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Abstract

This paper presents the first semi-supervised transduc-
tive algorithm for real-time articulated hand pose estima-
tion. Noisy data and occlusions are the major challenges
of articulated hand pose estimation. In addition, the dis-
crepancies among realistic and synthetic pose data under-
mine the performances of existing approaches that use syn-
thetic data extensively in training. We therefore propose
the Semi-supervised Transductive Regression (STR) forest
which learns the relationship between a small, sparsely la-
belled realistic dataset and a large synthetic dataset. We
also design a novel data-driven, pseudo-kinematic tech-
nique to refine noisy or occluded joints. Our contributions
include: (i) capturing the benefits of both realistic and syn-
thetic data via transductive learning; (ii) showing accura-
cies can be improved by considering unlabelled data; and
(iii) introducing a pseudo-kinematic technique to refine ar-
ticulations efficiently. Experimental results show not only
the promising performance of our method with respect to
noise and occlusions, but also its superiority over state-of-
the-arts in accuracy, robustness and speed.

1. Introduction

Articulated hand pose estimation shares a lot of similar-

ities with the popular 3-D body pose estimation. Both tasks

aim to recognise the configuration of an articulated subject

with a high degree of freedom. While latest depth sensor

technology has enabled body pose estimation in real-time

[2, 24, 12, 26], hand pose estimation still requires improve-

ment. Despite their similarities, proven approaches in body

pose estimation cannot be repurposed directly to hand artic-

ulations, due to the unique challenges of the task:

(1) Occlusions and viewpoint changes. Self occlusions

are prevalent in hand articulations. Compared with limbs in

body pose, fingers perform more sophisticated articulations.

Different from body poses which are usually upright and

(a) RGB (b) Labels (c) Synthetic (d) Realistic

Figure 1: The ring finger is missing due to occlusions in (d),

and the little finger is wider than the synthetic image in (c).

frontal [9], different viewpoints can render different depth

images despite the same hand articulation.

(2) Noisy hand pose data. Body poses usually occupy

larger and relatively static regions in the depth images.

Hands, however, are often captured in a lower resolution.

As shown in Fig. 1, missing parts and quantisation error

is common in hand pose data, especially at small, partially

occluded parts such as finger tips. Unlike sensor noise and

depth errors in [12] and [2], these artefacts cannot be re-

paired or smoothed easily. Consequently, a large discrep-

ancy is observed between synthetic and realistic data.

Moreover, manually labelled realistic data are extremely

costly to obtain. Existing state-of-the-arts resort to synthetic

data [16], or model-based optimisation [8, 15]. Nonethe-

less, such solutions do not consider the realistic-synthetic

discrepancies, their performances are hence affected. Be-

sides, the noisy realistic data make joint detection difficult,

whereas in synthetic data joint boundaries are always clean

and accurate.

Addressing the above challenges, we present a novel

Semi-supervised Transductive Regression (STR) forest.

This process is known as transductive transfer learning
[21]: A transductive model learns from a source domain,

e.g. synthetic data; on the other hand, it applies knowledge
transform to a different but related target domain, e.g. real-

istic data, in the testing stage. As a result, it benefits from
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the characteristics of both domain: The STR forest not only

captures a wide range of poses from synthetic data, it also

achieves promising accuracy in challenging environments

by learning from realistic data. In addition, we design an ef-

ficient pseudo-kinematic joint refinement algorithm to han-

dle occluded and noisy articulations. The STR forest is also

semi-supervised, learning the noisy appearances of realistic

data from both labelled and unlabelled datapoints. More-

over, generic pose estimation is facilitated by a wide range

of poses from synthetic data, using a data-driven pose re-

finement scheme.

As far as we are aware, the proposed method is the first

semi-supervised and transductive articulated hand pose es-

timation framework. The main contributions of our work

are threefold:

(1) Realistic-Synthetic fusion: Considering the issue of

noisy inputs, we propose the first transductive learning al-

gorithm for 3-D hand pose estimation that captures the char-

acteristics of both realistic and synthetic data.

(2) Semi-supervised learning: The proposed learning al-

gorithm utilises both labelled and unlabelled data, improv-

ing estimation accuracy while keeping a low labelling cost.

(3) Data-driven pseudo-kinematics: The limitations of

traditional Hough forest [11] against occlusions is allevi-

ated by learning a novel data-driven pseudo-kinematic al-

gorithm.

2. Related Work
Hand pose estimation Earlier approaches for articulated

hand pose estimation are diversified, such as coloured mark-

ers [6], probabilistic line matching [1], multi-camera net-

work [13] and Bayesian filter with Chamfer matching [25].

We refer the reader to [10] for a detailed survey of earlier

hand pose estimation algorithms.

Model-based tracking methods are popular among recent

state-of-the-arts. Hypotheses are generated from a visual

model, e.g. a 3-D hand mesh. Hand poses are tracked by

fitting the hypotheses to the test data. For example, De La

Gorce et al. [8] use a hand mesh with detailed simulated

texture and lighting. Hamer et al. [14] address strong occlu-

sions using local trackers at separate hand segments. Bal-

lan et al. [3] infer finger articulations by detecting salient

points. Oikonomidis et al. [20] estimate hand poses in real-

time from RGB-D images using particle swarm optimisa-

tion. Model-based approaches inherently handle joint ar-

ticulations and viewpoint changes. However, their perfor-

mances depend on the previous pose estimations, output

poses may drift away from groundtruth when error accu-

mulates over time.

Discriminative approaches learn a mapping from visual

features to the target parameter space, such as joint labels

[24] or joint coordinates [12]. Instead of using a prede-

fined visual model, discriminative methods learn a pose es-

timator from a labelled training dataset. Although discrim-

inative methods have proved successful in real-time body

pose estimation from depth sensors [24, 12, 2, 26], they are

less common than model-based approaches with respect to

hand pose estimation. Recent discriminative algorithms for

hand pose estimation include approximate nearest neigh-

bour search [23, 27] and hierarchical random forests [16].

Discriminative methods rely heavily on the quality of

training data. A large labelled dataset is necessary to model

a wide range of poses. It is also costly to label sufficient re-

alistic data for training. As a result, existing approaches

resort to synthetic data by means of computer graphics

[23, 16], which suffers from the realistic-synthetic discrep-

ancies. On the positive side, discriminative methods are

frame-based such that there exists no track drifting issue.

Kinematics Inverse kinematics is a standard technique in

model-based and tracking approaches for both body [28, 22]

and hand poses estimation [8, 15, 25]. Lacking an articu-

lated visual model, only a few discriminative methods con-

sider the physical properties of hands. For instance, Gir-

shick et al. [12] estimate body poses using a simple range

heuristic, yet it is inapplicable to hand pose due to self-

occlusions. Wang et al. [27] detect joint using a coloured-

glove and match them from the groundtruth database.

Transfer Learning Transductive transfer learning is often

employed when training data of the target domain are too

costly to obtain. It has seen various successful applications

[21], still it has not been applied in articulated pose estima-

tion. In this work, realistic-synthetic fusion are realised by

extending the idea of Bronstein et al. [5] to the proposed

STR forest, where the training algorithm preserves the as-

sociations between cross-domain data pairs.

Semi-supervised and Regression Forest Various semi-

supervised forest learning algorithms have been proposed.

Navaratnam et al. [19] sample unlabelled datapoints to im-

prove Gaussian processes for body pose estimation. Shot-

ton et al. [7] measure data compactness to relate labelled

and unlabelled datapoints. Leistner et al. [18, 17] design a

margin metric to evaluate with unlabelled data. On the other

side, regression forest is widely adopted in body pose esti-

mation, e.g. [12, 26]. The STR forest adaptively combines

the aforementioned semi-supervised and regression forest

learning techniques in a single frame work.

3. Methodology
The concept of STR learning is illustrated in Fig. 2. For

each viewpoint, training data are collected from a partially

labelled target domain (realistic depth images) and a fully

labelled source domain (synthetic depth images). These

domains are explicitly related by establishing associations

from the labelled target datapoints to their corresponding

source datapoints, as shown in the figure.

The STR learning algorithm introduces several novel
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Source space
(Synthetic data S)

Target space
(Realistic data R)

Viewpoint C lassification: Viewpoint 
classification is first perfromed at he 
top levels, controlled by the viewpoint 
term Qa .

Joint C lassification: At mid levels, 
Qp determines classification of 
joints, when most viewpoints are 
classified.

Regression: To describe the 
distribution of realistic data, 
nodes are optimised for data 
compactness via Qv and Qu 

towards the bottom levels. 

Labelled and unlabelled data are 
clustered via Qu , by comparing 
appearances of patches.

Labelled datapoints
Unlabelled datapoints

Training Dataset D ST R Forest

Tree split

Transductive Learning: The 
realistic-synthetic fusion are learned 
by the transductive term Q t 
throughout the whole forest. 

Figure 2: The proposed STR learning model.

techniques to the traditional Hough/regression forest [11].

Firstly, transductive realistic-synthetic associations are pre-

served, such that the matched data are passed down to the

same node. Secondly, the distributions of labelled and un-

labelled realistic data are modelled jointly in the proposed

STR forest using unsupervised learning. Thirdly, viewpoint

changes are handled alongside with hand poses using an

adaptive hierarchical classification scheme. Finally, we also

propose an data-driven, kinematic-based pose refinement

scheme.

3.1. Training datasets

The training dataset D = {Rl,Ru,S} consists of both

realistic data R and synthetic data S . A small potion of R
is labelled, where the labelled and the remaining unlabelled

subsets are denoted by Rl and Ru respectively. All data-

points in S are labelled with groundtruths. The subset of

labelled data in D is defined as L = {Rl,S}.

Each datapoint in D is an image patch sampled randomly

from foreground pixels in the training images. The size of a

patch is 64× 64 which is comparable to the patches in [24].

The number of datapoints roughly equals 5% of foreground

pixels in the depth images.

Every datapoint in Rl or S is assigned to a tuple of labels

(a, p,v). Viewpoint of a patch is represented by the roll,

pitch and yaw angles, which are quantised into 3, 5 and 9
steps respectively. The view label a ∈ A : N3 indicates one

of the 135 quantised viewpoints. A datapoint is also given

the class label of its closest joint, p ∈ {1 . . . 16}, similar

to [24]. Furthermore, every labelled datapoint contains 16
vote vectors v ∈ R

3×16 from the patch’s centroid to the 3-D

locations of all 16 joints as in [11].

Realistic-synthetic associations are established through

matching datapoints in Rl and S , according to their 3-

D joint locations. The realistic-synthetic association Ψ :

Rl,S → {1, 0} is defined as below:

Ψ(r ∈ Rl, s ∈ S) =
{
1 when r matches s

0 otherwise
(1)

3.2. STR Forest

Building upon the hybrid regression forest by Yu et al.
[29], the STR forest performs classification, clustering and

regression on both domains in one pose estimator, instead

of performing each task in separate forests. We grow Nt

decision trees by recursively splitting and passing the cur-

rent training data to two child nodes. The split function of

a node is represented by a simple two-pixel test as in Shot-

ton et al. [24]. Instead of using a typical metric such as

information gain or label variance [7], we propose two new

quality functions. The quality function is selected at ran-

dom between Qapv and Qtss for training in Equation 2.{
Qapv=αQa+(1−α)βQp+(1−α)(1−β)Qv

Qtss=Qω
t Qu

(2)

where Qapv is a combined quality function for learning

classification-regression decision trees, and Qtss enables

transductive and semi-supervised learning. Given the train-

ing data D = {Rl,Ru,S}, the quality functions are defined

as below.

Viewpoint classification termQa: Traditional information
gain is used to evaluate the classification performance of all

the viewpoint labels a in dataset L [4]. Since this term is

applied on the top of the hierarchy, a large amount of train-

ing samples needs to be evaluated. Inspired by [12], reser-

voir sampling is employed to avoid memory restriction and

speed up training.

Patch classification term Qp: Similar to Qa, it is the in-

formation gain of the joint labels p in L. It measures the

performance of classifying individual patch in L. Thus, Qa

and Qp optimises the decision trees by classifying L their

viewpoints and joint labels.
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Regression term Qv: This term learns the regression as-

pect of the decision trees by measuring the compactness of

vote vectors. Given the set of vote vectors J (L) in L, re-

gression term Qv is defined as:

Qv =

[
1 +

|Llc|
|L| Λ(J (Llc)) + |Lrc|

|L| Λ(J (Lrc))
]−1

(3)

where Llc and Lrc are the training data that pass down

the left and right child nodes respectively, and Λ(·) =
trace(var(·)) is the trace of variance operator in [11]. Qv

increases with compactness in vote space and converges to

1 when all votes in a node are identical.

Unsupervised term Qu: The appearances the target do-

main, i.e. realistic data, are modelled in an unsupervised
manner. Assuming appearances and poses are correlated

under the same viewpoint, Qu evaluates the appearance

similarities of all realistic patches R within a node:

Qu =

[
1 +

|Rlc|
|R| Λ(Rlc) +

|Rrc|
|R| Λ(Rrc)

]−1

. (4)

Since the realistic dataset is sparsely labelled, i.e. |Ru| �
|Rl|, Ru are essential for modelling the target distribution.

In order to speed up the learning process, Qu can be ap-

proximated by down-sampling the patches in R.

Transductive term Qt: Inspired from cross-modality

boosting in [5], the transductive term Qt preserves the

cross-domain associations Ψ as the training data pass down

the trees:

Qt =
|{r, s} ⊂ Llc|+ |{r, s} ⊂ Lrc|

|{r, s} ⊂ L|
∀ {r, s} ⊂ L where Ψ(r, s) = 1

(5)

The transductive term Qt is hence the ratio of preserved as-

sociation after a split.

Adaptive switching{α, β,ω } A decision tree mainly per-

forms classifications at the top levels, its training objective

is switched adaptively to regression at the bottom levels

(Fig. 2). Let Δ(·) be the difference between the highest

posterior of a class and the second highest posterior in a

node. Δa(L) and Δp(L) denote the margin measures of

viewpoint labels a and joint labels p in L. They measure

the purity of a node with respect to viewpoint and patch la-

bel.

α =

{
1 if Δa(L) < tα

0 otherwise
β =

{
1 if Δp(L) < tβ

0 otherwise
(6)

where tα and tβ are tunable thresholds that determine the

structure of the output decision trees; both thresholds are

0.9 in this work. The parameter ω controls the relative im-

portance of Qt to Qu.

3.3. Data-driven Kinematic Joint Refinement

Since the proposed STR forest considers joint as inde-

pendent detection targets, it lacks structural information to

recover poorly detected joints when they are occluded or

missing from the depth image. Without having an explicit

hand model as in most model-based tracking methods, we

designed a data-driven, kinematic-based method to refine

joint locations from the STR forest. A large hand pose

database K is generated, such that |K| � |S|, in order to

obtain the maximum pose coverage. The pose database K
is generated using the same hand model as in the synthetic

dataset S , but K contains only the joint coordinates.

The procedures for computing the data-driven kinematic

model G is described in Algorithm 1. G contains viewpoint-

specific distributions of joint locations represented as a N -

part Gaussian mixture models (GMM).

Algorithm 1: Data-driven Kinematic Models.

Data: A joint dataset K ⊂ R
3×16 that contains

synthetic joint locations, where |K| � |S|.
Result: A set of viewpoint-dependent distributions

G = {Gi|∀i ∈ A} of global poses.

1 Split K with respect to viewpoint label A, such that

K = {K1 . . .K|A|}
2 forall the i ∈ A do
3 Learn a N -part GMM Gi of the dataset Ki:

Gi = {μ1
i . . . μ

n
i . . . μ

N
i ; Σ1

i · · ·Σni · · ·ΣNi }, where

μni and Σni denote the mean and diagonal variance

of the n-th Gaussian component in Gi of view i.

3.4. Testing

Joint Classification and Detection. Patches are extracted

densely from the testing depth images. Similar to other de-

cision forests, each patch passes down the STR forest to

obtain the viewpoint â and vote vectors v̂. The patch vote

for all 16 joint locations according to v̂.

Kinematic Joint Refinement. The objective of kinematic

joint refinement is to compute the final joint locations Y =
{y1 . . .yj . . .y16|∀y ∈ R

3}. Derived from the meanshift

technique in [12], the distributions of votes vectors are eval-

uated as stated below: The set of votes received by the j-th
joint is fitted a 2-part GMM Ĝj = {μ̂1

j , Σ̂
1
j , ρ̂

1
j , μ̂

2
j , Σ̂

2
j , ρ̂

2
j },

where μ̂, Σ̂, ρ̂ denote the mean, variance and weight of the

Gaussian components respectively. Fig. 3 visualises the

two Gaussian components obtained from fitting the voting

vectors of a joint.

A strong detection forms one compact cluster of votes,

which leads to a high weighting and low variance in one of

the Gaussians. On the contrary, a weak detection usually

contains scattered votes, indicated by separated means with
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similar weights. The j-th joint is of high-confidence when

the Euclidean distance between μ̂1
j and μ̂2

j is smaller than a

threshold tq . For any high-confident j-th joint, the output

location yj is the mean of the dominating Gaussian in Ĝj.

yj =

{
μ̂1
j if ||μ̂1

j − μ̂2
j ||22 < tq and ρ̂1j ≥ ρ̂2j

μ̂2
j if ||μ̂1

j − μ̂2
j ||22 < tq and ρ̂1j < ρ̂2j

(7)

Subsequently, final locations of all high-confidence

joints are determined. The joint refinement process is per-

formed on the other low-confidence joints.

The nearest neighbour of the set of high-confidence

joints are searched from its corresponding joint means

{μ1
â . . . μ

N
â } in the kinematic model Gâ using least squares

with a direct similarity homography H. Only the high-

confident joint locations are used in the above nearest neigh-

bour matching; the low-confident joint locations are masked

out. Given the nearest Gaussian component {μnnâ ,Σnnâ } of

the high-confidence joints, each remaining low-confidence

joint yj are refined:

{μ̃, Σ̃} = argmin
{μ,Σ}∈{μ̂1

j ,Σ̂
1
j },{μ̂2 Σ̂2}

||Hμ− μnnâ [j]||22 (8)

where {μ̃, Σ̃} is the Gaussian in Ĝj that is closer to the cor-

responding j-th joint location in {μnnâ [j] : R
3,Σnnâ [j] :

R
3×3}. The final output of a low-confidence joint yl is

computed by merging the Gaussians in Equation 9.

yj =
(
Σ̃−1+(Σnnâ [j])−1

)−1(
Σ̃μnnâ [j]+Σnnâ [j]μ̃

)
(9)

Fig. 3 illustrates the process of refining a low-confidence

joint. The index proximal joint is occluded by the mid-

dle finger as seen in the RGB image; the 2-part GMM Ĝj

is represented by the red crosses (mean) and ellipses (vari-

ance). The final output is computed by merging the nearest

neighbour obtained from G, i.e. {μnnâ [j],Σnnâ [j]} (the green

Gaussian), and the closer Gaussian in Ĝj (the left red Gaus-

sian). The procedures of refining output poses Y are stated

in Algorithm 2.

RGB                 Labels                        Joint Refinement

Figure 3: The proposed joint refinement algorithm.

4. Experiments
4.1. Evaluation dataset

Synthetic training data S were rendered using an artic-

ulated hand model(as shown in Figure 4). Each finger was

Algorithm 2: Pose Refinement

Data: Vote vectors obtained from passing down the

testing image to the STR forest.

Result: The output pose Y : R3×16.

1 foreach Set of voting vectors for the j-th joint do
2 Learn a 2-part GMM Ĝj of the voting vectors.

3 if ||μ̂1
j − μ̂2

j ||22 < tq then
4 The j-th joint is a high-confidence joint.

5 Compute the j-th joint location. (Equation 7)

6 else
7 The j-th joint is a low-confidence joint.

8 Find the Gaussian {μnnâ ,Σnnâ } by finding the nearest

neighbour of the high-confidence joints in Gâ.

9 Update the remaining low-confidence joint locations.

(Equation 8 and 9)

controlled by a bending parameter, such that only the ar-

ticulations that can be performed by real hands were con-

sidered. Different hand poses are generated by sampling

the bending parameters randomly. Moreover, in order to

capture hand shape variations, finger and palm shapes and

sizes were randomised mildly in S . As a result, the dataset

S contains 2500 depth images per viewpoint, the size of S
is 2500× 135 = 337.5K.

Realistic data R were captured using a Asus Xtion depth

sensor. This dataset contains 600 images per viewpoint,

hence the size of R is 81K. Not more than 20% of data

in R were labelled. The number of labelled sample |Rl| is

around 10K. Since labels can be reused for the rotationally

symmetric images (same yaw and pitch, different roll), only

around 1.2K of data were hand-labelled.

For Rl, visible joints were annotated manually using 3-

D coordinates but occluded joints were annotated using the

(x, y) coordinates only. Associations Ψ and the remain-

ing z-coordinates in Rl were computed by matching visible

joint locations with S using least squares with a direct sim-

ilarity transform constraint. Consequently, each datapoint

in Rl was paired with its closest match xsyn ∈ S , and

its occluded z coordinates were approximated by the cor-

responding z coordinates of xsyn. With joint locations as

mean, each joint can be model as a 3D truncated Gaussian

distribution, where variances can be defined according to

hand anatomy. Foreground pixels are clustered into one of

these distributions and therefore assigned with labels p.

For experiments, three different sequences (A,B and C)

are captured and labelled with 450, 1000 and 240 frames re-

spectively. Sequence A has only one viewpoint, B demon-

strates viewpoint variation and C has more abrupt changes

in both viewpoint and scale. In the experiments, 3 trees

are trained with maximum depth varying from 16 to 24, as
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in [24]. Since the training dataset contain a large amount

of positive samples, a few trees are enough to average out

noisy results. From the experimental results, adding extra

trees did not improve the pose estimation accuracy.

4.2. Single View Experiment

The proposed approach was evaluated under the frontal

view scenario, comparing with the traditional regression

forest in [11] as a baseline. Since there was only one view-

point in testing sequence A, Qa in Equation 2 did not af-

fect the experimental results. Performances of algorithms

are measured by their pixel-wise classification accuracy per

joint, similar to [24], hence only Qp,Qv , Qt and Qu were

utilised in this experiment.

Fig. 4 shows the classification accuracy of the exper-

iment. It demonstrates the strengths of realistic-synthetic

fusion and semi-supervised learning. Accuracy of baseline

method was improved by simply including both domains

in training without any algorithmic changes. Transductive

learning (Qt) substantially improved the accuracy, particu-

larly for the finger joints which were less robust in the base-

line algorithms. By coupling realistic data with synthetic

data, the transductive termQt effectively learns the discrep-

ancies between the domains, which is important in recog-

nising noisy and strongly occluded fingers. Some joints are

often mislabelled as other “stronger” joints after transduc-

tive learning, e.g. joints L3 and I1. Nevertheless, the data-

driven joint refinement scheme significantly improved the

performance of these joints.

4.3. Multi-view Experiment

In the multi-view experiment, the proposed approach

was compared with the state-of-the-art by FORTH [20] un-

der a challenging multi-view scenario. Quantitative and

qualitative evaluations were performed to provide a com-

prehensive comparison of the methods.

Hand articulations are estimated from the multi-view

testing sequences (sequence B and C) by both of the meth-

ods. Since FORTH require manual initialisation, the test-

ing sequences used are designed such that they start with

the required initialisation pose and position, making a fair

comparison. Same as [20], performances of pose estimation

were measured by joint localisation error.

Quantitative Results Fig. 5 shows the average localisation

errors of the two testing sequences. It also demonstrates

a representative of error graphs from a stable joint (palm,

P ) and a difficult joint (index finger tip, I3). The proposed

STR forest, with the data-driven kinematic joint refinement,

outperforms FORTH in all three statistics, especially for

the finger tip joints that are noisy and frequently occluded.

Even though a few large estimation errors are observed, our

frame-based approach is able to recover from errors quickly.

Sequence C further confirms the major advantage of our

approach over its tracking-based counterpart—In the first

200 frames, with kinematic joint refinement, STR forest ap-

proach performs just slightly better than FORTH. However,

localisation errors in FORTH accumulate after an abrupt

change and have not been recovered since then. As model-

based tracking approaches rely on previous results to op-

timise the current hypothesis iteratively, estimation errors

amass over time. On the other hand, frame-based dis-

criminative approaches consider each frame as an indepen-

dent input, enabling fast error recovery at the expense of a

smooth and continuous output.

The proposed joint refinement scheme increases the joint

estimation accuracy in general, as shown in Fig. 5. Some

of the large classification errors, e.g. Fig. 5c, are fixed after

applying joint refinement. It implies that the joint refine-

ment process not only improves the accuracy of joint, but

also avoids incorrect detections by validating the output of

STR forest with kinematic constraints.

Qualitative Analysis The experimental results are also vi-

sualised in Fig. 6 for qualitative evaluation. Fig. 6a to e

show the pose estimation results from different view points.

Fig. 6f shows a frame at the beginning of test sequence

B, both FORTH and our method obtains accurate hand ar-

ticulations. Nonetheless, the performance of FORTH de-

clines rapidly in the middle of the sequence when its track-

ing is lost and failed to recognise Fig. 6g, yet our ap-

proach still gives correct results. Conceptually, the pro-

posed method is similar to Keskin et al. [16], where both

approaches describe a coarse-to-fine hand pose estimation

algorithm. However, our method is based on a unified,

single-layered STR forest, which is trained on realistic and

synthetic data, while Keskin et al. [16] is multi-layered, us-

ing only synthetic data in training. The STR forest achieves

real-time performance, as it runs at about 25FPS on an Intel

I7 PC without GPU acceleration, whilst the FORTH algo-

rithm runs at 6FPS on the same hardware configuration plus

NVidia GT 640.

5. Conclusions

This paper presents the first semi-supervised transduc-

tive approach for articulated hand pose estimation. Despite

their similarities with body pose estimation, techniques for

articulated hand pose is still far from mature, primarily due

to the unique issues of occlusion and noise issues in hand

pose data. On the other hand, the discrepancies between re-

alistic and synthetic data also undermine the performances

of state-of-the-arts.

Addressing the aforementioned issues, we propose a
novel discriminative approach, STR forest, to estimate hand
articulations using both realistic and synthetic data. With
transductive learning, the STR forest recognises a wide
range of poses from a small number of labelled realistic
data. Semi-supervised learning is applied to fully utilise
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Figure 4: Joint classification accuracy of the single view sequence.
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Figure 5: Quantitative results of the multi-view experiment.

the sparsely labelled realistic dataset. Besides, we also
present a data-driven pseudo-kinematic technique, as means
to improve the estimation accuracy of occluded and noisy
hand poses. Quantitative and qualitative results demonstrate
promising results in hand pose estimation from noisy and
occluded data. It also attains superior performances and
speed compared with state-of-the-art.
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