector. The last row presents a failure case. See the text

for details.

The two approaches are complementary. SURF focuses

on blob-type structures, whereas [35] fires on corners and

edges. Figure 2 visualizes the two types of matches in dif-

ferent colors. Combining them results in a more balanced

distribution of matched points, which is critical for a good

homography estimation.

We, then, robustly estimate the homography using

RANSAC [11]. This allows us to rectify the image to re-

move the camera motion. Figure 1 (two rows in the mid-

dle) demonstrates the difference of optical flow before and

after rectification. Compared to the original flow (the sec-

ond row of Figure 1), the rectified version (the third row)

suppresses the background camera motion and enhances the

foreground moving objects.

For dense trajectories, there are two major advantages of

canceling out camera motion from optical flow. First, the

motion descriptors can directly benefit from this. As shown

in [40], the performance of the HOF descriptor degrades

significantly in the presence of camera motion. Our exper-

imental results (in section 4.1) show that HOF can achieve

similar performance as MBH when we have correct fore-

ground optical flow. The combination of HOF and MBH

can further improve the results as they represent zero-order

(HOF) and first-order (MBH) motion information.

Second, we can remove trajectories generated by camera

motion. This can be achieved by thresholding the displace-

ment vectors of the trajectories in the warped flow field. If

the displacement is too small, the trajectory is considered

to be too similar to camera motion, and thus removed. Fig-

ure 3 shows examples of removed background trajectories.

Our method works well under various camera motions (e.g.,

pan, tilt and zoom) and only trajectories related to human

actions are kept (shown in green in Figure 3). This gives us

similar effects as sampling features based on visual saliency

maps [23, 39].

The last row of Figure 3 shows two failure cases. The left

one is due to severe motion blur, which makes both SURF

descriptor matching and optical flow estimation unreliable.

Improving motion estimation in the presence of motion blur

is worth further attention, since blur often occurs in realis-

tic datasets. In the example shown on the right, humans

dominate the frame, which causes homography estimation

to fail. We discuss a solution for such cases in the following

section.

2.2. Removing inconsistent matches due to humans

In action datasets, videos often focus on the humans per-

forming the action. As a result, it is very common that hu-

mans dominate the frame, which can be a problem for cam-

era motion estimation as human motion is in general not

consistent with it. We propose to use a human detector to

remove matches from human regions. In general, human

detection in action datasets is rather difficult, as there are

dramatic pose changes when the person is performing the

action. Furthermore, the person could only be visible par-

tially due to occlusion or being partially out of view.
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Here, we apply a state-of-the-art human detector [30],

which adapts the general part-based human detector [9] to

action datasets. The detector combines several part detec-

tors dedicated to different regions of the human body (in-

cluding full person, upper-body and face). It is trained us-

ing the PASCAL VOC07 training data for humans as well

as near-frontal upper-bodies from [10]. Figure 4, third col-

umn, shows some examples of human detection results.

We use the human detector as a mask to remove feature

matches inside the bounding boxes when estimating the ho-

mography. Without human detection (the left two columns

of Figure 4), many features from the moving humans be-

come inlier matches and the homography is, thus, incorrect.

As a result, the corresponding optical flow is not correctly

warped. In contrast, camera motion is successfully com-

pensated (the right two columns of Figure 4), when the hu-

man bounding boxes are used to remove matches not cor-

responding to camera motion. The last row of Figure 4

shows a failure case. The homography does not fit the back-

ground very well despite detecting the humans correctly, as

the background is represented by two planes, one of which

is very close to the camera. In section 4.3, we compare the

performance of action recognition with or without human

detection.

The human detector does not always work perfectly. It

can miss humans due to pose or viewpoint changes. In or-

der to compensate for missing detections, we track all the

bounding boxes obtained by the human detector. Tracking

is performed forward and backward for each frame of the

video. Our approach is simple, i.e., we take the average flow

vector [8] and propagate the detections to the next frame.

We track each bounding box for at most 15 frames and stop

if there is a 50% overlap with another bounding box. All

the human bounding boxes are available online.1 In the fol-

lowing, we always use the human detector to remove poten-

tially inconsistent matches before computing the homogra-

phy, unless stated otherwise.

3. Experimental setup
In this section, we first present implementation details

for our trajectory features. We, then, introduce the feature

encoding used in our evaluation. Finally, the datasets and

experimental setup are presented.

3.1. Trajectory features

We, first, briefly describe the dense trajectory fea-

tures [40], which are used as the baseline in our experi-

ments. The approach densely samples points for several

spatial scales. Points in homogeneous areas are suppressed,

as it is impossible to track them reliably. Tracking points is

achieved by median filtering in a dense optical flow field [8].

In order to avoid drifting, we only track the feature points

for 15 frames and sample new points to replace them. We

remove static feature trajectories as they do not contain mo-

tion information, and also prune trajectories with sudden

large displacements.

For each trajectory, we compute several descriptors (i.e.,

Trajectory, HOG, HOF and MBH) with exactly the same pa-

rameters as [40]. The Trajectory descriptor is a concatena-

tion of normalized displacement vectors. The other descrip-

tors are computed in the space-time volume aligned with the

trajectory. HOG is based on the orientation of image gradi-

ents and captures the static appearance information. Both

HOF and MBH measure motion information, and are based

on optical flow. HOF directly quantizes the orientation of

flow vectors. MBH splits the optical flow into horizontal

and vertical components, and quantizes the derivatives of

each component. The final dimensions of the descriptors

are 30 for Trajectory, 96 for HOG, 108 for HOF and 192 for

MBH.

To normalize the histogram-based descriptors, i.e.,

HOG, HOF and MBH, we apply the recent RootSIFT [2]

approach, i.e., square root each dimension after L1 normal-

ization. We do not perform L2 normalization as in [40].

This brings about 0.5% improvement for the histogram-

based descriptors. We use this normalization in all the ex-

periments.

To extract our improved trajectories, we sample and

track feature points exactly the same way as [40], see above.

To compute the descriptors, we first estimate the homogra-

phy with RANSAC using the feature matches extracted be-

tween two consecutive frames; matches on detected humans

are removed. We, then, warp the second frame with the es-

timated homography. The optical flow [8] is re-computed

between the first and the warped second frame. Motion

descriptors (HOF and MBH) are computed on the warped

optical flow. The HOG descriptor remains unchanged. We

estimate the homography and warped optical flow for every

two frames independently to avoid error propagation. We

use the same parameters and the RootSIFT normalization

as in the baseline.

The Trajectory descriptor is also computed based on the

motion vectors of the warped flow. We further utilize these

stabilized motion vectors to remove background trajecto-

ries. For each trajectory, we compute the maximal mag-

nitude of them. If the maximal magnitude is lower than a

threshold (i.e., 1 pixel), the trajectory is considered to be

consistent with camera motion, and thus removed.

3.2. Feature encoding

To encode features, we use bag of features and Fisher

vector. For bag of features, we use identical settings to [40].

We train a codebook for each descriptor type using 100,000

randomly sampled features with k-means. The size of the

codebook is set to 4000. An SVM with RBF-χ2 kernel

is used for classification, and different descriptor types are
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(a) AnswerPhone (a) GetOutCar (b) Push-Up (b) Chew (c) High-Jump (c) Springboard (d) Horse-Race (d) Playing-Guitar

(a) HandShake (a) HugPerson (b) Cartwheel (b) Pour (c) Vault (c) Tennis-Serve (d) Punch (d) Ski-Jet

Figure 5. From left to right, example frames from (a) Hollywood2, (b) HMDB51, (c) Olympic Sports and (d) UCF50.

combined by summing their kernel matrices normalized by

the average distance.

Unlike bag of features, Fisher vector [29] encodes both

first and second order statistics between the video descrip-

tors and a Gaussian Mixture Model (GMM). In recent eval-

uations [5, 26], this shows an improved performance over

bag of features for both image and action classification. Dif-

ferently from the bag-of-features encoding, we first reduce

the descriptor dimensionality by a factor of two using Prin-

cipal Component Analysis (PCA), as in [29]. We set the

number of Gaussians to K = 256 and randomly sample a

subset of 256,000 features from the training set to estimate

the GMM. Each video is, then, represented by a 2DK di-

mensional Fisher vector for each descriptor type, where D
is the descriptor dimension after performing PCA. Finally,

we apply power and L2 normalization to the Fisher vector,

as in [29]. To combine different descriptor types, we con-

catenate their normalized Fisher vectors. A linear SVM is

used for classification.

In all experiments we fix C = 100 for the SVM, which

has shown to give good results when validating on a subset

of training samples. In the case of multi-class classification,

we use a one-against-rest approach and select the class with

the highest score. In the following, we use Fisher vector

encoding unless stated otherwise, since it results in better

performance, see section 4.2.

3.3. Datasets

This section briefly describes the four datasets (Holly-

wood2, HMDB51, Olympic Sports and UCF50) used in our

experiments, see Figure 5. These are among the most chal-

lenging datasets in the literature.

The Hollywood2 dataset [22] has been collected from 69

different Hollywood movies and includes 12 action classes.

It contains 1,707 videos split into a training set (823 videos)

and a test set (884 videos). Training and test videos come

from different movies. The performance is measured by

mean average precision (mAP) over all classes, as in [22].

The HMDB51 dataset [18] is collected from a variety of

sources ranging from digitized movies to YouTube videos.

In total, there are 51 action categories and 6,766 video se-

quences. We follow the original protocol using three train-

test splits [18]. For every class and split, there are 70 videos

for training and 30 videos for testing. We report average ac-

curacy over the three splits as performance measure. Note

that in our experiments we use the original videos and not

the stabilized ones.

The Olympic Sports dataset [24] consists of ath-

letes practicing different sports, which are collected from

YouTube and annotated using Amazon Mechanical Turk.

There are 16 sports actions (such as high-jump, pole-vault,

basketball lay-up, discus), represented by a total of 783

video sequences. We use 649 sequences for training and

134 sequences for testing as recommended by the authors.

We report mAP over all classes, as in [24].

The UCF50 dataset [31] has 50 action categories, con-

sisting of real-world videos taken from YouTube. The ac-

tions range from general sports to daily life exercises. For

all 50 categories, the videos are split into 25 groups. For

each group, there are at least 4 action clips. In total, there

are 6,618 video clips. The video clips in the same group

may share some common features, such as the same per-

son, similar background or similar viewpoint. We apply

the leave-one-group-out cross-validation as recommended

by the authors and report average accuracy over all classes.

4. Experimental results
We, first, evaluate the gain due to different motion stabi-

lization steps in section 4.1. Section 4.2 measures the im-

provement for bag of features and Fisher vector and com-

pares the two. Section 4.3 evaluates the impact of removing

inconsistent matches based on human detection. Finally, we

compare with the state of the art in section 4.4.

4.1. Evaluation of improved dense trajectories

We choose the dense trajectories [40] as our baseline and

apply RootSIFT normalization as described in section 3.1.

In order to evaluate intermediate results, we decouple our

method into two parts, i.e., “WarpFlow” and “RmTrack”,

which stand for warping optical flow with the homography

corresponding to the camera motion and removing back-

ground trajectories consistent with the homography. The

combined setting uses both. The results are presented in

Table 1.
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Hollywood2 HMDB51

Baseline WarpFlow RmTrack Combined Baseline WarpFlow RmTrack Combined

Trajectory 42.2% 47.6% 42.4% 48.5% 25.4% 31.0% 26.9% 32.4%

HOG 46.9% 46.2% 46.7% 47.1% 38.4% 38.7% 39.6% 40.2%

HOF 51.4% 58.1% 53.4% 58.8% 39.5% 48.5% 41.6% 48.9%

MBH 57.4% 60.3% 58.6% 60.5% 49.1% 50.9% 50.8% 52.1%

HOF+MBH 58.2% 62.3% 59.7% 62.6% 49.8% 53.5% 51.0% 54.7%

Combined 60.1% 63.6% 61.7% 64.3% 52.2% 55.6% 53.9% 57.2%

Olympic Sports UCF50

Baseline WarpFlow RmTrack Combined Baseline WarpFlow RmTrack Combined

Trajectory 62.4% 73.7% 66.3% 77.2% 65.3% 72.6% 67.8% 75.2%

HOG 77.0% 76.3% 78.7% 78.8% 81.8% 81.6% 82.6% 82.6%

HOF 74.5% 86.2% 77.6% 87.6% 74.3% 85.4% 79.4% 85.1%

MBH 82.4% 87.5% 86.0% 89.1% 86.5% 88.4% 88.0% 88.9%

HOF+MBH 82.1% 88.3% 86.2% 89.7% 87.1% 89.3% 87.5% 89.5%

Combined 84.7% 88.9% 87.0% 91.1% 88.6% 90.9% 88.9% 91.2%

Table 1. Comparison of the baseline with our method and two intermediate results using FV encoding. “WarpFlow”: computing motion

descriptors (i.e., Trajectory, HOF and MBH) using warped optical flow, while keep all the trajectories; “RmTrack”: removing background

trajectories, but computing motion descriptors using the original flow field; “Combined”: removing background trajectories, and computing

Trajectory, HOF and MBH with warped optical flow.

In the following, we discuss the results descriptor by

descriptor. The performance of the Trajectory descriptor

is significantly improved, when camera motion is compen-

sated for. On Olympic Sports, there is over 10% improve-

ment w.r.t. the baseline method. On the other three datasets,

we also have over 5% improvement. “Combined” further

improves over “WarpFlow” as background trajectories are

removed.

The results of HOG are very similar for different variants

on all four datasets. Since HOG is designed to capture static

appearance information, we do not expect that compensat-

ing camera motion significantly improves its performance.

We observe small improvements of around 1%, which is

probably due to removing background trajectories.

HOF benefits most from stabilizing optical flow. Both

“Combined” and “WarpFlow” are significantly better than

the other two. On all datasets, the improvements are over

5%. On HMDB51, Olympic Sports, and UCF50, the im-

provements are even higher, i.e., around 10%. After motion

compensation, the performance of HOF is now comparable

to MBH.

MBH is known for its robustness to camera motion [40].

However, its performance still improves, as motion bound-

aries are much clearer, see Figures 1 and 4. We have over

3% improvement on Hollywood2, HMDB51 and Olympic

Sports for MBH.

Combining HOF and MBH further improves the results

as they are complementary to each other. HOF repre-

sents zero-order motion information, whereas MBH focuses

on first-order derivatives. On Hollywood2 and HMDB51,

“HOF+MBH” is over 2% better than MBH or HOF alone.

Combining all the descriptors further increases the perfor-

mance, as shown in the last row of each dataset.

4.2. Feature encoding with BOF and FV

In this section, we evaluate the performance of our im-

proved trajectories using different feature encoding meth-

ods. Table 2 compares the final performance of all four de-

scriptors combined. We can observe a similar amount of

improvement due to our motion stabilized descriptors when

encoding them with bag of features (BOF) or Fisher vec-

tor (FV). As our approach focuses on the local descriptor

level, its improvement is independent of the feature encod-

ing method. For example, “ITF” is around 4% (5%) bet-

ter than “DTF” on Hollywood2 (HMDB51) for both bag

of features and Fisher vector. Furthermore, a Fisher vector

representation always results in a better performance than

bag of features for both “DTF” and “ITF”. The improve-

ment varies from dataset to dataset. On Hollywood2 it is

around 2%, whereas on Olympic Sports it is over 7%. Note

Datasets
Bag of features Fisher vector

DTF ITF DTF ITF

Hollywood2 58.5% 62.2% 60.1% 64.3%

HMDB51 47.2% 52.1% 52.2% 57.2%

Olympic Sports 75.4% 83.3% 84.7% 91.1%

UCF50 84.8% 87.2% 88.6% 91.2%
Table 2. Comparison of feature encoding with bag of features and

Fisher vector. “DTF” stands for the original dense trajectory fea-

tures [40] with RootSIFT normalization, whereas “ITF” are our

improved trajectory features.
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Hollywood2 HMDB51 Olympic Sports UCF50

Vig et al. [39] 59.4% Sadanand et al. [32] 26.9% Brendel et al. [4] 77.3% Kliper-Gross et al. [17] 72.7%

Jiang et al. [15] 59.5% Kliper-Gross et al. [17] 29.2% Jiang et al. [15] 80.6% Solmaz et al. [36] 73.7%

Mathe et al. [23] 61.0% Jiang et al. [15] 40.7% Gaidon et al. [12] 82.7% Reddy et al. [31] 76.9%

Jain et al. [14] 62.5% Jain et al. [14] 52.1% Jain et al. [14] 83.2% Shi et al. [34] 83.3%

Without HD 63.0% Without HD 55.9% Without HD 90.2% Without HD 90.5%

With HD 64.3% With HD 57.2% With HD 91.1% With HD 91.2%
Table 4. Comparison of our results to the state of art. We present our results for FV encoding both with and without automatic human

detection (HD).

that for bag of features we use an SVM with RBF-χ2 ker-

nel, whereas for Fisher vector we use a linear SVM, see

section 3.2.

4.3. Removing inconsistent matches due to humans

In this section, we investigate the impact of removing

inconsistent matches due to humans when estimating the

homography, see Figure 4 for an illustration. We compare

three cases, i.e., estimating the homography without human

detection, with automatic human detection, and with man-

ual labeling of humans. This allows us to measure the im-

pact of removing matches from human regions as well as to

determine an upper bound in case of a perfect human de-

tector. To limit the labeling effort, we annotated humans in

20 training and 20 testing videos for each action class from

Hollywood2.

As shown in Table 3, human detection helps to improve

all motion related descriptors (Trajectory, HOF and MBH),

since removing inconsistent matches on humans improves

the homography estimation. Typically, the results are im-

proved by around 2% when using an automatic human de-

tector. If the humans are labeled by hand, we can further

improve the performance by 1%.

The last two rows of Table 4 show the impact of auto-

matic human detection on all four datasets. It is always bet-

ter to use human detection for homography estimation on

these action datasets. On Hollywood2 and HMDB51, the

improvements are over 1%. Both datasets contain a huge

amount of movies, where humans often occupy a large part

of the image. On the other two datasets, the impact is less

pronounced as humans occupy smaller areas in the image.

Hollywood2-sub None Automatic Manual

Trajectory 32.3% 35.7% 37.1%

HOG 34.5% 34.9% 34.7%

HOF 43.9% 45.2% 46.7%

MBH 45.8% 47.4% 49.2%

Combined 48.9% 50.7% 51.9%
Table 3. Comparison of the results on a subset of the Hollywood2

dataset with FV encoding. “None”: without human detection;

“Automatic”: automatic human detection; “Manual”: manual la-

beling of humans.

4.4. Comparison to the state of the art

Table 4 compares our method with the most recent re-

sults reported in the literature for all four datasets. On

Hollywood2, all presented results [14, 15, 23, 39] improve

dense trajectories in different ways. Jiang et al. [15] model

the relationship between dense trajectory clusters. Both

Mathe et al. [23] and Vig et al. [39] prune background fea-

tures based on visual saliency. Here we only compare to

their results when the saliency map is extracted automati-

cally. Recently, Jain et al. [14] report 62.5% by decompos-

ing visual motion to stabilize dense trajectories. We further

improve their results by around 2%.

HMDB51 [18] is a relatively new dataset. Recently,

Sadanand and Corso [32] report 26.9% with a high-level

semantic representation of actions. Kliper-Gross et al. [17]

improve it to 29.2% using motion interchange patterns.

Dense trajectories based approaches [14, 15] seem to be

very successful on HMDB51. The previous best result is

from [14]. We improve it further by around 5%, and obtain

57.2% accuracy.

Olympic Sports [24] is collected from sports videos. It

contains significant camera motion, which results in a large

number of trajectories in the background. This dataset is

also known to have rich structure information, where graph

models [4] are shown to work very well. Gaidon et al. [12]

report 82.7% by modeling trajectory clusters with a tree

structure. Jain et al. [14] achieve a slightly better perfor-

mance of 83.2% with motion decomposition. We improve

their results by around 8%.

UCF50 [31] is an extension of the YouTube dataset [21].

Solmaz et al. [36] report 73.7% with a GIST3D video de-

scriptor, an extension of the GIST descriptor [25] to video.

Reddy and Shah [31] achieve 76.9% by combining the

MBH descriptor with scene context information. Recently,

Shi et al. [34] report 83.3% using randomly sampled HOG,

HOF, HOG3D and MBH descriptors. We significantly im-

prove over their result by around 8%.

5. Conclusion
This paper improves dense trajectories by explicitly esti-

mating camera motion. We show that the performance can

be significantly improved by removing background trajecto-
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ries and warping optical flow with a robustly estimated ho-

mography approximating the camera motion. Using a state-

of-the-art human detector, potentially inconsistent matches

can be removed during camera motion estimation, which

makes it more robust. An extensive evaluation on four

challenging datasets demonstrates the effectiveness of the

proposed approach, and establishes new bounds of perfor-

mance.
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