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Abstract

Sparse Representation-based Classification (SRC) is a
powerful tool in distinguishing signal categories which lie
on different subspaces. Despite its wide application to visu-
al recognition tasks, current understanding of SRC is solely
based on a reconstructive perspective, which neither offer-
s any guarantee on its classification performance nor pro-
vides any insight on how to design a discriminative dictio-
nary for SRC. In this paper, we present a novel perspec-
tive towards SRC and interpret it as a margin classifier.
The decision boundary and margin of SRC are analyzed in
local regions where the support of sparse code is stable.
Based on the derived margin, we propose a hinge loss func-
tion as the gauge for the classification performance of SRC.
A stochastic gradient descent algorithm is implemented to
maximize the margin of SRC and obtain more discrimina-
tive dictionaries. Experiments validate the effectiveness of
the proposed approach in predicting classification perfor-
mance and improving dictionary quality over reconstructive
ones. Classification results competitive with other state-of-
the-art sparse coding methods are reported on several data
sets.

1. Introduction
Since it was originally proposed for face recognition, the

Sparse Representation-based Classification (SRC) [24] has

received an increasing amount of attention, and it has been

successfully used in the classification of various visual sig-

nals including facial expressions [6], hand written digits

[25], and general images [5].

In SRC, a test signal x is represented as a sparse linear

combination of the atoms in a dictionary D composed of

training data from all classes, i.e. x = Dα. If the signals

in each class lie in a low-dimensional subspace and the sub-

spaces of different classes satisfy certain incoherence con-

ditions, it is speculated in [24] that all the nonzero coeffi-

cients in sparse code α will be associated with the dictio-

nary atoms that belong to the same class as x . This argu-

ment has gained more theoretical support latterly from the

analysis of sparse subspace clustering in [21], as classifi-

cation can be regarded as clustering new data into existing

clusters with known labels. However, due to noise corrup-

tion and subspace overlap, the nonzero coefficients in α are

usually associated with atoms from more than one class in

practice. This problem is addressed in SRC by predicting

the label as the class whose corresponding coefficients give

the smallest reconstruction error of x. Although such clas-

sification scheme shows effectiveness in many applications

empirically, its working mechanism is obscure and there is

no guarantee for the classification performance. Some at-

tempts have been made to attribute the power of SRC to

collaborative representation [28], but the analysis is quite

limited.

Due to the absence of a feasible performance metric for

SRC, the design of its dictionary (which serves as the pa-

rameter for both representation and classification) has been

more or less heuristic so far. Originally, an SRC dictionary

is constructed by directly including all the training samples

[24], which is not efficient and practical when the size of

training set is huge. Random sampling or clustering meth-

ods such as K-means can give a compact dictionary, but

generative as well as discriminative capabilities are lost.

Traditional dictionary learning methods specialized for s-

parse representation, such as Method of Optimal Direction

(MOD) [8], K-SVD [1], and the �1-relaxed convex formu-

lations [13, 15], all focus on minimizing signal reconstruc-

tion error and thus are not optimized for classification task.

In order to promote the discriminative power of dictionar-

ies, recent works have augmented the reconstructive objec-

tive function with additional discrimination terms; e.g., fish-

er discriminant criterion [27], structural incoherence [20],

class residual difference [16, 25] and mutual information

[19]. Classification models other than SRC have also been

used with sparse codes as inputs [4, 10, 14]. The discrim-

ination metrics in all the above methods are not geared to

the mechanism of SRC; moreover, the use of an extra clas-

sification model (often requiring one-versus-rest paradigm

in multi-class cases) will multiply the number of parameters
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and increase the risk of over-fitting.

In this paper, we present a novel margin-based perspec-

tive towards SRC and propose a maximum margin per-

formance metric that is specifically designed for learning

the dictionaries of SRC. Large margin classifiers [2] are

well studied by the machine learning community, and they

have many desirable properties such as robustness to noise

and outlier, and theoretical connection with generalization

bound. Due to the complex nonlinear mapping induced by

sparse coding, evaluating the margin of SRC is nontrivial.

Based on the local stability of sparse code support, we show

in Sec. 2 that the decision boundary of SRC is a continuous

piecewise quadratic surface, and the margin of a sample is

approximated as its distance to the tangent plane of the de-

cision function in a local region where the support of sparse

code is stable. Following the idea of Support Vector Ma-

chine (SVM), we propose in Sec. 3 to use the hinge loss of

approximated margin as a metric for the classification per-

formance and generalization capability of SRC. A stochas-

tic gradient descent algorithm is then implemented to max-

imize the margin of SRC and obtain more discriminative

dictionaries. To the best of our knowledge, we are the first

to conduct margin analysis on SRC and optimize its dictio-

nary by margin maximization. The experiments in Sec. 4

validate the effectiveness of our margin-based loss function

in predicting classification performance. It is shown on sev-

eral data sets that our algorithm can learn very compact dic-

tionaries that attain much higher accuracies than the con-

ventional dictionaries in SRC; the performance is also com-

petitive with other state-of-the-art methods based on sparse

coding. Sec. 5 draws conclusion and discusses future work.

2. Margin Analysis of SRC
2.1. Preliminary

Suppose our data sample x lies in the high dimensional

space R
m and comes from one of the C classes with label

y ∈ {1...C}. In SRC, a dictionary D ∈ R
m×n with n atoms

is composed of C class-wise sub-dictionaries Dc ∈ R
m×nc

such that D = [D1, ...,DC ] = [d1, ...,dn]. Given D, we

can find the sparse code α ∈ R
n for signal x by solving the

following LASSO problem:

α = argmin
z
‖Dz− x‖22 + λ‖z‖1, (1)

where λ > 0 is a constant. The sparse code can be de-

composed into C sub-codes as α = [α1; ...;αC ], where

each αc corresponds to the coefficients for sub-dictionary

Dc. SRC makes classification decision based on the resid-

ual of signal approximated by the sub-code of each class:

rc = ‖ec‖22, where ec = Dcαc − x is the reconstruction

error vector for class c. The class label is then predicted as:

ŷ = argmin
c

rc. (2)

More detailed explanation of SRC can be found in [24].

2.2. Local Decision Boundary for SRC

To perform margin-based analysis for SRC, we first need

to find its classification decision boundary. Consider two

classes c1 and c2, and assume the dictionary D is given. The

decision function at sample x is simply defined as f(x) =
rc2 − rc1 ≷ 0. f(x) can be expanded as:

f(x) = 2(Dc1αc1−Dc2αc2)
Tx−‖Dc1αc1‖2+‖Dc2αc2‖2.

(3)

Eq. (3) could be regarded as a linear hyper-plane in the s-

pace of data x, if the sparse code α was fixed. What compli-

cates things here is that α is also determined by x through

the sparse coding model in (1), and the hyper-plane in (3)

will change with any small change in x. Expressing α ana-

lytically as a function of x is not possible in general, unless

we know a priori the support and sign vector of α. In the

latter case, the non-zero part of α can be found according

to the optimal condition of LASSO solution [29]:

αΛ = (DT
ΛDΛ)

−1(DT
Λx−

λ

2
sΛ), (4)

where Λ = {j|αj �= 0} is the active set of sparse co-

efficients with cardinality |Λ| = ‖α‖0 = s, αΛ ∈ R
s

contains the sparse coefficients at these active locations,

DΛ ∈ R
m×s is composed of the columns in D correspond-

ing to Λ, and sΛ ∈ R
s carries the signs (±1) of αΛ. Al-

though the active set Λ and sign vector sΛ also depend on

x, it can be shown (in supplementary material) that they are

locally stable if x changes by a small amount of Δx satis-

fying the following stability conditions:{ |dT
j {e+ [DΛ(D

T
ΛDΛ)

−1DT
Λ − I]Δx}| ≤ λ

2 , ∀j �∈ Λ
sΛ � [(DT

ΛDΛ)
−1DT

ΛΔx] > −sΛ �αΛ
,

(5)

where � denotes element-wise multiplication, and e =
DΛαΛ−x is the global reconstruction error. All the condi-

tions in (5) are linear inequalities for Δx. Therefore, the lo-

cal neighborhood around x where the active set (and signs1)

of signal’s sparse code remains stable is a convex polytope.

Now substitute the sparse code terms in (3) with (4), and

after some manipulations we obtain a quadratic local deci-

sion function fΛ(x) which is defined for any x whose sparse

code corresponds to active set Λ:

fΛ(x) =xTΦT
c2Φc2x+ 2νT

c2Φc2x+ νT
c2νc2

− (xTΦT
c1Φc1x+ 2νT

c1Φc1x+ νT
c1νc1), (6)

where

Φc = DΛPc(D
T
ΛDΛ)

−1DT
Λ − I, (7)

νc = −λ

2
DΛPc(D

T
ΛDΛ)

−1sΛ, (8)

1In the following, the concept of sign vector sΛ is included by default

when we refer to “active set” or “Λ”.
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and Pc is an s×s diagonal matrix with 1 at positions cor-

responding to class c in the active set and 0 otherwise. The

above analysis leads to the following proposition for the de-

cision function of SRC.

Proposition 2.1 The decision function of SRC is a piece-
wise quadratic function of input signal with the form of

f(x) = fΛ(x), (9)

for any x in the convex polytope defined by Eq. (5) where
the active set Λ of its sparse code is stable.

Since there are a set of quadratic decision functions each

devoted to a local area of x, SRC is capable of classifying

data which cannot be linearly or quadratically separated in a

global sense. The decision boundary of SRC can be adapt-

ed to each local area in the most discriminative and compact

way, which shares a similar idea with locally adaptive met-

ric learning [7]. On the other hand, these quadratic function-

s as well as the partition of local areas cannot be adjusted

individually; they are all tied via a common model D. This

is crucial to reduce model complexity and enhance infor-

mation sharing among different local regions, considering

there could be as many as 3n regions2 out of the partition of

the entire signal space.

To find the decision boundary of SRC, we simply need

to check at what values of x, f(x) will vary from positive

to negative, as the decision threshold is 0. It has been show

in [29] that the sparse code α is a continuous function of x.

Thus we can easily see that f(x) is also continuous over the

entire domain of x, and the points on the decision boundary

of SRC have to satisfy f(x) = 0, which is stated in the

following proposition.

Proposition 2.2 The decision boundary of SRC is a piece-
wise quadratic hypersurface defined by f(x) = 0 .

2.3. Margin Approximation for SRC

For linear classifiers, the margin of a sample is defined

as its distance from the decision hyperplane. In the context

of SRC, we similarly define the margin of a sample x0 as

its distance to the closest point on the decision boundary:

minf(x)=0 ‖x0−x‖2. Unfortunately, due to the complexity

of SRC’s decision function f(x), it is difficult to evaluate

the associated margin directly.

Instead, we estimate x0’s margin by approximating f(x)
with its tangent plane at x0. Such approximation is ap-

propriate only when gradient ∇f(x) does not change too

much as f(x) descents from f(x0) to 0, which is general-

ly true based on the following observations. First, within

each polytope for a stable active set Λ, ∇fΛ(x) is a lin-

ear function of x and will not change a lot if x0 lies close

2Each atom can be assigned with a positive, negative, or zero coeffi-

cient.
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Figure 1. The histograms of the (a) correlation and (b) magnitude

ratio between the decision function gradients ∇fΛ1 and ∇fΛ2 on

the MNIST data set. ∇fΛ1 is the gradient at original data x, and

∇fΛ2 is the gradient at data with a small perturbation Δx from x,

such that only one of the conditions in Eq. (5) is violated. Both (a)

and (b) are highly peaked around 1.

to the boundary. Second, as implied by the empirical find-

ings in Fig. 1, if we have two contiguous polytopes cor-

responding respectively to two stable active sets, Λ1 and

Λ2, which are the same except for one entry, then with a

high probability the gradient of decision function in the two

polytopes will be approximately the same near their bor-

der: ∇fΛ1
≈ ∇fΛ2

. This observation allows us to approxi-

mate the decision function over a number of polytopes with

a common tangent plane. Third, as will be discussed in

Sec. 3, we are more interested in the data samples near the

decision boundary when optimizing a large margin classifi-

er. Thus, those faraway samples whose margins cannot be

accurately approximated can be safely ignored. Therefore,

our approximation is also suitable for the use with margin

maximization.

Once the decision function f(x) is linearly approximat-

ed, the margin γ of x0 is simply its distance (with sign) to

the hyperplane f(x) = 0:

γ(x0) =
f(x0)

‖∇f(x0)‖2 =
f(x0)

‖∇fΛ(x0)‖2
=

rc2 − rc1
2‖ΦT

c2ec2 −ΦT
c1ec1‖2

, (10)

where we use the relationship ec = Φcx + νc to simplify

the expression in (10); all the Φc’s and νc’s are calculated

according to (7) and (8) with the active set Λ of x0’s sparse

code. It should be noted that the decision function gradient

∇f is not defined on the borders of convex polytopes with

different active sets. In such a case, we just replace ‖∇f‖2
with the largest directional derivative evaluated in all the

pertinent polytopes.

In SRC, all data samples are usually normalized onto the

unit ball such that ‖x‖2 = 1. In this way, the change of

f(x) in the direction of x0 itself should not be taken into

account when we calculate the margin of x0. The margin
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Figure 2. Top: decision function f(x) for class “7” against class

“4” in the MNIST data set and its approximations, where x
changes in the 1D neighborhood of a sample x0 in the direction

of gradient ∇f(x0). Bottom: the images of x as it moves in the

direction of ∇f(x0) (from left to right). The central image corre-

sponds to the original sample x0.

expression can be further amended as

γ(x0) =
f(x0)

‖M∇f(x0)‖2 =
rc2 − rc1

2‖M(ΦT
c2ec2 −ΦT

c1ec1)‖2
,

(11)

where M = (I− x0x
T
0 ).

Fig. 2 graphically illustrates our margin approximation

approach for one image sample x0 from class “7” in the M-

NIST digits data set. We evaluate the ground truth value

of decision function f(x) at a series of data points x in a

1D interval generated by shifting x0 along the direction of

∇f(x0), and record all the points where the active set of

sparse code changes. We can see that the piecewise smooth

f(x) (plotted as a red curve) can be well approximated by

the tangent of local quadratic decision function (green as-

terisk) in a neighborhood where the active set (whose stable

region is delimitated by red plus) does not change too much.

However, the linear approximation (blue cross) suggested

by Eq. (3) is much less accurate, though they all intersect at

point x0. The margin (indicated by golden arrow) we find

for this example is very close to its true value. Fig. 2 also

shows how the appearance of the image signal is distorted

to the imposter class “4” from its true class “7” as it moves

along the gradient of decision function.

3. Maximum-Margin Dictionary Learning
The concept of maximum margin has been widely em-

ployed in training classifiers, and it serves as the corner-

stone of many popular models including SVM. The classi-

cal analysis on SVM [22] established the relationship be-

tween the margin of the training set and the classifier’s gen-

eralization error bound. Recently, a similar effort has been

made for sparsity-based linear predictive classifier [18],

which motivates us to design the dictionary for SRC from a

perspective based on the margin analysis given in Sec. 2.

Suppose we have a set of N labeled training data sam-

ples: {xi, yi}i=1...N . Learning a discriminative dictionary

D∗ for SRC can be generally formulated as the following

optimization problem:

D∗ = arg min
D∈D

1

N

∑
i

L(xi, yi;D). (12)

where D denotes R
m×n dictionary space with unit-norm

atoms. To maximize the margin of a training sample close to

the decision boundary of SRC, we follow the similar idea in

SVM and define the loss function L(x, y;D) using a multi-

class hinge function:

L(x, y;D) =
∑
c�=y

max{0,−γ(x, y, c) + b}, (13)

where b is a non-negative parameter controlling the mini-

mum required margin between classes, and

γ(x, y, c) =
rc − ry

2‖M(ΦT
c ec −ΦT

y ey)‖2
, (14)

is the margin of sample x with label y calculated against a

competing class c �= y, which is adopted from Eq. (11). The

loss function in (13) is zero if the sample margin is equal or

greater than b; otherwise, it gives penalty linearly propor-

tional to negative margin. Different from what is defined in

SVM, the margin we use here is unnormalized since the unit

dictionary atom constraint ensures the objective function is

bounded. Moreover, (13) promotes multi-class margin by

summing over all possible imposter classes c and optimiz-

ing the single parameter D that is shared by all classes. This

offers an advantage over a set of one-versus-rest binary clas-

sifiers whose margins can only be optimized separately.

According to the numerator in (14), the residual differ-

ence between the correct and incorrect classes, rc − ry ,

should be maximized to achieve a large margin. Such re-

quirement is consistent with the classification scheme in (2),

and it has also been enforced in other dictionary learning al-

gorithms such as [16]. In addition, we further introduce a

novel term in the denominator of (14), which normalizes the

nonuniform gradient of SRC decision function in differen-

t local regions and leads to a better estimation to the true

sample margin.

3.1. Online Dictionary Learning

We solve the optimization problem in Eq. (12) using

an online algorithm based on stochastic gradient descent

1220



method, which is usually favored when the objective func-

tion is an expectation over a large number of training sam-

ples [15]. In our algorithm, the dictionary is first initialized

with a reasonable guess D0 (which can be the concatena-

tion of sub-dictionaries obtained by applying K-means or

random selection to each class). Then we go through the

whole data set multiple times and iteratively update the dic-

tionary with decreasing step size until convergence. In the

t-th iteration, a single sample (x, y) is drawn from the data

set randomly and the dictionary is updated in the direction

of the gradient of its loss function:

Dt = Dt−1 − ρt[∇DL(x, y;Dt−1)]T , (15)

where ρt is the step size at iteration t. It is selected as ρt =
ρ0√

(t−1)/N+1
with initial step size ρ0. The gradient of our

loss function is

∇DL(x, y;D) = −
∑

c∈C(x,y)
∇Dγ(x, y, c) (16)

where C(x, y) = {c|c �= y, γ(x, y, c) < b}. We ig-

nore those competing classes with zero margin gradien-

t (γ(x, y, c) > b) or zero sub-gradient (γ(x, y, c) = b). The

latter case occurs with very low probability in practice and

thus will not affect the convergence of stochastic gradient

descent as long as a suitable step size is chosen [3].

All that remains to be evaluated is ∇Dγ(x, y, c), which

can be obtained by taking derivative of Eq. (14) with respect

to D. We realize from the results in [18] that the active set

Λ for any particular sample x is stable when there is a small

perturbation applied to dictionary D. Since the approxima-

tion of margin is also based on a locally stable Λ, we can

safely deduce that γ(x, y, c) is a differentiable function of

D. In this way, we circumvent the trouble of indifferen-

tiability when directly taking derivative of sparse code with

respect to D as has been done in [14, 26]. In addition, since

(14) depends only on DΛ, we just need to update those dic-

tionary atoms corresponding to the active set Λ of each sam-

ple x. The dictionary updating rule in (15) can be rewritten

as:

Dt
Λ = Dt−1

Λ + ρt · [∇DΛγ(x, y, c)]
T , (17)

which is repeated for all c ∈ C(x, y). The specific form of

∇DΛγ(x, y, c) is given in supplementary material. Once the

dictionary is updated in the current iteration, all its atoms

are projected to the unit ball to comply with the constrain-

t that D ∈ D. The overall Maximum-Margin Dictionary

Learning (MMDL) approach is summarized in Algorithm 1.

3.2. Interpreting the Learning Algorithm

The gradient term in (17) takes a very complicated for-

m as given in supplementary material. Nevertheless, some

intuition can be obtained from its expression about how our

Algorithm 1 Maximum-Margin Dictionary Learning (M-

MDL) for SRC

Input: labeled data set S = {xi, yi}, dictionary size n,

sparse regularization λ, required margin b
Output: dictionary D

1: initialize D with all class-wise sub-dictionaries Dc (ob-

tained using K-means)

2: set t = 1
3: while not converge do
4: randomly permute data set S
5: for each (x, y) ∈ S do
6: for each c in C(x, y) do
7: update DΛ according to Eq. (17)

8: end for
9: dj ← dj/‖dj‖ for each j ∈ Λ

10: t← t+ 1
11: end for
12: end while
13: return D

algorithm works. We first notice that Eq. (17) will add ec to

all the active atoms associated with class c and subtract ey
from all the active atoms associated with class y, both with a

scaling factor proportional to each atom’s sparse coefficien-

t. Such operation effectively “pulls” those active atoms of

correct class towards the signal, and “pushes” those active

atoms of imposter class away from the signal, which is sim-

ilar to the strategies used to optimize codebook in Learning

Vector Quantization (LVQ) [11] and Large Margin Near-

est Neighbor (LMNN) [23]. In addition, (17) also uses the

overall reconstruction error e and the projections of ec and

ey as the ingredients to update the active atoms from all
the classes, which is reasonable because the sparse code is

jointly determined by all the active atoms.

On the other hand, we observe from Eq. (16) that on-

ly those difficult samples that have small margins against

the imposter classes are selected to participate in dictionary

training. Similar sample selection schemes are also found in

LVQ and LMNN. Therefore, our choice of hinge loss func-

tion is supported from the perspective of other previously

developed large-margin classifiers.

4. Experimental Results

4.1. Algorithm Analysis

To get a better understanding of the proposed method,

we first conduct some analysis on its behavior in this section

using a subset of 20,000 training samples from the MNIST

[12] digits data set.

The accuracy of SRC margin approximation, which is

key to the effectiveness of our method, is first investigated.

Because it is impossible to find the exact margin of a sample
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Figure 4. The objective function on training set and recognition

accuracy on test set during the iterations of MMDL algorithm.

x0, we use the shortest distance between x0 and the decision

boundary in the gradient direction∇f(x0) as a surrogate to

the ground truth margin. Such “directional margin” is found

by a line search and plotted in Fig. 3 against the estimated

margin γ(x0) using Eq. (11) for all the samples. A strong

linear relationship is observed between the directional and

estimated margin, especially for those samples with small

margins which are indeed to the interest of our algorithm.

We also plot the distribution of residual difference rc2 −
rc1 , which shows a weaker correlation with the directional

margin. This justifies that maximizing γ(x) as defined in

(14) is a better choice than simply maximizing rc2 − rc1 for

large-margin optimization.

The behavior of our MMDL algorithm is examined in

Fig. 4. The objective function value over the training sam-

ples decreases steadily and converges in about 70 iterations.

At the same time, the recognition accuracy on a separate test

set is remarkably improved during the iterations, indicating

a good correspondence between our margin-based objective

function and SRC’s generalized performance 3.

The minimum required margin b in Eq. (13) is an im-

portant parameter in MMDL, whose effect on recognition

performance is shown in Table 1. A too small value of b

3We do observe some small fluctuations on the testing accuracy, which

is caused by the stochastic gradient descent.

Table 1. The effect of parameter b on classification accuracy.

b 0 0.05 0.1 0.15 0.2

train acc. 100.00 100.00 99.44 98.45 97.39

test acc. 96.78 98.01 98.13 97.36 96.77

Figure 5. Dictionary atoms for MNIST digits data, learned using

unsupervised sparse coding (row 1, 3) and MMDL (row 2, 4).
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Figure 6. Correlation between the first principal component of

atoms from different dictionaries and the LDA directions of the

MNIST training data.

leads to over-fitting to training set, while a too large value

leads to bias of the classification objective. We find b = 0.1
is generally a good choice on different data sets, and gradu-

ally reducing b during the iterations can help the algorithm

focus more on those hard samples near decision boundary.

The image patterns of some dictionary atoms obtained

using MMDL are shown in Fig. 5, together with those ob-

tained using unsupervised sparse coding [13], which were

used to initialize the dictionary in MMDL. The discrimi-

native atoms trained with MMDL look quite different from

their initial reconstructive appearances, and place more em-

phasis on local edge features that are unique to each class.

The discriminative power of our learned dictionary can be

further demonstrated in Fig. 6, which shows that, com-

pared with K-means and unsupervised sparse coding, the

MMDL algorithm learns dictionary atoms whose first prin-

ciple component has a much higher correlation with most

of the LDA directions (especially the first one) of the train-

ing data. Although LDA directions may not be optimal for

SRC, our dictionary atoms appear to be more devoted to

discriminative features instead of reconstructive ones.

4.2. Recognition Performance Evaluation

Now we report the recognition performance of the pro-

posed method on several benchmark data sets. SRC is most

well known for face recognition task, therefore we first test
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Table 2. Recognition accuracies (%) on face databases.

Method
Extended

YaleB
AR Face

Full 97.34 96.50

Subsample 91.20 73.17

KSVD [1] 88.63 90.00

Kmeans 95.44 90.00

Unsup [13] 96.35 90.33

LC-KSVD [10] 95.00 93.70

MMDL 97.34 97.33
Error reduction (%) 27.12 72.39

Table 3. Performance of SRC on the MNIST digits database.

Training method / Size of D Accuracy (%)

Subsample / 30000 98.05

Subsample / 150 82.19

Kmeans / 150 94.19

Unsup [13] / 150 94.84

Ramirez et al. [20] / 800 98.74

MMDL / 150 98.76
Error reduction (%) 75.97

on two face data sets: extended YaleB [9] and AR face [17].

We use 2,414 face images of 38 subjects from the extend-

ed YaleB data set, and a subset containing 2,600 images

of 50 female and 50 male subjects from the AR face da-

ta set. We follow the procedure in [10] to split the train-

ing and test data, and obtain random projected face features

of 504(540)-dimension for extended YaleB(AR face). For

both data sets, we compare the performance of SRC with

dictionaries obtained from the full training set (“Full”), ran-

dom subsampling of training set (“Subsample”), KSVD [1],

K-means (“Kmeans”), unsupervised sparse coding (“Un-

sup”) [13], and our MMDL algorithm. Comparison with

the state-of-the-art results of LC-KSVD [10] is also given,

which employs a linear classification model on space codes.

For extended YaleB(AR face), 15(5) atoms per subject are

used for all the dictionaries expect for “Full”, and λ is set

as 0.01(0.005). As shown in Table 2, MMDL achieves the

highest accuracies on both data sets, and outperforms the

“Full” SRC on AR face using a much smaller dictionary.

The huge reduction in the error rate of MMDL with respect

to its initialization value given by “Unsup” further confirms

the effectiveness of our learning algorithm.

Our method is also evaluated on the full MNIST data

set, which contains 60,000 images for training and 10,000

for testing. We use PCA to reduce the dimension of each

image such that 99% energy is preserved, and set λ = 0.1.

Table 3 lists the classification accuracies of SRC with dic-

tionaries trained using various methods and with different

sizes. MMDL is shown to be advantageous over other meth-

ods in terms of both accuracy and dictionary compactness,
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Figure 7. Distributions of correctly and incorrectly classified test

samples plotted against estimated margin and reconstruction resid-

ual using the atoms from predicted class.
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Figure 8. Two misclassified samples corresponding to the red

crosses marked by (a) and (b) in Fig. 7. From left to right: original

sample; reconstruction with atoms of predicted class; reconstruc-

tion with atoms of truth class; sparse coefficients.

the latter of which implies higher efficiency in computation

as well as storage. Note that we are unable to evaluate SR-

C with the “Full” setting because the memory required for

the operation on such a huge dictionary exceeds our system

capacity (32GB).

Fig. 7 reveals the distinct distributions of correctly and

incorrectly classified samples in terms of estimated margin

and reconstruction residual with predicted class. The in-

correct samples are observed to have higher residuals and

smaller margins, which is expected since hard samples typ-

ically can not be well represented by the corresponding

classes and lie close to the boundary of imposter classes.

This provides another evidence to show the accuracy of our

margin estimation. Therefore, the estimated margin can al-

so serve as a metric of classification confidence, based on

which the classification results could be further refined. T-

wo cases of failed test samples are illustrated in Fig. 8. The

digit “7” in (a) is misclassified as “2” with a large margin

due to the strong inter-class similarity and high intra-class

variation insufficiently captured by the training set. The dig-

it “5” in (b) cannot be faithfully represented by any class;

such an outlier has a very small margin and thus can be po-

tentially detected for special treatment.
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5. Conclusion and Future Directions
An in-depth analysis of the classification margin for SRC

is presented in this paper. We show that the decision bound-

ary of SRC is a continuous piecewise quadratic hypersur-

face, and it can be approximated by its tangent plane in a

local region to facilitate the margin estimation. A learning

algorithm based on stochastic gradient descent is derived to

maximize the margins of training samples, which generates

compact dictionaries with substantially improved discrimi-

native power observed on several data sets.

In the future work, we will explore better ways to ap-

proximate the margin of samples far away from the decision

boundary in the hope to further improve dictionary quality.

It would also be of great interest to establish a strict relation-

ship between the margin and generalization performance of

SRC, so that a better knowledge can be gained about under

what circumstances is SRC expected to perform best.
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