
Optimization problems for fast AAM fitting in-the-wild

Georgios Tzimiropoulos
1. School of Computer Science

University of Lincoln, U.K.
2. Department of Computing

Imperial College London, U.K.
gtzimiropoulos@lincoln.ac.uk

Maja Pantic
1. Department of Computing

Imperial College London, U.K.
2. University of Twente

The Netherlands
m.pantic@imperial.ac.uk

Abstract

We describe a very simple framework for deriving the
most-well known optimization problems in Active Appear-
ance Models (AAMs), and most importantly for providing
efficient solutions. Our formulation results in two optimiza-
tion problems for fast and exact AAM fitting, and one new
algorithm which has the important advantage of being ap-
plicable to 3D. We show that the dominant cost for both for-
ward and inverse algorithms is a few times mN which is the
cost of projecting an image onto the appearance subspace.
This makes both algorithms not only computationally re-
alizable but also very attractive speed-wise for most cur-
rent systems. Because exact AAM fitting is no longer com-
putationally prohibitive, we trained AAMs in-the-wild with
the goal of investigating whether AAMs benefit from such
a training process. Our results show that although we did
not use sophisticated shape priors, robust features or robust
norms for improving performance, AAMs perform notably
well and in some cases comparably with current state-of-
the-art methods. We provide Matlab source code for train-
ing, fitting and reproducing the results presented in this pa-
per at http://ibug.doc.ic.ac.uk/resources.

1. Introduction

Active Appearance Models (AAMs) have been around in

computer vision research for more than 15 years [5]. They

are statistical models of shape and appearance that can gen-

erate instances of a specific object class (e.g. faces) given

a small number of model parameters which control shape

and appearance variation. Fitting an AAM to a new image

entails estimating the model parameters so that the model

instance and the given image are ”close enough” typically

in a least-squares sense. Recovering the shape parameters

is important because it implies that the location of a set

of landmarks (or fiducial points) has been detected in the

Figure 1. An example of a face in-the-wild taken from the LFPW

database [3]. Landmarks were detected by fitting an AAM. The

appearance model of the AAM was built using raw un-normalized

pixel intensities as features. Neither sophisticated shape priors

or robust norms were used during fitting nor robust image fea-

tures were employed to build the AAM. Even without such so-

phisticated enhancements, AAM fitting produced satisfactory ac-

curacy in landmark localization. To obtain these results, we simply

trained the AAM in-the-wild (on the same database) and addition-

ally for fitting and we used Fast-Forward algorithm, an exact but

fast simultaneous algorithm.

new image. Landmark localization is of fundamental sig-

nificance in many computer vision problems like face and

medical image analysis. Hence, fitting AAMs robustly to

new images has been the focus of extensive research over

the past years.

AAM fitting is an iterative process at each iteration of

which an update of the current model parameters is esti-

mated. Typically, the update is a function of the error be-

tween the image and the model measured in the canonical

reference frame of the model. There are two main lines of

research for modeling this function. The first is to learn

it via regression which was also the approach proposed in

the original AAM paper [5]. Regression-based approaches

are fast but approximate. For example in [5], the relation-

ship between the error image and the update is assumed lin-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.79

593

ear and independent of the current model parameters. A

notable departure from [5] is the work of [21] in which a

nonlinear regressor is learned via boosting. Other discrim-

inative methods for fitting AAMs have been proposed in

[11, 22, 20].

The second line of research for fitting AAMs is through

non-linear least-squares [16]. AAM fitting is formulated as

a Lukas-Kanade (LK) problem which can be solved iter-

atively using Gauss-Newton optimization. However, stan-

dard gradient descend algorithms when applied to AAMs

are inefficient. This problem is addressed in the seminal

work of Matthews and Baker [16] which extends the classi-

cal Lukas-Kanade algorithm [13] and the appearance-based

tracking framework of Hager and Belhumeur [9] for the

case of AAMs and deformable models. One of the ma-

jor contributions of [16] is the so-called project-out inverse

compositional algorithm (POIC). The algorithm is coined

project-out because it decouples shape from appearance by

projecting out appearance variation and inverse composi-

tional because the warp update is estimated in the model

coordinate frame and then composed to the current warp

estimate (this is in contrast to the standard LK algorithm

in which the warp parameters are updated in a forward ad-

ditive fashion). This combination results in an algorithm

which is as efficient as regression-based approaches and

is now considered the standard choice for fitting person-

specific AAMs (i.e. AAMs trained for fitting face images

of a specific subject which is known in advanced). Its main

disadvantage is its limited capability of generalizing well to

unseen variations, the most notable example of which is the

case of generic AAMs (i.e. AAMs trained for fitting face

images of various subjects not known in advance).

In contrast to POIC, the simultaneous inverse composi-

tional (SIC) algorithm, proposed in [1], has been shown to

perform robustly for the case of generic fitting [7]. How-

ever, the computational cost of the algorithm is almost pro-

hibitive for most applications. Let n and m denote the num-

ber of the shape and appearance parameters of the AAM.

Then, the dominant cost per iteration of SIC is on the order

of (n+m)2N , where N is the number of pixels in the ref-

erence frame. Note that the cost of POIC is only O(nN).
For generic fitting m � n and hence the huge difference

in computational cost has either ruled out SIC from most

papers/studies that depart from the person-specific case or

made the authors resort in approximate solutions (please see

[20] for an example).

Some attempts to reduce the cost of SIC have been oc-

casionally reported in AAM literature. A notable example

is the normalization algorithm [1]. However, the perfor-

mance of the normalization algorithm has been reported to

be closer to that of POIC rather than that of SIC. Finally,

other techniques for reducing the cost to some extend via

pre-computations have been reported in [2, 17].

Main results. We show that the cost for solving the exact

AAM non-linear least squares problem with no approxima-

tions for both forward and inverse is significantly less than

O((n + m)2N). Let f be a function that is no necessarily

convex. Then a standard result from optimization theory is

[4]

min
x,y

f(x, y) = min
x

[min
y

f(x, y)]. (1)

As we show later on, using (1) reduces the dominant cost

for both forward and inverse algorithms to nmN . Espe-

cially for m � n, which is the case for generic face align-

ment, the cost is reduced to a few times mN which is the

cost of projecting an image onto the appearance subspace.

Hager and Belhumeur made use of the above result in [9],

however without explicitly referring to (1). To the best of

our knowledge, the only AAM paper that acknowledges the

optimization strategy described in [9] is [18]. Here, we pro-

vide an alternative derivation based on (1) which has the

advantage of producing the exact form of the optimization

problem that SIC solves. Hence, our derivations shed fur-

ther light on the different optimization problems that POIC

and SIC solve. Additionally, the authors of [18] investigated

only the inverse case. As it is well known, the inverse com-

positional approach cannot be applied to 3D AAMs [23].

One of our main contributions is to show that (1) can be

used to derive a forward additive update scheme and hence

can be readily applied to 3D. Finally, we believe that the

proposed framework is readily applicable to recently pub-

lished papers on AAMs [14, 15].

Our second main contribution is to train AAMs in-the-

wild using the well-known LFPW database [3] and then fit

using the proposed fast forward and inverse simultaneous

algorithms, with the goal of investigating whether AAMs

benefit from such a training process. Indeed, it turns out

that this is the case: the obtained fittings are in many cases

as good as the ones produced by current state-of-the art

methods (please see Fig. 1 for a fitting example). These

results are notable given that no shape prior was used, the

employed appearance model was built using raw pixel in-

tensities and no attempt to use more sophisticated image

features (like Gabor filter responses as in [14] or SIFT fea-

tures [12] as in [3]) was made.

2. AAMs
An AAM is defined by the shape, appearance and mo-

tion models. Learning the shape model requires consis-

tently annotating a set of u landmarks [x1, y1, . . . xu, yu]
across D training images Ii(x) ∈ RN (e.g. faces). These

points are said to define the shape of each object. Next, Pro-

crustes Analysis is applied to remove similarity transforma-

tions from the original shapes and obtain D similarity-free

shapes. Finally, PCA is applied on these shapes to obtain a

594

shape model defined by the mean shape and n shape eigen-

vectors {s0,S ∈ R{2u,n}}. The model typically captures

shape variation due to identity, pose and expression. As-

sume that we are given a new similarity-free shape s. Then,

the model can be used to represent s as

ŝ = s0 + Sp, p = ST (s− s0). (2)

Finally, in this work, to model similarity transforms the

shape matrix S is appended with 4 similarity eigenvectors

[16], all eigenvectors are re-orthonormalized, and then (2)

is applied.

Learning the appearance model requires removing shape

variation from the texture. This can be achieved by first

warping each Ii to the reference frame defined by the mean

shape s0 using motion model W. Finally, PCA is applied

on the shape-free textures, to obtain the appearance model

defined by the mean appearance and m appearance eigen-

vectors {A0,A ∈ R{N,m}}. The model captures appear-

ance variation for example due to identity and illumination.

The model can be used to represent a shape-free test texture

I as

Î = A0 +Ac, c = AT (I−A0). (3)

We used piecewise affine warps W(x;p) as the motion

model in this work. Briefly, to define a piecewise affine

warp, one first needs to triangulate the set of vertices of the

given shapes. Then, each triangle in s and the correspond-

ing triangle in s0 can define an affine warp. The collection

of all affine warps defines a piecewise affine warp which is

parameterized with respect to p.

Finally, a model instance is synthesized to represent a

test object by warping Î from the mean shape s0 to ŝ using

the piecewise affine warp define by s0 and ŝ. Please see

[16, 5] for a detailed coverage of AAMs.

3. Fitting AAMs
Our approach to fitting AAMs is based on non-linear

least-squares [16]. Assume that we are given a test im-

age I. Fitting an AAM to the image entails estimating the

model parameters so that the �2 norm of the error between

the model instance and the given image is minimized

argmin
p,c

||I(W(x;p))−A0 −Ac||2. (4)

Because (4) is a non-linear function of p, the standard ap-

proach to proceed is to linearize with respect to the shape

parameters p and then optimize iteratively in a Gauss-

Newton fashion. Linearization of (4) with respect to p can

be performed in two coordinate frames. In the forward case,

the test image I is linearized around the current estimate p,

a solution for a Δp is sought using least-squares, and p is

updated in an additive fashion p← p+Δp. In the inverse

case, the model {A0,A} is linearized around p = 0, a solu-

tion for a Δp is sought using least-squares, and p is updated

in a compositional fashion p← p◦Δp−1, where ◦ denotes

the composition of two warps. Note that applying the in-

verse compositional approach for piecewise affine warps is

by no means straightforward. Please see [16] for a princi-

pled way of applying the inverse composition to AAMs.

Following the seminal work of [16], inverse algorithms

have gained increased popularity. The two most popular

inverse algorithms are SIC and POIC. At each iteration SIC

linearizes with respect to both c and p = 0, and hence (4)

becomes

arg min
Δp,Δc

||I−A0+J0Δp−
m∑

i=1

(ci+Δci)(Ai+JiΔp)||2,
(5)

where Ji is the N × n Jacobian built as follows: Its k−th

row corresponds to pixel xk and contains the 1 × n vector

[Ai,x(k) Ai,y(k)]
∂W(xk;p)

∂p . Ai,x(k) and Ai,y(k) are the

x and y gradients of Ai for the k−th pixel and
∂W(xk;p)

∂p ∈
R2×n is the Jacobian of the piecewise affine warp. Please

see [16] for calculating and implementing ∂W
∂p . All of these

are defined in the model coordinate frame for p = 0 and can

be pre-computed. Finally, with some abuse of notation we

denote by Ji = [Ai,x Ai,y]
∂W
∂p the process of constructing

Ji for all N rows.

An update for Δc and Δp can be obtained only after

second order terms are omitted as follows

arg min
Δp,Δc

||I−A0 −Ac−AΔc− JΔp)||2, (6)

where J = J0 +
∑m

i=1 ciJi. In [1], the update for SIC was

derived as

[Δp; Δc] = H−1
sicJ

T
sic(I−A0 −Ac), (7)

where Jsic = [A;J] ∈ RN×(m+n) and Hsic = JT
sicJsic

are the SIC Jacobian and Hessian respectively. SIC is slow

because the cost for calculating Hsic is O((n+m)2N) [1].

POIC reduces this cost dramatically by decoupling shape

and appearance by solving (6) in the subspace orthogonal to

A. Let us define the projection operator P = E − AAT ,

where E is the identity matrix. Then, ||I−A0 −Ac||2P =
||I −A0||2P, and hence an update for Δp can be computed

by optimizing

argmin
Δp

||I−A0 − J0Δp)||2P, (8)

the solution of which is given by

Δp = H−1
poicJ

T
poic(I−A0), (9)

where the projected-out Jacobian Jpoic = PJ0 and Hessian

Hpoic = JT
poicJpoic can be pre-computed. This reduces the

cost to O(nN), only [16].

595

4. Fast algorithms for fitting AAMs
Solving the exact problem in a simultaneous fashion as

described above is not the only way for fitting AAMs. Be-

low we describe two algorithms, Fast-SIC and Fast-Forward

for achieving the same result by applying (1). The so-

lution of the inverse problem was originally proposed in

[18]. Here we provide an alternative derivation based on

(1), which has the advantage of producing the exact form of

the optimization problem that Fast-SIC solves. Hence, our

derivations shed further light on the different optimization

problems that POIC and SIC solve. Finally, to the best of

our knowledge, Fast-Forward is described for the first time

in AAM literature in this work.

4.1. Fast-SIC

Using (1), we can optimize (6) with respect Δc, and then

plug in the solution (which will be a function of Δp) back to

(6). Then, we can optimize (1), with respect to Δp. Setting

the derivative of (6) with respect to Δc equal to 0 gives the

update of Δc

Δc = AT (I−A0 −Ac− JΔp) (10)

Plugging the above into (6), we get the following optimiza-

tion problem

argmin
Δp

||I−A0 − JΔp)||2P. (11)

As we may see, the difference between POIC and Fast-SIC

is that POIC uses J0 while Fast-SIC uses J. This differ-

ence simply comes from the point at which we choose to

linearize. Matthews and Baker [16] chose to project out

first and then linearize. Fast-SIC first linearizes (the appear-

ance model), and then projects out. Another way to interpret

Fast-SIC is to solve the original SIC problem of (6) in the

subspace defined by P. This has the effect that the appear-

ance terms Ac and AΔc immediately vanish. However, the

Jacobian J does not vanish as assumed by POIC. Hence,

POIC is only an approximation to Fast-SIC (and hence to

SIC).

The solution of Fast-SIC is readily given by

Δp = H−1
fsicJ

T
fsic(I−A0), (12)

where the projected-out Jacobian and Hessian are given by

Jfsic = PJ and Hfsic = JT
fsicJfsic, respectively. Be-

cause J is a function of c, it needs to be re-computed per

iteration.

Calculating Jfsic has dominant cost nmN . To see this

we first note that for a matrix X ∈ RN×l, we can calcu-

late PX = X − A(ATX) with cost lmN . Let us also

denote by Ax = [A0,x . . .Am,x] ∈ RN×(m+1), the matrix

the columns of which are the gradients of the model along

the x-axis and Ay the matrix the columns of which are the

gradients along the y-axis. Hence Jfsic can be computed in

nmN from

Jfsic = P[Axc
′ Ayc

′]
∂W

∂p
, (13)

where c′ = [1; c] ∈ Rm+1. Note that ∂W
∂p above is eval-

uated at p = 0 and can be pre-computed. Finally, the cost

for calculating Hfsic is n2N . Hence, the complexity of

Fast-SIC per iteration is mainly due to the computation of

Jfsic.

4.2. Fast-Forward

The coordinate frame of the model is not the only frame

that (4) can be solved. Rather than linearizing the model,

we can linearize the test image in a standard Lukas-Kanade

fashion [13]

arg min
{Δp,c}

||I+ JIΔp−A0 −Ac||2, (14)

where JI is the Jacobian of I and needs to be re-computed

per iteration. Note that error above is already linear with

respect to c. Also there are no second terms that need to be

omitted. Hence, we can directly optimize using (1). At each

iteration, the optimal c is given by

c = AT (I+ JIΔp−A0). (15)

Plugging the above into (14), we end up with the following

optimization problem

argmin
Δp

||I+ JIΔp−A0||2P, (16)

the solution of which is readily given by

Δp = −H−1
ffwJ

T
ffw(I−A0), (17)

where the projected-out Jacobian and Hessian are given by

Jffw = PJI and Hffw = JT
ffwJffw, respectively. No-

tice that in order to compute Δp, the value of the optimal c
is not required. Hence, the Fast-Forward iteratively applies

(17), only.

Calculating Jffw has dominant cost nmN . To read-

ily see this notice that to calculate JI the cost is nN ,

and hence the cost for calculating PJI is nmN . Alter-

natively, one could avoid calculating PJI directly because

JT
fsic(I−A0) = JT

I P(I−A0), and P(I−A0) has a cost

of mN . However, the cost for calculating

ATJI = AT [Ix Iy]
∂W

∂p
(18)

is nmN (Ix and Iy are the gradients of I evaluated at ∂W
∂p)

and calculating ATJI is necessary if we wish to efficiently

calculate Hffw from

Hffw = JT
I JI − (ATJI)

T (ATJI). (19)

596

Note that the cost for calculating Hffw as above is n2N and

comes from the first term (this is because ATJI ∈ Rm×n).
An additional cost for the forward additive formulation is

that ∂W
∂p is evaluated at p and not at p = 0, but the cost for

doing this can be negligible.

An interesting observation following the above analysis

is that, for both forward and inverse algorithms, the domi-

nant computational cost comes from projecting out the ap-

pearance subspace when calculating the Hessian. If we

choose not to do this, then the total cost is further reduced

to (n2 + m)N . Note however that, in this case, the result-

ing algorithms are approximate and not exact. We leave the

evaluation of these approximate algorithms as interesting

future work.

5. Fitting AAMs in-the-wild
Simultaneous AAM fitting algorithms are known to per-

form well but their performance has not been previously as-

sessed on recently collected in-the-wild data sets. In this

section and in the one that follows, we aim to address this

gap in literature. In particular, we show that AAMs perform

almost comparably to some state-of-the-art face alignment

algorithms, even without using any priors (the fitting algo-

rithms described above are used as is) and using raw pixel

intensities as features.

One reason for not evaluating AAMs in-the-wild is that

SIC as proposed in [16] is too slow to be employed, espe-

cially for m � n, which is the case for generic face align-

ment. However, as we showed above, the cost per iteration

for Fast-SIC and Fast-Forward is on the order of a few times

mN . This cost can be easily handled by current systems

possibly allowing a close to real-time implementation.

Another reason for ruling out AAMs from unconstrained

face alignment experiments is the fact that AAMs are not

considered robust. All optimization problems considered in

the previous sections are least-squares problems, and as it

is well-known in computer vision least-squares combined

with pixel intensities as features typically results in poor

performance for data corrupted by outliers (e.g. sunglasses,

occlusions, difficult illumination). Standard ways of deal-

ing with outliers are robust features and robust norms. The

problem with feature extraction is that it might slow down

the speed of the fitting algorithm significantly especially

when the dimensionality of the featured-based appearance

model is large. The problem with robust norms is that scale

parameters must be estimated (or percentage of outlier pix-

els must be predefined) and this task is not trivial.

We propose a third orthogonal direction for fitting AAMs

in unconstrained conditions which is via training AAMs in-

the-wild. In fact, this paper is one of the few that propose

the combination of generative models plus training in-the-

wild (plus robust optimization for model fitting). It turns out

that this combination is very beneficial for unconstrained

(a) (b)

Figure 2. (a) A face image from the test set of LFPW [3]. The

image was not seen during training. Landmarks were detected by

fitting the AAM using the Fast-SIC algorithm. (b) Reconstruc-

tion of the image from the appearance subspace. The appearance

subspace is powerful because the AAM was built in the wild.

AAM fitting. Consider for example the image shown in

Fig. 2 (a). This is a test image from the LFPW data set.

This image was not seen during training, but similar images

of unconstrained nature were used to train the shape and

appearance model of an AAM. Fig. 2 (b) shows the recon-

struction of the image from the appearance subspace. As

we may see the appearance model is powerful enough to re-

construct the texture almost perfectly. Fitting with a robust

algorithm (Fast-SIC in this case) gives the fitting result of

Fig. 2 (a). This example illustrates why the results of the

next section should not be considered too surprising.

6. Results
The main target of our experiments was not to prove that

AAM fitting is state-of-the-art in face alignment but to show

that robust fitting plus training in-the-wild improves AAM

fitting performance dramatically. For this reason, we did not

attempt to use sophisticated shape priors for regularization,

nor we employed robust features/appearance models or ro-

bust norms for improving performance. In all experiments,

we used simple pixel intensities as features. Additionally,

we note that we did not attempt to reproduce the results of

any of current state-of-the-art methods because their imple-

mentation is not trivial and in most cases the code is not

publicly available. Instead, we report the performance of

AAMs using two very popular error measures and we re-

fer the readers to these papers and the references therein for

drawing comparisons with the algorithms described in this

paper.

To facilitate fitting, we used a multi-resolution fitting

approach with m = 50, n = 3 at the lowest level and

m = 200, n = 10 at the highest. We found experimen-

tally, that for robust fitting, m should be at least one or-

der of magnitude greater than n. Note that in most AAM

papers, m and n are chosen so that a fixed percentage of

variance is fixed (most cases 95%). This may result in rel-

atively large model sizes that are more difficult to optimize.

Instead we chose the model parameters by running the al-

597

(a)

(b)

Figure 3. Fitting performance on LFPW. (a) mean point-to-point

error (Euclidean) normalized by the face size vs percentage of test

images. (b) me17 vs percentage of test images.

Figure 4. Fitting performance on Helen. The normalized mean

point-to-point error (Euclidean) is plotted.

gorithms on a small validation set. For our experiments,

we used the training set of LFPW to train the shape and

appearance model of the AAM. The database consists of

images from the web containing variations in pose, illu-

mination, expression and occlusion. Because some URLs

are no longer valid, about 800 out of 1.100 and 224 out

of 300 images were available for training and testing, re-

spectively. Because, the landmarks provided by LFPW are

sparse, we annotated both training and test sets based on

the point configuration of Multi-pie [8, 19]. In all cases, fit-

ting was initialized by the face detector recently proposed

in [24]. The first error measure that we used is the point-

to-point error normalized by the face size as proposed in

[24]. Similarly to [24], for this error measure, we pro-

duced the cumulative curve corresponding to the percent-

age of test images for which the error was less than a spe-

cific value. The second performance measure is the popular

me17 [6]. Please see our publicly available implementa-

tion at http://ibug.doc.ic.ac.uk/resources
for more details on our experimental setting (we provide

source Matlab code for training, fitting and reproducing the

results presented in this paper).

Fig. 3 (a) shows the obtained results. As we may ob-

serve Fast-SIC appears to perform better than Fast-Forward.

One reason for this might be that in Fast-SIC the lineariza-

tion is performed on the model which is smoother and less

noisy than the test image. Both Fast-SIC and Fast-Forward

largely outperform POIC. Finally, we note that in terms of

landmark localization, Fast-SIC and Fast-Forward also out-

perform [24] but we did not include these results because

[24] was trained on a different data set. Additionally, by

comparing our results in Fig. 3 (b) with those in [3] (please

note that we did not use exactly the same landmarks), we

may observe that although at error 0.05 [3] performs better,

at error 0.1 performance is similar although [3] used SIFT

features [12] and more than twice as many training images

as we did. Overall, although fair comparison is impossible,

we believe that the proposed AAMs perform notably well

and almost comparably with current systems. Finally, we

performed a very challenging cross-database experiment:

we annotated the test set of Helen [10] and fitted our AAMs

that were trained on LFPW. Although both databases are in-

the-wild, the faces of Helen seem to be much more natural,

with more shape and appearance variation, and hence are

more challenging to fit. Fig. 4 shows the obtained results.

As expected, performance drops but still the fittings are sat-

isfactory for the majority of images. Examples of fittings

for both LFPW and Helen can be seen in 5.

7. Conclusions
We described a very simple framework based on (1)

for deriving the optimization problems and solutions for

fast AAM fitting in both inverse (Fast-SIC) and forward

(Fast-Forward) coordinate frames. Based on the proposed

framework, exact AAM fitting is no longer computation-

ally prohibitive. Then, we proposed a new direction for

employing AAMs in unconstrained conditions by means of

598

Figure 5. Examples of fittings from LFPW and Helen. Odd rows: Fast-SIC. Even rows: Fast-Forward.

599

training AAMs in-the-wild, and fitting using the proposed

fast and exact algorithms. Our results show that although

we did not use sophisticated shape priors, robust features

or robust norms for improving performance, AAMs per-

form almost comparably with current state-of-the-art meth-

ods. We believe that our results are notable given that it

is widely believed that (especially pixel-based) AAMs gen-

eralize poorly to unseen variations let alone images in-the-

wild.

8. Acknowledgements

This work has been funded by the European Community

7th Framework Programme [FP7/2007-2013] under grant

agreement no. 288235 (FROG). The work of Maja Pantic

was originally funded by the European Research Council

under the ERC Starting Grant agreement no. ERC-2007-

StG-203143 (MAHNOB). The authors would also like to

thank Epameinondas Antonakos for the many fruitful dis-

cussions on AAMs.

References
[1] S. Baker, R. Gross, and I. Matthews. Lucas-kanade 20 years

on: Part 3. Robotics Institute, Carnegie Mellon University,
Tech. Rep. CMU-RI-TR-03-35, 2003.

[2] A. U. Batur and M. H. Hayes. Adaptive active appearance

models. IEEE TIP, 14(11):1707–1721, 2005.

[3] P. Belhumeur, D. Jacobs, D. Kriegman, and N. Kumar. Lo-

calizing parts of faces using a consensus of exemplars. In

CVPR, 2011.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cam-

bridge university press, 2004.

[5] T. Cootes, G. Edwards, and C. Taylor. Active appearance

models. IEEE TPAMI, 23(6):681–685, 2001.

[6] D. Cristinacce and T. Cootes. Feature detection and tracking

with constrained local models. In BMVC, 2006.

[7] R. Gross, I. Matthews, and S. Baker. Generic vs. person

specific active appearance models. Image and Vision Com-
puting, 23(12):1080–1093, 2005.

[8] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.

Multi-pie. Image and Vision Computing, 28(5):807–813,

2010.

[9] G. D. Hager and P. N. Belhumeur. Efficient region tracking

with parametric models of geometry and illumination. IEEE
TPAMI, 20(10):1025–1039, 1998.

[10] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. Inter-

active facial feature localization. In ECCV. 2012.

[11] X. Liu. Generic face alignment using boosted appearance

model. In CVPR, 2007.

[12] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[13] B. D. Lucas, T. Kanade, et al. An iterative image registration

technique with an application to stereo vision. In 7th Inter-
national Joint Conference on Artificial Intelligence, 1981.

[14] S. Lucey, R. Navarathna, A. Ashraf, and S. Sridharan.

Fourier lucas-kanade algorithm. IEEE TPAMI, 35(6):1383–

1396, 2013.

[15] P. Martins, R. Caseiro, and J. Batista. Generative face align-

ment through 2.5 d active appearance models. CVIU, 2012.

[16] I. Matthews and S. Baker. Active appearance models revis-

ited. IJCV, 60(2):135–164, 2004.

[17] K. Netzell and J. E. Solem. Efficient image inner products

applied to active appearance models. In ICPR, 2008.

[18] G. Papandreou and P. Maragos. Adaptive and constrained al-

gorithms for inverse compositional active appearance model

fitting. In CVPR, 2008.

[19] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.

A semi-automatic methodology for facial landmark annota-

tion. In CVPR Workshops, 2013.

[20] J. Saragih and R. Gocke. Learning aam fitting through sim-

ulation. Pattern Recognition, 42(11):2628–2636, 2009.

[21] J. Saragih and R. Goecke. A nonlinear discriminative ap-

proach to aam fitting. In ICCV, 2007.

[22] H. Wu, X. Liu, and G. Doretto. Face alignment via boosted

ranking model. In CVPR, 2008.

[23] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time

combined 2d+3d active appearance models. In CVPR, 2004.

[24] X. Zhu and D. Ramanan. Face detection, pose estimation,

and landmark estimation in the wild. In CVPR, 2012.

600

