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Abstract

We present a compositional model for video event detec-
tion. A video is modeled using a collection of both global
and segment-level features and kernel functions are em-
ployed for similarity comparisons. The locations of salient,
discriminative video segments are treated as a latent vari-
able, allowing the model to explicitly ignore portions of the
video that are unimportant for classification. A novel, mul-
tiple kernel learning (MKL) latent support vector machine
(SVM) is defined, that is used to combine and re-weight
multiple feature types in a principled fashion while simul-
taneously operating within the latent variable framework.
The compositional nature of the proposed model allows it
to respond directly to the challenges of temporal clutter and
intra-class variation, which are prevalent in unconstrained
internet videos. Experimental results on the TRECVID Mul-
timedia Event Detection 2011 (MED11) dataset demon-
strate the efficacy of the method.

1. Introduction
Multimedia event detection in unconstrained video col-

lections is a challenging problem. Event categories are di-
verse and exhibit large intra-class variation. Additionally,
videos may be composed of a small number of important
segments, while the remaining portions of the video are in-
effective for classification.

Consider the example video from the board trick cate-
gory in Fig. 1. This video contains segments focusing on
the snowboard, the person jumping, is shot in an outdoor,
ski-resort scene, and has fast-paced theme music. Together,
all of these pieces of evidence can lead an algorithm to de-
clare that this video is from the relevant category.
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Figure 1: A test video can be described using pieces of
similar training videos. Similarity might be defined from
different perspectives. In this example, parts of the test
video from the board trick event are similar to three dif-
ferent videos in terms of motion and sound (green), pure
motion (purple) or motion and texture (yellow).

Building a model that can correctly categorize this type
of video is challenging. Arguably, such a model must rea-
son about which temporal segments within the video con-
tain relevant evidence. Additionally, grouping these seg-
ments into different mid-level categories, or “scene types”
may be beneficial. For the board trick event, a particular
video may involve a surfboard, skateboard, or snowboard
trick, but is unlikely to include all three. Grouping segments
into their relevant scene types can improve recognition. Fi-
nally, the model must utilize a variety of different low-level
features in order to make such a decision.

In this paper we present a novel, compositional model
for video event detection. Our model uses a latent variable
framework to localize the discriminative temporal segments
of a video. These temporal segments are matched to training
segments of the same scene type via kernels that combine
information from several feature modalities. The test video
is explained as a composition of related training videos.

The main contribution of this paper is the theoretical de-
velopment of a formulation and learning algorithm for this

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.463

1185



type of model. The proposed compositional method has two
key novel aspects: (1) a weakly supervised method for lo-
calizing only the most salient evidence for classification in
a video sequence. This method does not require manual
marking of the salient segments – they are automatically
extracted and labeled by scene type. (2) A novel multiple
kernel learning algorithm with structured latent variables
that permits the principled combination of multiple differ-
ent low-level features in a single integrated framework.

2. Previous Work
Event detection in unconstrained internet videos is an ac-

tive area of research. We consider the TRECVID MED11
dataset – a large, diverse, and challenging video collec-
tion. Among the top ranking methods on this dataset is
the work of Natarajan et al. [7], which performs a princi-
pled combination of many low-level features using a global,
video-level representation. It is arguable that engineering
a combination of many complementary low-level features
is necessary for excellent performance on this dataset, and
the method we propose can be used with a multitude of
features in this manner. Furthermore, our multiple kernel
learning algorithm offers an extension that allows for such
feature combination in conjunction with latent SVMs. With
this novel approach, more detailed comparisons between la-
tently selected video segments can be considered.

Other video classification work includes Niebles et
al. [8], who developed a related model for human action
recognition, but used a fixed, single temporal ordering of
key poses around anchor points – which may break down
in internet videos due to temporal clutter. Tang et al. [12]
extended this line of work to consider temporal segmenta-
tion via a variant of an HMM. Cao et al. [1] considered a
“scene aligned pooling” feature representation to capture
the different scenes present in a single video. In contrast
to the above, our method focuses on intra-class variation
and temporal scatter of an event by using latent variables
to compose a test video in a kernelized framework. In di-
rect comparisons, we show empirically that our approach
outperforms these previous methods.

The approach we take to modeling internet videos is
weakly supervised – only a video-level category label is
provided during training. Segments and their associated
scene types that compose a video are learned in an unsu-
pervised fashion. Izadinia and Shah [4] developed a sim-
ilar method, but with manual annotations on the training
data – extending the image-attribute method of Wang and
Mori [17] to the video domain.

Technically, the proposed approach is most closely re-
lated to [18, 20, 3], but differentiates itself by presenting
a novel multiple kernel learning approach that accommo-
dates structured latent variables. In comparison, Wu and
Jia [18] and Yang et al. [20] developed kernelized variants
of the latent support vector machine [2, 21]. However, the
algorithms for learning kernelized latent SVMs in these pa-

pers have two drawbacks: they are limited to cases where
one can enumerate the set of latent variables and they are
restricted to a single kernel or a set of summed kernels.
Finally, Gu et al.[3] consider low level concept detection
(e.g. flag, car, building) using a bag-instance relationship
whereas ours examines high-level event recognition.

Kernelized classifiers often offer superior performance.
A body of work has aimed at providing efficient training
and evaluation with kernelized classifiers via algorithmic
optimizations or additive linear approximations [15, 6, 10].
This line of work is promising, but has yet to be extended
to latent variable models, as is done here.

3. Compositional Models for Video Retrieval
We are interested in the classification of high-level com-

plex events in unconstrained internet videos. Two signif-
icant challenges in this domain are temporal clutter (i.e.,
the evidence of a complex event can occur in small, iso-
lated video segments) and intra-class variation. In this pa-
per, we target both the intra-class variation and temporal
clutter challenges by leveraging a compositional model.

Early successes on the TRECVID MED11 dataset have
often deferred to an approach where the output of an array
of simple classifiers operating on a range of low-level fea-
tures are combined [7]. These approaches have tended to
employ simple, bag of words (BoW) representations with
kernelized SVM classifiers. In such systems, the standard
kernelized SVM can be thought of as a form of intelligent
template matching, whereby a test video is compared di-
rectly against the set of support vectors. Such approaches
can perform effective matching on global video-level repre-
sentations, but are not well-suited for segment-level analy-
sis. By introducing latent variables in our proposed method,
kernelized latent SVMs are constructed that select particu-
larly salient video segments. Thus, this intelligent template
matching can now be completed not only at the video level,
but also at the segment level. This approach provides our
compositional model with the additional flexibility to mix
and match segments from the pool of training videos when
evaluating a test video, directly addressing the challenges of
clutter and intra-class variation.

Additionally, to attain state-of-the-art performance on
TRECVID MED11, it appears that multiple feature types
must be combined. We further extend our model to combine
multiple kernel learning with the kernelized latent SVM
framework, adding the ability to weight feature types based
on their relative importance.

3.1. Linear Model
To begin the exposition we describe the linear version

of our model, which consists of two parts. The first
part is a global model that captures the overall theme or
“subcategory” of the video. It is assumed that each event
category contains several subcategories (e.g., a wedding
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Figure 2: Depiction of our proposed model. The global
model captures the subcategories of an event, and the scene
model represents the different scene types observed in the
category. The presence of a subcategory or scene type is
represented using binary variables (bc, zs). The temporal
position of scene types in a video is denoted by ts.

ceremony at a church, house, or park). Further, it is assumed
that a particular video corresponds to only one subcategory.
The second part of our formulation is a “scene type model”
that represents an event by a set of segment-level features.
This part of the model is included to identify and localize
discriminative segments of interest in a video. The model is
depicted graphically in Fig. 2.

We consider eight second segments that correspond to
scenes observed within the event category (e.g., for wed-
ding ceremony videos, outdoor park scenes or people danc-
ing, cutting a cake, or kissing). A weakly supervised setting
is considered, meaning that we are only given a binary event
label for each video that indicates the presence of a complex
event in the sequence; the subcategory labels, scene type la-
bels, and temporal locations of scene types are not provided.
These are modeled as hidden variables and we employ a la-
tent max-margin approach [2] to infer them during training.

Concretely, assume we are given a video sequence x, and
want to classify it into an event category. The variables C
and S denote the number of subcategories and scene types
for an event, respectively. The presence of a subcategory
c ∈ {1, 2, . . . , C} is defined using the binary variable bc;
similarly, the presence of a scene type s ∈ {1, 2, . . . , S} is
denoted using the binary variable zs.

We define φg(x), a global feature extracted from the
whole sequence, and φl(x, t) a segment-level feature ex-
tracted from a temporal window of fixed size centered at
time t in x. Multiple features are incorporated to improve
accuracy: G global and L local (segment-level) features.
Together, the linear version of our model is defined as:

fw(x,b,h) =

C∑
c=1

G∑
g=1

wT
cgφg(x)bc +

S∑
s=1

L∑
l=1

wT
slφl(x, ts)zs (1)

where wcg is the learned weight vector for the cth subcat-
egory model on the global feature φg(·), and wsl is the
weight vector for the sth scene type model defined on the
segment-level feature φl(·). Use of the same set of feature
types in the global and segment-level scales can be achieved
by setting G = L. However, more generally, our model sup-

ports the added flexibility of using different sets of features
for the two parts. For notational compactness, we represent
the pair (ts, zs) using hs for s ∈ {1, 2, ..., S}, and group
them in vector h = {h1, h2, ..., hS}. We similarly group
subcategory binary variables in b = {b1, b2, ..., bC}.

Note that the model in Eq. 1 assumes the temporal loca-
tion for the sth scene type is shared among all segment-level
features types – they are all extracted from the same tempo-
ral window in the sequence.

It is assumed that a sequence can belong to only one
global subcategory, but multiple scene types might be ob-
served in a sequence, corresponding to the various seg-
ments. Therefore, two hard constraints are imposed on the

selecting binary variables:
∑C

c=1 bc = 1, and
∑S

s=1 zs =
K, where K is a constant parameter.

The subcategory variables, bc, and scene model configu-
rations, hs, are latent variables, unobserved on both training
and testing data. Next, we develop a novel multiple kernel
learning approach for learning with these latent variables.

3.2. Multiple Kernel Latent SVM
Latent SVMs have been successfully used in many com-

puter vision tasks. They were originally proposed for linear
models [21, 2], where the similarity of two samples is mea-
sured using a simple dot product. Recently, LSVMs were
extended to kernelized versions [20, 18] resulting in signifi-
cant boosts in recognition accuracy. However, both [20, 18]
assumed simple models with few latent variables that could
be enumerated during inference. In our proposed model,
latent variables are defined in a structured framework such
that enumeration is not tractable.

The use of multiple complementary features can lead to
improved recognition accuracy. With multiple features, fu-
sion is a challenge because the importance of feature types
is variable. Multiple kernel learning is a standard approach
to address this challenge. A linear MKL SVM framework
(e.g., [16]) typically performs such fusion by linearly com-
bining a set of kernels K =

∑
i diKi, which corresponds

to re-scaling feature maps of the kernel, Ψi, by
√
di.

The linear model in Eq. 1 is also defined with respect to
multiple features. We require a training framework that can
accommodate both latent variables and feature re-scaling si-
multaneously. We propose a novel multiple kernel latent
SVM framework that extends standard MKL and can be
used to train models of the form proposed in this paper.

Consider a set {(x1, y1), (x2, y2), . . . , (xN , yN )} of

training videos where xi ∈ X is the ith video and yi ∈
{−1, 1} its label. Our goal is to learn a scoring func-
tion F : X → R that can be used to classify a video.
Similar to the standard latent SVM, the proposed multi-
ple kernel latent SVM (MKL-KLSVM1) operates upon a
set of base feature maps, Ψi(x,v), defined on a sample x
and its latent variables v ∈ V , where V is the set of all

1We use MKL-KLSVM for Multiple Kernel Latent SVM to prevent
confusion with Multiple Kernel Learning SVM (MKL SVM)
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possible latent variables. We define the scoring function

F (x) = maxv
∑I

i=1

√
diw

T
i Ψi(x,v) where di is the nor-

malizing factor for the ith base feature map. Training of the
MKL-KLSVM is then formulated as:

min
w,b,ξ≥0,d≥0

1

2

∑
i

wT
i wi + ρ

∑
n

ξn +
λ

2

∑
i

d2i (2)

s.t. yn(max
v∈Vn

∑
i

√
diw

T
i Ψi(xn,v) + b) ≥ 1− ξn ∀n,

where λ is a regularizer on the kernel weights, di to prevent
them from diverging to infinity, and ρ is a trade-off param-
eter to penalize error on the training data. Note that our
multiple kernel latent SVM framework becomes a standard
latent SVM [2] if the kernel coefficients, di, are set to one
and will become a standard MKL classifier if the hidden
variables vn are observed.

The objective function in Eq. 2 is not convex; however,
convexity is attained if the latent variables for positive sam-
ples are available (semi-convexity of latent SVM [2]) and
if wi is replaced with

√
diwi. Here we limit the possible

latent variables of positive samples to a single configuration
Vn = {v∗

n} ∀n : yn = 1, but allow negative samples to
consider all possible latent variables, Vn ∀n : yn = −1.
Given that the latent variable configuration has been speci-
fied, the max operator can be omitted from Eq. 2, yielding,

min
w,b,ξ≥0,d≥0

1

2

∑
i

wT
i wi

di
+ ρ

∑
n

ξn +
λ

2

∑
i

d2i (3)

s.t. yn(
∑
i

wT
i Ψi(xn,v) + b) ≥ 1− ξn ∀n, ∀v ∈ Vn

The objective function in Eq. 3 addresses the problem of
learning parameters of a structural SVM with multiple ker-
nels. It has N−|V|+N+ constraints, where N− and N+ are
the number of negative and positive samples respectively. If
the latent variables are structured, |V| will be exponential.
The same problem of exponential constraints is confronted
with linear latent SVMs as well. Yu and Joachims [21] use
the cutting plane algorithm [13] to ameliorate this challenge
by mining hard constraints and iteratively optimizing with
and updating the current constraints.

We use the cutting plane algorithm to extract the set of
most violated constraints for negative samples during train-
ing, while the latent variables of positive videos remain
fixed. Here, Ṽn denotes the set of current active constraints
(instead of Vn, which represents all the constraints defined
over all possible latent variables). The set of active con-
straints, Ṽn, contains just a single constraint per positive
sample, but can have multiple constraints for negative sam-
ples, extracted using the cutting plane algorithm.

Given a current set of constraints, a method is required
for optimizing Eq. 3. By forming the Lagrangian of Eq. 3
and minimizing the objective function with respect to wi, ξ
and b, we obtain

wi = di
∑

n,v∈Ṽn

αn,vynΨi(xn,v) (4)

where αn,v is the Lagrangian variable for the nth sample
and the latent variables, v. Substituting wi in Eq. 3 yields

min
d≥0

max
α

L(α, d) =
∑
n,v

αn,v +
λ

2

∑
i

d2i (5)

−1

2

∑
i

di

⎡
⎣∑

n,v′

∑
m,v′

αn,vαm,v′ynymΨi(xn,v)
TΨi(xm,v′)

⎤
⎦

s.t. 0 ≤
∑
n,v

αn,v ≤ ρ,
∑
n,v

ynαn,v = 0,

which is an instance of the saddle point problem. In
Eq. 5, Ψi(xn,v)

TΨi(xm,v′) can be replaced with a ker-
nel k(xn,v, xm,v′) that measures the similarity of xn and
xm, given their latent configurations. If the kernel weights,
d, are fixed in Eq. 5, the inner maximization will be-
come the Quadratic Program (QP) of a kernelized struc-
tural SVM [13]. We solve the saddle point problem by it-
eratively updating d and subsequently performing QP op-
timization for α with a fixed d. The kernel weights can be
updated using a Newton descent step or the cutting plane ap-
proach [5]. Alternatively, the Lagrangian of Eq. 5 can be de-
rived to form the dual problem, which is differentiable and
can be optimized using the sequential minimal optimization
(SMO) algorithm [11], similar to [16].

Here, we elect to use the simple Newton descent ap-
proach. Given the optimum, α∗, from iteration τ , in itera-
tion τ+1 an update is computed as dτ+1 = dτ−μH−1∇L,
where μ = 1

τ is the step size. Additionally, H = λI is the
Hessian matrix of L(α∗, d) (I is the identity matrix), and
∇Li(α

∗, d) = λdτi − 1
2‖

∑
n,v ynα

∗
n,vΨi(xn,vn)‖2 is the

the derivative of L with respect to dτ . If a Newton descent
update results in a negative kernel weight, it is back pro-
jected using dτ+1

i = 0 if dτ+1
i < 0.

After updating the kernel weights, the inner quadratic
program in Eq. 5 is solved by assuming d is fixed. We it-
erate between these two steps until the optimization con-
verges and the objective function does not change. Given
the final α∗ and d∗ (which together represent w), we infer
the latent variables on the positive examples using v∗

n =
argmaxv

∑
i w

T
i Ψi(xn,v). It has been shown for stan-

dard linear latent SVMs that iteratively updating the latent
variables of positive samples and learning the latent SVM
model parameters will minimize the objective function to a
local optimum [21, 2]. The same argument holds for multi-
ple kernel latent SVM. Algorithm 1 provides a summary of
our proposed training algorithm.

3.3. Kernelized Model
We use multiple kernel latent SVM to train the parame-

ters of our model defined in Eq. 1. However, we still must
define Ψi(x,v), the base features, and their corresponding
kernels that have an associated re-scaling coefficient di as in
Eq. 2. For the linear model defined in Eq. 1 global models
were defined on G global features while scene type models
employed L segment-level feature types. Specifically, the

1188



Algorithm 1 Training a multiple kernel latent SVM

Input : {(x1, y1), (x2, y2) . . . , (xN , yN )}
Output : α∗, d∗

Ṽn = {v0
n} ∀n : yn = 1, Ṽn = {} ∀n : yn = −1

repeat
repeat

Optimize Eq. 3 using iterative Newton descent and
QP given the current Ṽn

∀n : yn = -1 add the most violated constraint to Ṽn

until no change in objective function of Eq. 3
∀n : yn = 1 update Ṽn = argmaxv

∑
i w

T
i Ψi(xn,v)

until no change in Ṽn∀n : yn = 1

base features in Eq. 2, Ψi, are defined as
∑C

c=1 φg(x)bc for

the global features and
∑S

s=1 φl(x, ts)zs for the segment-
level features, which are derived from Eq. 1. Thus, G + L
kernels are defined as

Kg(x,b, x
′,b′) =

C∑
c=1

bckg(x, x
′)b′c,

Kl(x,h, x
′,h′) =

S∑
s=1

zskl(x, ts, x
′, t′s)z

′
s. (6)

Given two videos, x and x′, Kg measures the kernelized
similarity of their global feature if they belong to the same
subcategory; otherwise, it assigns zero similarity. Analo-
gously, Kl measures the kernelized similarity of segment-
level feature l for sequences x and x′ at times ts and t′s for
the scene models that are present in both x and x′.

Given the kernels defined in Eq. 6, Alg. 1 is used to
learn α∗ and d∗, the parameters of the proposed kernel-
ized model. We can substitute these parameters in Eq. 1
to rewrite our scoring function for the kernelized model:

F (x) = max
b,h

[ ∑
n,(hn,bn)

G∑
g=1

α∗
n,(hn,bn)ynd

∗
gKg(xn,bn, x,b)

+
∑

n,(hn,bn)

L∑
l=1

α∗
n,(hn,bn)ynd

∗
l Kl(xn,hn, x,h)

]
, (7)

where (hn,bn) ∈ Ṽn are latent variables defined for the
nth training sample.

The completed model in Eq. 7 is the full, proposed com-
positional model. Given the sequence, x, maximization
matches the sequence to the training videos by choosing
segment locations, h, and the subcategory model, b, that
are well-explained by the training videos. A test video, x,
is assigned a high score for an event category if it is similar
to its associated positive training videos using two criteria.
First, the global features from the test video should be sim-
ilar to the global features from training videos. Second, the
test video should contain segments that are similar to those
in the training set. Under this framework, the test video
can be composed using components from numerous train-
ing videos at both the global and segment scale. The learned

kernel coefficients, d, allow for the re-scaling of the similar-
ity measures on different parts of model. This rescaling can
give higher weights to important feature types while allow-
ing for the extraction of the most discriminative evidence
from the training set, using (hn,bn).

3.4. Implementation Details

Simple heuristics are used to initialize the latent vari-
ables for the positive samples. For the subcategory labels,
we cluster the concatenated global features of the positive
videos into C clusters. Subsequently, we assign a video to
the closest cluster. For the scene models, we similarly clus-
ter the concatenated segment-level features of all segments
from the positive training videos. Then, we choose the K
closest clusters to the video segments, and set the temporal
location of each, ts, to the closest segment.

Inference: For inferring latent variables, we first need
to compute the global and scene model scores for each sub-
category and scene type. For a general kernel type, there
is no explicit form of wi and direct comparison to support
vectors is necessary to compute the scores. Kernel compar-
ison can significantly slow down the inference. Given Ns

support vectors, considering Eq. 7, Eq. 6 and sparsity of bn
and z in hn, O(NsG + NsKLT ) kernel comparisons will
be required to compute the scores for a sequence. How-
ever, with additive kernels we can approximate the embed-
ding feature [14], and form an approximated wi using Eq. 4.
Thus, the number of linear kernel computations becomes
O(CG+ SLT ).

Consider the model in Fig 1. Now, given global and
scene type model scores, we need to infer the subcategory
variables bc and temporal locations ts of the K best scene
type models. The subcategory can be found in O(C). For
a video with T segments, the best location for each scene
type is found in O(T ), and then the K best scenes are se-
lected in O(S log(K)) using a min heap. So, the complexity
of inference is O(C + ST + S log(K)) in addition to the
score computation. In our experiments, this inference takes
0.05 seconds for a 120-second video on an Intel CPU E7450
@2.40GHz.

4. Experiments
We evaluate our model on the challenging TRECVID

MED11 dataset [9], following a standard evaluation pro-
tocol used in previous work [12]. The TRECVID MED11
dataset contains 15 events that are divided across two col-
lections, DEV-T and DEV-O. The DEV-T dataset consists
of 10,723 videos including videos from five event cate-
gories: board trick (E1), feeding animal (E2), landing fish
(E3), wedding ceremony (E4), and woodworking project
(E5). The DEV-O collection is significantly larger, 32,061
videos, and includes ten categories: birthday party (E6),
changing a tire (E7), flash mob (E8), getting a vehicle
unstuck (E9), grooming animal (E10), making sandwich
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Table 1: Performance variation on the DEV-T dataset as a
function of model parameters: the number of subcategories
(C), number of scene types (S), and number of selected
scenes (K). Selection is done for each parameter in turn
and is fixed for subsequent parameters, as shown in red.

Model Settings E1 E2 E3 E4 E5 mAP

C = 1, S = 0 14.2 3.8 16.7 34.4 8.4 15.5

C = 2, S = 0 14.1 3.9 17.6 35.8 8.5 16.0

C = 4, S = 0 14.3 3.7 16.8 34.3 13.7 16.6

C = 8, S = 0 13.8 3.8 18.3 40.7 16.6 18.6

C = 16, S = 0 12.1 3.9 17.3 38.8 15.1 17.4

C = 8, S = K = 4 12.3 2.8 24.0 44.4 13.3 19.4

C = 8, S = K = 8 11.1 2.6 25.3 44.6 12.8 19.2

C = 8, S = K = 16 13.3 2.3 26.8 43.9 14.8 20.2

C = 8, S = K = 32 13.1 2.1 27.2 44.6 14.3 20.2

C = 8, S = 16,K = 1 15.3 3.3 20.1 42.3 16.6 19.5

C = 8, S = 16,K = 2 14.8 3.4 24.1 46.1 18.4 21.4

C = 8, S = 16,K = 4 17.4 3.2 26.3 46.3 17.5 22.1

C = 8, S = 16,K = 8 12.8 2.9 29.0 48.5 17.9 22.2

C = 8, S = 16,K = 16 13.3 2.3 26.8 43.9 14.8 20.2

(E11), parade (E12), parkour (E13), repairing appliance
(E14), and sewing project (E15). Both DEV-T and DEV-
O are dominated by videos of the null category (i.e., back-
ground videos that do not contain the events of interest). For
training, an Event-Kit data collection, containing roughly
150 positive videos per category, is also provided. A classi-
fier is trained for each event category versus all other cate-
gories, similar to [12].

For TRECVID MED11, DEV-T is used for development,
whereas DEV-O is utilized for testing. Thus, we performed
cross validation of all system parameters and hyper param-
eters on DEV-T and held them constant when considering
DEV-O. We use mean average precision (mAP) as the per-
formance metric to remain comparable with recently pub-
lished works [1, 12].

4.1. Comparisons using HOG3D Features

First, we evaluated our proposed method against several
baselines. This evaluation uses HOG3D features, k-means
quantized into a 1,000 word codebook for all methods.
For this experiment, we use the following set of baselines:
Linear-SVM, a linear SVM using HOG3D BoW features;
KSVM, same video-level features with histogram intersec-
tion kernel (HIK) SVM; Niebles [8]; Tang [12]; Linear-
SAP, the scene-aligned pooling method [1] using a linear
SVM; and K-SAP, the same method using a HIK-SVM. Re-
sults for Niebles and Tang are reproduced from [12] and we
obtained exactly the same quantized features to be directly
comparable. Also, note that we re-implemented the scene
aligned pooling method [1] using parameters suggested by
the authors to permit direct comparisons.

Two variants of our proposed model were considered:
Linear-LSVM, using a linear latent SVM, and KLSVM,
using a HIK latent SVM. For the proposed models, selec-
tion of appropriate parameters is required, including the

number of subcategories (C), number of scene types (S),
and number of selected scenes (K). We used the kernel-
ized version of our model with a HIK kernel to choose the
best parameters on DEV-T (E1 to E5) and fixed them for
all subsequent experiments using our model in this paper.
Parameters were selected based on the criteria of mAP per-
formance and model complexity. Interestingly, as Table 1
shows, as the various components of our model are added,
mAP is improved. In particular, our latent model with se-
lected parameters (C = 8, S = 16,K = 4) outperforms the
standard kernelized SVM (C = 1, S = 0) by 6.6% in mAP.

In this section, our novel multiple kernel learning formu-
lation is not employed, since the number of kernels used is
very small. Section 4.2 considers experiments with the full
model, using MKL for multi-feature fusion.

Results for the six baselines and two variants of the pro-
posed method on DEV-O are shown in Table 2. When
considering only models that employ linear SVMs (i.e.,
Linear-SVM, Niebles, Tang, Linear-SAP, and Linear-
LSVM), the recently proposed scene aligned pooling
method provides highest performance with a mean AP of
6.28%. The linear variant of the proposed model offers mid-
range performance. However, the simple KSVM baseline
significantly outperforms all variants that use a linear SVM
classifier, including Niebles and Tang, which model com-
plex structure. It appears that use of a kernelized SVM is
critical for the task of accurate event detection.

A second performance trend can be identified from con-
sidering the models that use kernelized SVMs (i.e., KSVM,
K-SAP, and KLSVM). Specifically, the proposed model,
KLSVM, outperforms all other baselines, including K-SAP
by 3.72% and KSVM by 4.22%. Further, KLSVM attains
best performance on eight out of ten event categories, often
by a significant margin (e.g., 11.43% gap for E14). These
results emphasize the importance of using a compositional
framework. Note that a kernelized version of Tang was not
considered because it is not clear how the computationally
expensive inference could be done for an extension to ker-
nel SVMs, especially for a large data collection.

4.2. Comparisons using Multiple Features

In this section, we demonstrate the effectiveness of the
full, multiple kernel learning-based model by extending
from a single feature modality to six features.

To demonstrate the full MKL-KLSVM model, HOG3D
was supplemented with five additional features from the
Sun09 set [19]. The additional features were: sparse SIFT,
dense SIFT, HOG2x2, self-similarity descriptors (SSIM),
and color histograms. Here, the same set of features was
used for both the global and scene type parts of our model
(i.e., G = L = 6). These particular features were se-
lected because we empirically found them to offer best
performance on TRECVID MED11. Features were ex-
tracted at four second time increments, synchronized with

1190



Table 2: Performance comparison against several baselines using HOG3D features on DEV-O for E6-E15. Numbers denote
the average precision, in %. Best results for a particular event category are shown in bold.

Event Chance Linear-SVM Niebles [8] Tang [12] Linear-SAP [1] Linear-LSVM KSVM K-SAP [1] KLSVM
E6 0.54 1.97 2.25 4.38 2.77 2.34 6.08 4.73 5.73
E7 0.35 1.25 0.76 0.92 2.11 1.33 2.87 2.26 4.81
E8 0.42 6.48 8.30 15.29 25.48 10.30 20.75 22.99 35.82
E9 0.26 2.15 1.95 2.04 4.14 1.79 6.25 7.61 8.38
E10 0.25 0.81 0.74 0.74 1.03 0.76 1.43 1.34 2.12
E11 0.43 1.10 1.48 0.84 1.93 1.41 2.29 2.65 4.65
E12 0.58 5.83 2.65 4.03 7.06 5.71 8.44 8.70 10.99
E13 0.32 2.58 2.05 3.04 10.38 2.57 9.44 10.43 13.11
E14 0.27 1.18 4.39 10.88 6.69 4.58 10.00 11.89 23.32
E15 0.26 0.92 0.61 5.48 1.21 1.09 2.49 2.4 3.29

mAP 0.37 2.43 2.52 4.77 6.28 3.19 7.00 7.50 11.22

the HOG3D features. The two coarser scales of a three level
spatial pyramid were retained for dense SIFT, HOG2x2, and
SSIM. Sparse SIFT and color histograms were extracted
on the whole frame. Global and segment-level features are
formed by averaging the histograms.

Three baselines are compared against the full MKL-
KLSVM, all systems using the identical set of six features.
The first baseline, KSVM, is trained on a summation of
six χ2 kernels on the global features. The second baseline,
MKL-SVM, is similar to KSVM, but the weights on the
kernels are trained. KLSVM and MKL-KLSVM are vari-
ants of our model that consider both the global and segment-
level features. Global models and scene type models are
formed using χ2 and HIK, respectively. In the KLSVM, the
weights of all kernels are fixed to one, while in the MKL-
KLSVM, the kernel weights are learned.

Table 3 presents the results of these systems for DEV-O.
A progression in the mAP performance is demonstrated as
the different components of our model are added. By al-
lowing the model to learn the kernel weights for the var-
ious feature modalities, MKL-SVM shows slight perfor-
mance gains over KSVM. KLSVM improves performance
by incorporating our proposed compositional model that
performs latent segment selection. Finally, when consider-
ing the full model, MKL-KLSVM, which allows the vari-
ous kernel weights to be adapted for the global and segment
components across multiple features, highest overall accu-
racy is attained.

4.3. Results Visualizations

Figure 3 shows qualitative results for our model on four
test videos, where eight second segments are visualized us-
ing their center frames. The frames that are latently selected
tend to be discriminative and ignore temporal clutter inher-
ent in many test videos. For example, in the sewing project
video, the latter frames where the individual is walking in an
outdoor environment are not selected because such scenes
are not typically associated with a video of a sewing project.

Latently selected frames of the same scene type model
also often have similar overall appearance characteristics.

Table 3: Performance comparison against several baselines
using multiple features on DEV-O for E6-E15. Numbers
denote the average precision, in %.

Event KSVM MKL-SVM KLSVM MKL-KLSVM
E6 6.36 6.77 5.36 6.24
E7 22.04 22.22 23.47 24.62
E8 31.23 31.40 31.99 37.46
E9 18.13 17.49 16.18 15.72

E10 2.48 2.55 2.36 2.09
E11 3.88 4.03 7.98 7.65
E12 10.90 11.00 10.77 12.01
E13 13.31 14.54 13.70 10.96
E14 12.97 12.34 31.22 32.67
E15 3.98 3.81 7.47 7.49
mAP 12.53 12.62 15.05 15.69

For instance, in the grooming animal test video, the frame in
the green box shows a view of a dog’s backside with human
hands moving its tail. A support vector containing a frame
for this scene type showing a comparable view of a dog with
extended human arms is also selected.

The visualizations also demonstrate the compositional
approach. For example, in the changing a tire test se-
quence, two of the top three support vector videos offer
good matches for three of the latently selected frames in the
test sequence (corresponding to the test frames highlighted
with red, yellow, and blue boxes). However, for the fourth
test frame that was selected (green box), only one of the top
three support vectors provides a particularly discriminative
match. The proposed model is able to accumulate evidence
for classification from different video segments in the pool
of training videos.

5. Conclusion
We presented a novel, compositional model for video

event detection that leverages a novel multiple kernel learn-
ing algorithm that incorporates structured latent variables.
The kernelized latent variable framework allows the model
to select and match test video segments with those that are
extracted from the pool of training of videos. The composi-
tional nature of the model allows it to respond to the chal-
lenges of intra-class variation and temporal clutter, which
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Figure 3: Qualitative visualization of results. Individual images denote the center frame from an eight second window. Each
subfigure shows frames from a testing video along with frames from the three support vectors that produce the overall best
match to that test video (i.e., frames from only three support vector videos are shown for each test sequence). For a test
video, the K = 4 frames that were latently selected are highlighted with colored boxes, where color denotes the particular
scene type model. Latently selected frames from the the top three support vectors are grouped using colored boxes, where
color corresponds to the same scene types selected for the test video. From top-to-bottom, left-to-right, the testing videos
correspond to changing tire (E7), grooming animal (E10), repairing appliance (E14), and sewing project (E15). Faces have
been obscured for privacy considerations. Best viewed magnified and in color.

are inherent in unconstrained internet videos. Additionally,
since multiple feature types are required to attain state-of-
the-art performance on TRECVID MED11, a principled ap-
proach to feature fusion via multiple kernel learning with
structured latent variables is proposed. Experimental re-
sults showed that this approach outperforms state-of-the-art
baselines on the challenging TRECVID MED11 dataset.
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