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Abstract

This paper proposes a unified probabilistic model to
model the relationships between attributes and objects for
attribute prediction and object recognition. As a list of se-
mantically meaningful properties of objects, attributes gen-
erally relate to each other statistically. In this paper, we
propose a unified probabilistic model to automatically dis-
cover and capture both the object-dependent and object-
independent attribute relationships. The model utilizes the
captured relationships to benefit both attribute prediction
and object recognition. Experiments on four benchmark
attribute datasets demonstrate the effectiveness of the pro-
posed unified model for improving attribute prediction as
well as object recognition in both standard and zero-shot
learning cases.

1. Introduction

Attributes are a list of semantically meaningful prop-

erties shared among different objects. Recent work (e.g.

[6, 17, 24]) generally utilizes attributes as an intermedi-

ate layer descriptive representation, and has applied at-

tributes to several interesting applications like zero-shot

learning [17], description of objects [6], and object recog-

nition [34].

Standard attribute approaches generally learn a group of

attribute classifiers, one for each attribute. During testing,

attributes are predicted individually through the learned at-

tribute classifiers. However, attributes are NOT indepen-

dent. Different attributes generally relate to each other sta-

tistically. Moreover, due to tremendous variations in the

real scene applications, it is usually difficult to individu-

ally recognize many of the attributes. And, a low quality

attribute prediction can adversely affect the subsequent ob-

ject recognition. This motivates us to exploit the statisti-

cal relationships between attributes and objects, and utilize

these relationships to help predict certain attributes (or ob-
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Figure 1. Attributes with frequency statistics with refer to different

object classes. We can see the attributes “with stripe” and “white”

would be co-occurring for object “zebra”, but be mutually exclu-

sive for object “polar bear”. Animal examples in this figure are

chosen from the Animals with Attributes (AWA) dataset [17].

jects likewise) that are hard to predict alone.

We observe there exist two types of attribute relation-

ships, i.e. the object-dependent relationship and object-
independent relationship. For example, in Figure 1, the at-

tributes “with stripe” and “white” would be co-occurring for

object “zebra”, but be mutually exclusive for object “polar

bear”. In this example, the relationship between attributes

“with stripe” and “white” is object-dependent. Also, some

attributes would have the same relationships among many

object classes. For instance, different types of birds should

all share the attributes “feature”, “wing” and “leg”. The re-

lationships among these attributes are object independent.

The object-dependent relationship is resulted from specific

properties of an object. The attributes must either be co-

occurring or be mutually exclusive to accurately describe

the object. Comparatively, the object-independent relation-

ship captures the intrinsic properties of all or many objects.

We propose a unified probabilistic model to automati-

cally discover and capture both the object-dependent and

object-independent relationships. Our unified model is es-

sentially a Bayesian network (BN) [21]. Both the the at-
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tributes and objects are represented by random variable

nodes in the unified model. During model learning, training

samples consisting of ground truth attributes and object la-

bels are used to learn the model structure and parameter. In

this way, both the object-dependent and object-independent

attribute relationships are automatically discovered and cap-

tured. During testing, the unified model can infer both the

attribute node states and the object node state given the

attribute measurements predicted individually by the pre-

learned attribute classifiers. Experiments on four bench-

mark datasets show that the unified model can effectively

improve the attribute prediction accuracy by utilizing the

captured relationships. Moreover, by directly inferring the

object node state, the unified model can greatly benefit the

object recognition task as well.

In summary, our major contributions in this proposed

work can be listed in two folds: 1) we propose to build

one unified model to discover and capture both the object-

dependent attribute relationships and object-independent at-

tribute relationships simultaneously in a systematic manner;

2) with the assistance of captured relationships, our unified

model can directly infer both attributes and objects, and thus

benefit the attribute predictions and object recognition in

both standard and zero-shot learning cases.

2. Related Work
In recent years, attributes [8] have received a lot of atten-

tions from different areas in the computer vision field. At-

tributes are widely used in many different applications like

object describing [6], zero-shot learning [17, 11], face veri-

fication [15], object recognition [34, 10], person and cloth-

ing describing [1, 2], image search and retrieval [16, 13, 36],

and action/activity recognition [19, 35, 9] etc. These ap-

plications generally accomplish two types of tasks using

attributes: 1. describing task which utilizes attribute pre-

dictions as a detailed object description, besides the class

label; 2. classification task which utilizes attributes to ful-

fill/improve either standard or zero-shot object classifica-

tion. To improve the performance on either of these two

attribute related tasks, approaches can be divided into ei-

ther defining/discovering better attributes, or building better

models for attribute prediction and object recognition using

existing attributes.

Many studies [24, 25, 13, 26, 20, 4, 36, 29, 32] focus on

defining and discovering better attributes (e.g. relative at-

tributes [25] and augmented attributes [32]). On the other

hand, similar to our motivation, several approaches propose

methods like multi-task feature learning [10], DAP/IAP

based zero-shot learning [17], BN models [30, 5], latent

SVM [34] and CRF [2] to boost the performance of ob-

ject recognition or attribute prediction using existing at-

tributes. Among these approaches, the latent SVM attribute

model [34] and CRF [2] also utilize attribute relationships.

Latent SVM [7] is used by Wang et al. [34] for object

recognition with attributes, and then applied to human ac-

tion recognition in [19] and active learning of attributes in

[14]. In the latent SVM based attribute approaches, at-

tributes are treated as latent variables for both model train-

ing and testing. Also, the attribute relations [34] in the

latent SVM attribute approach are either manually speci-

fied, or pre-learned through a network purely consisting of

attribute nodes and then interpolated into latent SVM. By

contrast, in our unified model, the semantic attributes are

not latent during training of the unified model, and thus our

model explicitly captures the semantic meanings of the at-

tributes which can generalize to other classes for the zero-

shot learning. Moreover, our unified model automatically

discovers and captures the attribute relationships in a sys-

tematic manner, considering both the object-dependent and

object-independent attribute relations.

Recently, Chen et al. [2] apply a CRF model to improve

attribute predictions for the clothing appearance describing

tasks. This CRF model consists of only attribute nodes with

corresponding attribute observations. It incorporates the at-

tribute relations by specifying a fully connected network

connecting all its attribute nodes. Differently, in our unified

model, we build links not only among attributes, but also be-

tween attributes and object nodes. In this way, we can cap-

ture both the object-dependent and object-independent at-

tribute relationships. Our model can then improve the tasks

of both attribute classification and object recognition either

in standard or zero-shot learning scenarios. Moreover, in-

stead of specifying a fully connected graphical model, we

try to discover necessary statistical relationships between

the attributes nodes and object class nodes using the incor-

porated structure and parameter learning.

The BN based attribute approaches by Scheirer et al. in

[30] and Farhadi et al. in [5] also use BN to combine at-

tributes. However, these two approaches do NOT incorpo-

rate attribute relationships in their models. Comparatively,

discovering, capturing, and exploiting attribute relation is

the essence of our paper. Thus, the BN approaches in [30]

and [5] are very different from our approach.

Another probabilistic attribute approach is the direct at-

tribute prediction (DAP) and indirect attribute prediction

(IAP) models proposed by Lampert et al. [17] for zero-shot

based recognition of new objects. Even though DAP and

IAP are probabilistic approaches, they are different from

our unified model approach. The DAP and IAP models as-

sume the attribute vector can be induced deterministically

given the class label, but our model assumes that given the

class label, the related attributes still obey certain proba-

bilistic distributions. Also, our unified model discovers and

captures the object-dependent and object-independent at-

tribute relationships, but DAP and IAP models do not cap-

ture such relationships.
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3. Approach

In Section 3, we describe in details about the unified

model we propose to capture the relationships between

attributes and objects for attribute prediction and object

recognition. In our approach, we denote Y as object la-

bel, A1, A2, . . . , AM as the M ground truth attributes, and

X as the raw feature shared by attribute classifiers.

3.1. Modeling Relationships

The object-dependent attribute relationships are the re-

lationships resulted from specific properties of an object.

Comparatively, the object-independent attribute relation-

ships capture intrinsic properties among all or many ob-

jects. We believe attribute relationships should consist of

both types. To automatically differentiate and capture these

relationships, we construct a Bayesian network (BN) based

unified model consisting of both object label node Y and

attribute nodes A1, A2, . . . , AM . A BN is a directed acyclic

graph (DAG) which represents a joint probability distribu-

tion among a set of variables [21], where the nodes de-

note random variables and the links denote the conditional

dependencies among variables. Figure 2 gives an exam-

ple of a BN capturing the relationships among attributes

A1, A2, . . . , AM and object Y .
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Figure 2. A BN capturing the relationships among attributes

A1, A2, . . . , AM and object category Y .

In our unified model as shown in Figure 2, attribute

nodes connecting to each other without connecting to ob-

ject node capture object-independent relationships, while

attribute nodes connecting to each other via object node

capture object-dependent relationships. Compared to undi-

rected graphical models (CRFs, MRFs etc.), BN can easily

learn its optimal structure directly from data. This advan-

tage of BN enables us to discover the attribute relationships

systematically in the model learning phase.

3.2. Learning Model Structure

In the BN model shown in Figure 2, the node Y repre-

sents the object label, and the M nodes A1, A2, . . . , AM de-

note the M attributes. The directed links between nodes Y
and A1, A2, . . . , AM form a DAG that captures the structure

G of the BN. To learn such structure G from training data D
(the ground truth attributes and the object labels of training

samples), we use Bayesian information criterion (BIC) [31]

as the score to evaluate the fitness of a possible structure Gs:

Score(Gs : D) = logP (D|θ̂Gs ,Gs)−
d(θ̂Gs)

2
logN (1)

where θ̂Gs is the estimation of model parameter with struc-

ture Gs, d(θ̂Gs) is the number of free parameters in θ̂Gs , and

N is the number of samples in training data D.

In Equation 1, the first term on right represents the joint

log-likelihood of data D with the possible model structure

Gs and the corresponding parameter θ̂Gs . It evaluates how

well the network Gs fits the data. The second term is a

penalty term. It is proportional to the number of free pa-

rameters reflecting the complexity of the network.

To find the global optimal structure G that maximizes the

BIC score Score(Gs : D) from the set of possible structures

Gs, we employ the structure learning method proposed in

[3], where branch-and-bound has been applied to perform

the exact learning of BN structure. To avoid a complex BN

with too many parameters, we limit the number of parental

nodes for each attribute, based on the assumption that each

attribute is only closely related to a few (N ) attributes. We

empirically set N = 3 to achieve an optimal tradeoff be-

tween structure complexity and recognition performance.

3.3. Learning Model Parameters

Parameters for our unified model involve the conditional

probability table (CPT) for each node given its parents. The

usual way of learning such parameters is to use the max-

imum likelihood estimation (MLE). However, for several

cases in the unified model, a certain parent-child state com-

bination would seldom appear (e.g. the object label state

representing “sheep” with the attribute “black” to be true),

and the MLE learning of such parameter would be affected

by the limited training samples for the certain state parent-

child combination. Hence, we use the maximum a posteri-

ori (MAP) estimation to learn the model parameters instead.

Given a training set D containing object labels, ground

truth attributes and their corresponding measurements, our

goal is to estimate the parameter θ for a BN with structure

G by MAP approach as shown in Equation 2.

θ∗ = argmax
θ

P (θ|D,G) = argmax
θ

P (D|θ,G)P (θ) (2)

More specifically, for the discrete node network, we de-

note one of the discrete nodes in the unified model to be

Xi. For the parameter learning of this discrete node Xi,

the posterior distribution of parameter θij for Xi given its

parent(s) pa(Xi) in state j can be represented by Dirichlet

distribution:

P (θij |D,G) = Dir(αij1 +Nij1, . . . , αijri +Nijri) (3)

where ri is the number of states for variable Xi. We use

Xi = k to denote that node Xi is in state k, and use
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pa(Xi) = j to denote the parent(s) of node Xi to be in

state j. And, Nijk reflects the number of cases in the train-

ing set D for which Xi = k and pa(Xi) = j, and αijk is

the hyper-parameter that reflects the prior beliefs about how

often the case Xi = k and pa(Xi) = j would appear.

With the MAP approach in Equation 2, the analytical so-

lution for parameter θijk of node Xi which stands for the

probability P (Xi = k|pa(Xi) = j) would be:

θijk =
αijk +Nijk − 1

αij +Nij − ri
(4)

where Nij =
∑ri

k=1 Nijk, and αij =
∑ri

k=1 αijk.

3.4. Inferring Attributes and Object Classes

Based on the learned unified model with structure G and

parameter θ, both the attribute prediction and object recog-

nition can be performed through the model inference. The

independent attribute classifiers pre-trained on the training

images are used first to obtain the attribute measurements

OA1, OA2, . . . , OAM from testing image X . And then,

these attribute measurements are used by the unified model

for inferring the attributes and object classes.

To incorporate these attribute measurements into the uni-

fied model for testing, we further associate the attribute

nodes A1, A2, . . . , AM each with a measurement node. Fig-

ure 3 shows an example of the unified model incorporated

with attribute measurements. In Figure 3, the object la-

bel node Y and attribute nodes A1, A2, . . . , AM are in-

dicated with white circles, and the attribute measurement

nodes OA1, OA2, . . . , OAM are indicated with shaded cir-

cles. The links between the attribute nodes and the attribute

measurement nodes model the measurement uncertainty of

the independent attribute classifiers. From the BN model

point of view, the measurement nodes are regarded as ob-

served nodes, which provide evidence in the inference pro-

cedure, and the object label and attribute nodes are ground

truth nodes, whose states need to be inferred from the BN

model given the evidence.

The factorized form of the joint probability for the uni-

fied model incorporated with attribute measurements is:

P (Y,A1, . . . , AM , OY,OA1, . . . , OAM ) =

P (Y |pa(Y ))
M∏

m=1

P (Am|pa(Am))
M∏

m=1

P (OAm|Am) (5)

where pa(Y ) stands for the parent node(s) of object label

node Y , and pa(Am) stands for the parent node(s) of at-

tribute node Am. Terms P (Y |pa(Y )) and P (Am|pa(Am))
represent the conditional dependencies among object la-

bel node and attribute nodes, which capture the object-

dependent and object-independent attribute relationships,

and the term P (OAm|Am) represents the attribute mea-

surement uncertainty terms. In practice, we use discrete
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Figure 3. A unified model incorporating attribute measurements

for attribute predictions and object recognition. The object

label node Y and attribute nodes A1, A2, . . . , AM are indi-

cated with white circles. The attribute measurement nodes

OA1, OA2, . . . , OAM are indicated with shaded circles.

measurements for OAm, and P (OAm|Am) is therefore in

multinomial distribution.

With the unified model incorporated with attribute mea-

surements shown in Figure 3, we can infer the probabilities

of different attributes and object classes given the attribute

measurements obtained from independent attribute classi-

fiers. For object recognition, given a testing image X with

its attribute measurements OA1, OA2, . . . , OAM , we infer

the marginal probability of Y given the attribute measure-

ments. The classification output c should be:

c = argmax
k

P (Y = k|OA1, . . . , OAM ; θ,G′) (6)

Also, for attribute prediction, we infer the marginal prob-

ability of Am with m = 1, 2, . . . ,M given the measure-

ments of all attributes. The attribute prediction am is:

am = argmax
r

P (Am = r|OA1, . . . , OAM ; θ,G′) (7)

Both inference problems can be solved efficiently by the

junction tree inference method [18]. In addition, the at-

tribute states and the object state can also be inferred jointly

with the most probable explanation (MPE) [21] of the ev-

idences. However, in our experiments, this inference per-

forms not as well as the inferences in Equation 6 and 7.

3.5. Unified Model for New Objects

Attributes are an ideal type of semantic knowledge for

zero-shot based recognition of new object classes [23, 17].

In the zero-shot setting, no raw images of new objects are

available during model learning. However, with our uni-

fied model, we still want to discover and capture the statis-

tical relationships between attributes and new objects even

without raw images during training. Inspired by the real-

valued association strength between attributes and classes

given in [17] that is averaged from responses of 10 test per-

sons, we learn these relationships directly from the semantic
knowledge base [23] consisting of only new class labels and
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their ground truth semantic attributes. In this way, our uni-

fied model is built purely with semantic knowledge. On the

other hand, the independent attribute classifiers are learned

with raw images from observed classes.

During testing, the independent attribute classifiers are

applied to raw images of new classes to obtain attribute

measurements, which are further applied to unified model

for inference. We still use the inferences discussed in Equa-

tion 7 and 6 for attribute predictions in new class examples

and the classification of new classes respectively.

4. Experiments

We demonstrate the effectiveness of our method with the

following four different vision datasets.

The a-Pascal dataset [6] contains 6340 training samples

and 6355 testing samples collected from Pascal VOC 2008

challenge. Each sample belongs to one of the twenty object

classes. The a-Yahoo dataset [6] contains 2644 samples

belonging to twelve classes that are completely different

from the classes in a-Pascal dataset. A list of 64 attributes

are provided for each sample of both a-Pascal and a-Yahoo

datasets. These datasets also provide a 9751 dimension base

feature for each of the training and testing samples. A sup-

port vector machine (SVM) based attribute classifier trained

on the training set of a-Pascal is provided in [6] to predict

the 64 attributes with the given features.

The SUN Attribute dataset collected by Patterson et
al. [28, 27] contains a pool of 14,340 scene images belong-

ing to 717 scene classes. A set of 102 manually labeled at-

tributes is available for each of the images. Instead of using

random splits of the training and testing images in [28], Pat-

terson et al. recently update the SUN attribute dataset (v2.1)

in [27] by specifying the fixed training and testing sets with

12906 and 1434 images respectively. The pre-calculated

image features and attribute classifiers are provided in [27].

The Animals with Attributes (AWA) dataset [17] con-

sists of 30475 animal images belong to 50 classes. Among

these 50 classes of animals, 10 classes are selected for test-

ing. The 6180 images belonging to these 10 classes act as

test data, and the 24295 images of remaining classes are

used for training. The real-valued association strength [22,

12] between 85 attributes and 50 animal classes are pro-

vided together with the binary definitions of attributes. This

dataset also provides pre-calculated feature vector and the

baseline attribute classifiers.

4.1. Discovering and Capturing Relationships

We first show the structure learning result for discover-

ing and capturing the relationships between attributes and

objects. To demonstrate a distinct structure for analysis,

we experiment on the two objects “car” and “bicycle” of

the a-Pascal dataset1. 14 attributes are involved for these

two objects: headlight, taillight, handlebar, exhaust, text,

wheel, metal, plastic, window, door, side mirror, pedal, 3D

Boxy and shinny. The learned global optimal structure is

presented in Figure 4.
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Figure 4. The learned structure capturing relationships between at-

tributes and objects. This structure is learned with ground truth at-

tributes of two object classes “car” and “bicycle” on a-Pascal. The

shaded rectangle node represents the object node. The elliptical

nodes represent the attribute nodes.

The learned structure shown in Figure 4 captures many

of the relationships. For example, the relationship between

attributes “exhaust” and “wheel” is the object-dependent re-

lationship (both car and bicycle should have wheels, but bi-

cycle should not have exhaust and car should have), and

the learned structure indicates the distribution of attribute

node “exhaust” would depend on the states of both the ob-

ject node and the attribute node “wheel”.

4.2. Performance for Attribute Prediction

Attribute prediction can provide more detailed semantic

descriptions about the target. Here, we first test our unified

models for attribute prediction both with observed classes

on a-Pascal dataset [6], and with new classes on a-Yahoo

dataset [6] in Section 4.2.1. Then, we compare with existing

results on SUN attribute dataset [28, 27] in Section 4.2.2.

4.2.1 Attribute Prediction on a-Pascal and a-Yahoo

In this experiment, we use the proposed unified model for

attribute prediction of observed class images on a-Pascal [6]

and new class images on a-Yahoo respectively with the in-

ference discussed in Equation 7. We use the provided at-

tribute classifiers [6] trained on the a-Pascal training set as

“Baseline” for attribute prediction, and these baseline at-

tribute classifiers also provide attribute measurements for

our unified model to predict attributes. The Geometric

Mean (G-mean) [2] is used for prediction accuracy eval-

uation in the purpose of further comparing with the CRF

1Structure learned with all objects is in supplementary material.
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in [2]. Figure 5 and 6 give the per-attribute G-Mean compar-

ison between the Baseline and the proposed unified model

for attribute prediction of observed classes on a-Pascal and

new classes on a-Yahoo respectively.

From Figure 5, we can see the proposed unified model

can improve the attribute prediction over the attribute mea-

surements for most of the attributes on a-Pascal dataset.

For certain attributes like “sail” and “saddle”, the im-

provement is very significant. The G-Mean for attribute

“sail” improves from 55.18% to 86.31%. Also, in Fig-

ure 6, the improvements for attribute prediction in images

of new classes on a-Yahoo dataset are even greater than

that in a-Pascal. We believe the captured object-dependent

and object-independent attribute relationships in a-Yahoo

classes significantly benefit the attribute prediction for these

new class images, even though the baseline attribute classi-

fiers perform worse on a-Yahoo due to generalization issues.

We further compare the baseline independent attribute

classifier and the proposed unified model on the average G-

mean over all 64 attributes in Table 1. To verify the ef-

fectiveness of the distinction between object-(in)dependent

attribute relations, we compare with a BN model consist-

ing of attribute nodes but omitting the object node (BN-Att

model). This BN-Att model is learned in the same proce-

dure as the proposed model. Also, the CRF in [2] using

a fully connected network of only attribute nodes to re-

late attributes is also compared here. From this compari-

son, we can see that incorporating the traditional attribute

relationships alone by the BN-Att or CRF model can al-

ready improve the baseline performance. Moreover, with

our proposed model that differentiates the object-dependent

and object-independent attribute relationships, the overall

attribute prediction accuracy can be significantly improved.

In addition, for our proposed model, the overall improve-

ment is again more significant for the a-Yahoo database,

demonstrating the generalization ability of our approach.

Table 1. Overall attribute prediction accuracy w.r.t different mod-

els on a-Pascal test set and a-Yahoo.

Proposed

Baseline BN-Att CRF [2] Model

a-Pascal 70.41% 72.42% 74.01% 79.03%

a-Yahoo 65.40% 66.50% 66.81% 78.12%

4.2.2 Attribute Prediction on SUN Attribute Dataset

To study model performance for complex cases that involve

large attribute set, we also perform attribute prediction on

the SUN Attribute dataset. This dataset contains scene im-

ages belonging to 717 scene classes. And, 102 attributes are

defined in total. Most recently, Patterson et al. release the

latest attribute prediction results in [27] with the new train-

ing and testing splits. In [27], the average precision (AP)

number is used for evaluating attribute prediction accuracy.

And, the mean average precision (Mean AP) over all 102

attributes is 50.22% in [27]. For comparison, we also use

Mean AP for evaluation. For attribute prediction, our model

improves the overall result from 50.22% in [27] to 51.12%

on the Mean AP evaluation over all 102 attributes. It takes

48.8 min for our proposed model to recognize all 102 scene

attributes for 1434 samples on an Intel i7 2.93GHz com-

puter. This translates to 2.04 sec for recognizing each sam-

ple, and 0.02 sec for recognizing each attribute.

4.3. Performance for Object Recognition

Attributes can generally be utilized to help the task of ob-

ject recognition, especially in zero-shot learning cases as in

[17] where image examples of new classes are not available

during all phases of model learning. We utilize the proposed

unified model for the object recognition of observed classes

on a-Pascal dataset in Section 4.3.1, and of new classes on

a-Yahoo and AWA datasets in Section 4.3.2.

4.3.1 Object Recognition for Observed Classes

We test the proposed unified model for recognizing the ob-

served object classes using the a-Pascal dataset [6]. Both

the attribute classifiers and the unified model are learned on

the a-Pascal training set. The overall performance on the

a-Pascal testing set is given in Table 2. Both the mean per-

class and the overall accuracies are used for evaluation.

Table 2. Object recognition with attributes on a-Pascal dataset.

SVM Farhadi Wang Proposed

[6] et al. [6] et al. [34] Model

Mean Per-class 35.5% 37.7% 50.84% 44.82%

Overall 58.5% 59.4% 59.15% 63.02%

In Table 2, the SVM approach given in [6] uses the base

feature directly for training and testing. With the help of

attributes, the approach proposed by Farhadi et al. [6] can

already outperform the SVM built on the base feature. Our

proposed model can outperform the approach in Farhadi et
al. [6] on both the mean per-class and overall evaluations.

Compared to the approach by Wang et al. [34], our model

performs better in overall accuracy, but not as well in the

mean per-class accuracy. This is expected, since [34] use

a loss function specifically designed for skewed data, and

the a-Pascal dataset is skewed (2571 of the 6355 test sam-

ples are “person”). The result of [34] with standard “0/1”

loss function is 46.25% for mean per-class and 62.16% for

overall, and our result is close to this performance.

Here, we further compare with the per-object BN net-

work where a BN model consisting of only attribute nodes is

learned for each object class. For testing, object label is pre-

dicted by picking the model with the maximum likelihood.
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Figure 5. Accuracies of attribute predictions on a-Pascal test set. The proposed unified model can improve the attribute prediction over the

measurement for most of the attributes, with more significant improvements for certain attributes like “sail” and “saddle”.
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Figure 6. Accuracies of attribute predictions on a-Yahoo dataset for images of new classes. By using our proposed model, the predictions

for most of the attributes are improved. For attributes like “wing”, “handle” and “engine”, the improvements are very significant.

This per-object network achieved 42.09% and 60.24% for

average and overall accuracy, lower than proposed model.

4.3.2 Object Recognition with Zero-shot Learning

We first test the proposed unified model for recognizing

new classes on a-Yahoo dataset [6] in zero-shot learning

scenario. The attribute classifiers are trained on a-Pascal

training set and provide attribute measurements on a-Yahoo

images as input for unified model. We choose SVM built

on the same semantic knowledge base to serve as the base-

line object recognition model. During testing, SVM uses in-

terpreted attributes predicted both from the attribute classi-

fier (i.e. original attribute predictions), and from the unified

model (i.e. improved attribute predictions by our unified

model in Section 4.2.1) for a-Yahoo object recognition.

Table 3. Results for recognizing new object classes with zero-shot

learning on a-Yahoo dataset.

Farhadi Proposed

SVMa SVMb et al. [6] Model

Mean Per-class 17.39% 33.74% N/A 41.31%

Overall 16.38% 39.49% 32.5% 45.05%
SVMa: testing on original attribute predictions; SVMb: testing on im-

proved attribute predictions by our unified model.

Table 3 gives the overall evaluations for SVM testing on

original attribute predictions as well as testing on attribute

predictions by our unified model. We can see the improved

attribute predictions can also significantly benefit the object

recognition on new classes. However, the best performance

is reached by directly inferring the object state through the

proposed unified model as discussed in Equation 6. We also

compare our proposed model result with the result given

by Farhadi et al. [6] in the approach “learning new cate-

gories from textual description”. This approach in [6] is also

a zero-shot learning approach that recognizes new classes

whose image examples are omitted from the training set.

The mean per-class accuracy for this approach is not avail-

able in [6], but our proposed model can improve the overall

recognition accuracy by over 12%.

Also, Lampert et al. [17] propose two attribute based

zero-shot learning models DAP and IAP. We further com-

pare with these two models on the AWA dataset [17]. We

test on the same 10 animal classes as defined in [17], and

use the provided baseline attribute classifiers trained on the

images of the rest 40 animals to obtain attribute measure-

ment input. The comparisons are shown in Table 4, where

the mean-per class recognition rates of DAP and IAP mod-

els are from [17] directly, and the overall recognition rates

of DAP and IAP models are calculated from the given con-

fusion matrices in the dataset. In this comparison, our uni-

fied model can outperform both IAP and DAP models for

attribute based zero-shot learning.

For experiments in Section 4.3.2, several other ap-

proaches (e.g. [34, 10]) that also use the a-Yahoo or AWA
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Table 4. Comparison with DAP and IAP models for recognizing

new object classes with zero-shot learning on AWA dataset.

Lampert et al. Lampert et al. Proposed

- IAP [17] - DAP [17] Model

Mean Per-class 27.8% 40.5% 43.36%
Overall 29.69% 39.74% 42.78%

dataset are not comparable with our approach since those

approaches use the image examples of the new classes di-

rectly or indirectly for learning the object classifiers. More

specifically, the approach in [34] randomly split the a-

Yahoo images into training/testing sets and use the im-

ages of a-Yahoo classes directly during training; in the 10-

class AWA subset experiment of [10], the object classifier

is trained directly on the image input of the selected 10

classes, and regularized by the attribute classifiers trained

on different sets of images; the “learning to identify new

objects” approach in [6] utilizes the predicted attributes on

a-Yahoo as training data to train object classifiers, and thus

in turn uses the a-Yahoo images indirectly for classifier

training in the classifier cascade. Comparatively, these ap-

proaches can generally achieve around 70% accuracy on the

corresponding dataset by using the image examples of new

classes directly or indirectly.

5. Conclusion
In this paper, we propose a unified probabilistic model to

capture the relationships between attributes and objects for

attribute prediction and object recognition. As a list of se-

mantically meaningful properties of objects, attributes gen-

erally relate to each other statistically. The paper proposes

a unified probabilistic model to automatically discover and

capture both the object-dependent and object-independent

attribute relationships. During testing, the unified model

utilizes these captured relationships to benefit both attribute

prediction and object recognition with probabilistic infer-

ence given the attribute measurements predicted individu-

ally by the pre-learned attribute classifiers. We experiment

on four benchmark attribute datasets including a-Pascal, a-

Yahoo, SUN Attribute and AWA for attribute prediction and

object recognition tasks. The experiment results with the

proposed unified model show significant improvements for

attribute prediction as well as object recognition, especially

in cases of new objects.
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