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Abstract

Among image segmentation algorithms there are two
major groups: (a) methods assuming known appearance
models and (b) methods estimating appearance models
jointly with segmentation. Typically, the first group opti-
mizes appearance log-likelihoods in combination with some
spacial regularization. This problem is relatively simple
and many methods guarantee globally optimal results. The
second group treats model parameters as additional vari-
ables transforming simple segmentation energies into high-
order NP-hard functionals (Zhu-Yuille, Chan-Vese, Grab-
Cut, etc). It is known that such methods indirectly minimize
the appearance overlap between the segments.

We propose a new energy term explicitly measuring L1

distance between the object and background appearance
models that can be globally maximized in one graph cut.
We show that in many applications our simple term makes
NP-hard segmentation functionals unnecessary. Our one
cut algorithm effectively replaces approximate iterative op-
timization techniques based on block coordinate descent.

1. Introduction
Appearance models are critical for many image segmen-

tation algorithms. The most basic object segmentation en-

ergy [3, 20] combines boundary regularization with log-

likelihood ratios for fixed foreground and background ap-

pearance models, e.g. color distributions, θ1 and θ0

E(S|θ1, θ0) = −
∑
p∈Ω

ln Pr(Ip|θsp) + |∂S| (1)

where Ω is the set of all image pixels. Commonly used

length regularization is |∂S| =
∑
{p,q}∈N ωpq|sp − sq|

where sp ∈ {0, 1} are binary indicator variables for seg-

ment S ⊂ Ω andN is the set of all pairs of neighboring pix-

els. One important practical advantage of this basic energy

is that there are efficient methods for their global minimiza-

tion using graph cuts [4] or continuous relaxations [5, 18].

In many applications the appearance models may not be

known a priori. Some well-known approaches to segmen-

tation [25, 19, 6] consider model parameters as extra opti-

mization variables in their segmentation energies. E.g.,

E(S, θ1, θ0) = −
∑
p∈Ω

ln Pr(Ip|θsp) + |∂S|, (2)

which is known to be NP-hard [22], is used for interac-

tive segmentation in GrabCut [19] where initial appearance

models θ1, θ0 are computed from a given bounding box.

The most common approximation technique for minimiz-

ing (2) is a block-coordinate descent [19] alternating the

following two steps. First, they fix model parameters θ1,
θ0 and optimize over S, e.g. using a graph cut algorithm for

energy (1) as in [3]. Second, they fix segmentation S and

then optimize over model parameters θ1 and θ0. Two well-
known alternatives, dual decomposition [22] and branch-
and-mincut [14], can find a global minimum of energy (2),

but these methods are too slow in practice.

We observe that when appearance models θ1, θ0 are rep-
resented by (non-parametric) color histograms, minimiza-

tion of (2) is equivalent to minimization of energy

E(S) = |S| ·H(θS) + |S̄| ·H(θS̄) + |∂S| (3)

that depends on S only. Here θS and θS̄ are histograms in-

side object S and background S̄ = Ω \ S, and H(·) is the
entropy functional for probability distributions. This form
of energy (2) can be obtained by replacing the sum over pix-

els in (2) by the sum over color bins. Well-known inequal-

ities for cross entropy, e.g. H(θS |θ1) ≥ H(θS), also help.
Interestingly, the global minimum of segmentation energy

(3) does not depend on the initial color models provided by

the user. Thus, the interactivity of GrabCut algorithm is pri-

marily due to the fact that its solution is a local minimum of

(3) sensitive to the initial bounding box.

Formulation (3) is useful for analyzing the properties of

energy (2). The entropy terms of this energy prefer seg-

ments with more peaked color distributions. Intuitively,

this should also imply distributions with small overlap.

For example, consider a simple case of black-&-white im-

ages when color histograms θ1 and θ0 have only two bins.
Clearly, the lowest value (zero) for the entropy terms in (3)
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is achieved when black and white pixels are completely sep-

arated between the segments, e.g. all white pixels are inside

the object and all black pixels are inside the background.

In general, the color separation bias in energy (3) is

shown by equivalently rewriting its two entropy terms as

hΩ(S) −
∑

i

hΩi(Si) (4)

where hA(B) = |B| · ln |B| + |A \ B| · ln |A \ B| is stan-
dard Jensen-Shannon (JS) divergence functional for subset

B ⊂ A. We also use Ωi to denote the set of all pixels in

color bin i (note Ω = ∪iΩi) and Si = S ∩ Ωi is a subset of

pixels of color i inside object segment (note S = ∪iSi). The

plots for functions hΩ(S) and −hΩi(Si) are illustrated in
Fig.1. The first term in (4) shows that energies (2) or (3) im-
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(a) hΩ(S) (b) −hΩi(Si) (c) −|Si − S̄i|
Figure 1. Energy (3): volume balancing (a) and Jensen-Shannon

color separation terms (b). Our L1 color separation term (c).

plicitly bias image segmentation to two parts of equal size,

see Fig.1(a). The remaining terms in (4) show bias to color

separation between the segments, see Fig.1(b). Note that

a similar analysis in [22] is used to motivate their convex-

concave approximation algorithm for energy (2).

Volume balancing hΩ(S) is the only term in (4) and (2)

that is not submodular and makes optimization difficult.

Our observation is that in many applications this volume

balancing term is simply unnecessary, see Sections 3.1.3,

3.2-3.3. In other applications we propose to replace it by

other easier to optimize terms.

Moreover, while it is known that JS color separation term

−hΩi(Si) is submodular
1 and can be optimized by graph

cuts [11, 12, 22], we propose to replace it with a more basic

L1 separation term in Fig.1(c). We show that it corresponds

to a simpler construction with much fewer auxiliary nodes

leading to higher efficiency. Interestingly, it also gives bet-

ter color separation effect, see Section 3.1.2.

We also observe one practical limitation of block-

coordinate approach to (2), as in GrabCut [19], could be

due to deteriorating sensitivity to local minima when the

number of color bins for models θS and θS̄ is increased,

see Table 2 and Fig.5. In practice, however, finer bins bet-

ter capture the information contained in the full dynamic

range of color images (8-bit per channel or more). Our ROC

1Any concave function of cardinality is submodular [16]. This applies

to JS, χ2, Bhattacharyya, and our L1 color separation terms in Figs.1, 9.

Figure 2. Given appearance models θ1, θ0 extracted from the

ground truth object/background segments, we can threshold log-

likelihood ratios ln
θ1(Ip)

θ0(Ip)
at each pixel p and compare the result

with the same ground truth segmentation. The corresponding ROC

curves show that the color separation between the object and back-

ground increases for finer bins.

curves show that even a difficult camouflage image in Fig-

ure 2 has a good separation of intensities between the ob-

ject and background if larger number of bins is used. With

163 bins, however, the overlap between the “fish” and the
background is too strong making it hard to segment. Since

GrabCuts algorithm is more likely to get stuck at weak local

minima for larger number of bins, it may not benefit from

higher color resolution, see Table 2 and Fig.5.

Our contributions are summarized below:

• We propose a simple energy term penalizing L1 mea-

sure of appearance overlap between segments. While

it can be seen as a special case of a high-order label
consistency term introduced by Kohli et al. [11, 12]

we propose a simpler construction for our specific

constraint. Unlike NP-hard multi-label problems dis-

cussed in [11, 12], we focus on binary segmentation

where such high-order constraints can be globally min-

imized. Moreover, we show that our L1 term works

better for separating colors than other concave separa-

tors (including JS, Bhattacharyya, and χ2).

• We are first to demonstrate fast globally optimal binary

segmentation technique explicitly minimizing overlap

between object/background color distributions. In one

graph cut we get similar or better results at faster run-

ning times w.r.t. earlier methods, e.g. [19, 22, 14, 7].

• We show general usefulness of the proposed appear-

ance overlap penalty by showing different practical ap-

plications: binary segmentation, shape matching, etc.

2. Minimizing appearance overlap in One-Cut
Let S ⊂ Ω be a segment and denote by θS and θS̄

the unnormalized color histograms for the foreground and

background appearance respectively. Let nk be the number
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Figure 3. Graph construction for EL1 : nodes v1, v2, . . . , vnk cor-
responding to the pixels in bin k are connected to the auxiliary

node Ak using undirected links. The capacity of these links is the

weight of appearance overlap term β > 0.

of pixels in the image the belong to bin k and let nS
k and

nS̄
k be the according number of the foreground and back-

ground pixels in bin k. Our appearance overlap term pe-

nalizes the intersection between the foreground and back-

ground bin counts by incorporating the simple yet effective

high-order L1 term into the energy function:

EL1(θ
S , θS̄) = −‖θS − θS̄‖L1 . (5)

Below we explain how to incorporate and optimize the

term EL1(θ
S , θS̄) using one graph cut. For the clarity of

the explanation we rewrite

EL1(θ
S , θS̄) =

K∑
k=1

min(nS
k , n

S̄
k ) − |Ω|

2
. (6)

It is easy to show that the two sides of (6) are equivalent.

The details of the graph construction for the above term are

shown in Fig. 3.

We addK auxiliary nodes A1, A2, ..., AK into the graph

and connect kth auxiliary node to all the pixels that belong

to the kth bin. In this way each pixel is connected to its

corresponding auxiliary node. The capacity of these links

is set to β = 1. Assume that bin k is split into foreground
and background, resulting in nS

k and n
S̄
k pixels accordingly.

Then any cut separating the foreground and background

pixels must either cut nS
k or n

S̄
k number of links that connect

the pixels in bin k to the auxiliary nodeAk. The optimal cut

must choose min(nS
k , n

S̄
k ) in (6).

A similar graph construction with auxiliary nodes is pro-

posed in [11, 12] to minimize higher order pseudo-boolean

functions of the following form:

f(Xc) = min{θ0 +
∑
i∈c

w0
i (1 − xi), θ1 +

∑
i∈c

w1
i xi, θmax}

(7)

where xi ∈ {0, 1} are binary variables in clique c, w0
i � 0,

w1
i � 0, and θ0, θ1 and θmax are parameters satisfying the

constraints θmax � θ0 and θmax � θ1.
Below we discuss the relation and the differences be-

tween the two constructions. The construction in [11, 12]

can be used to minimize EL1
as follows: consider each

color bin as a clique and set parameters w0
i = 1, w1

i =

Figure 4. Graph construction for minimizing pseudo-boolean

function (7), r = min{θ0, θ1}.

1, θ0 = 0, θ1 = 0 and θmax = nk/2, where nk is

the number of pixels in bin k. Then f(Xc) reduces to
EL1(θ

S , θS̄)+|Ω|/2. One advantage of our graph construc-
tion is that we only need one auxiliary node for each bin in

contrast to two auxiliary nodes in [11, 12]. Furthermore,

our construction also extends to pseudo-boolean functions

in (7) using directed links, as shown in Fig. 4.

To see how it works we consider four possible label as-

signments for the auxiliary nodes A1
k and A0

k. The table

below shows the cost of corresponding cuts. The minimum

cut renders optimization of the function (7).

(A1
k, A

0
k) the cost of cut

(0,0) θ1 +
∑

i|xi=1 w
1
i − r

(0,1) θ0 +
∑

i|xi=0 w
0
i + θ1 +

∑
i|xi=1 w

1
i − 2r

(1,0) θmax − r

(1,1) θ0 +
∑

i|xi=0 w
0
i − r

Table 1. Cut costs corresponding to four possible label assign-

ments to the binary auxiliary nodes A1
k and A0

k. The optimal cut

must choose the minimum of the above costs, thus minimizing (7).

Unlike our construction, the method in [11, 12] requires

that ∀Xc ∈ {0, 1}|c| the parameter θmax in f(Xc) should
satisfy the following constraint:

θmax � max(θ0 +
∑
i∈c

w0
i (1 − xi), θ1 +

∑
i∈c

w1
i xi). (8)

In contrast, we can optimize high-order functions in (7) with

arbitrary θmax, provided that θmax � θ0 and θmax � θ1.

3. Applications
In this section we apply our appearance overlap penalty

term in a number of different practical applications includ-

ing interactive binary segmentation in Sec.3.1, shape match-

ing in Sec.3.2, and saliency detection in Sec.3.3.

3.1. Interactive segmentation

First, we discuss interactive segmentation with several

standard user interfaces: bounding box [19] in Section 3.1.1

and seeds [3] in Section 3.1.3. We compare different color

separation terms in Section 3.1.2.
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Error rate Mean runtime

GrabCut (83 bins) 8.54% 2.48 s

GrabCut (163 bins) 7.1%2 1.78 s

GrabCut (323 bins) 8.78% 1.63s

GrabCut (643 bins) 9.31% 1.64s

GrabCut (1283 bins) 11.34% 1.45s

GrabCut (2563 bins) 13.59% 1.46s

DD (163 bins) 10.5% 576 s

One-Cut (83 bins) 9.98% 18 s

One-Cut (163 bins) 8.1% 5.8 s

One-Cut (323 bins) 6.99% 2.4 s

One-Cut (643 bins) 6.67% 1.3 s

One-Cut (1283 bins) 6.71% 0.8 s

One-Cut (2563 bins) 7.14% 0.8 s

Table 2. Error rates and mean runtime for GrabCut [19], Dual De-

composition (DD) [22], and our method, denoted by One-Cut.

3.1.1 Binary segmentation with bounding box

First, we use appearance overlap penalty in a binary seg-

mentation experiment a la GrabCut [19]. A user provides

a bounding box around an object of interest and the goal is

to perform binary image segmentation within the box. The

pixels outside the bounding box are assigned to the back-

ground using hard constraints. Let R ⊆ Ω denote the bi-

nary mask corresponding to the bounding box, SGT ⊆ Ω
be the ground truth segmentation and S ⊆ Ω be a segment.

Denote by 1S = {sp|p ∈ Ω} the characteristic function of
S. The segmentation energy function E(S) is given by

E(S) = |S̄ ∩R| − β‖θS − θS̄‖L1 + λ|∂S|, (9)

where the first term is a standard ballooning inside the

bounding box R, the second term is the appearance over-

lap penalty as in (5), and the last term is a contrast-sensitive

smoothness term. We use |∂S| =
∑
ωpq|sp − sq| with

ωpq = 1
‖p−q‖ · e−ΔI2

2σ2 and σ2 set as average ΔI2 over the

image. This energy can be optimized with one graph cut.

It is common to tune the relative weight of each energy

term for a given dataset [22]. The input bounding box con-

tains useful information about the object to be segmented.

We use the measure of appearance overlap between the box

R and its background R̄ to automatically find image spe-

cific relative weight β of the appearance overlap term w.r.t.

the first (ballooning) term in (9). In our experiments, we

adaptively set an image specific parameter βImg based on

the information within the provided bounding box:

βImg =
|R|

−‖θR − θR̄‖L1 + |Ω|/2 · β′
. (10)

Here β
′
is a global parameter tuned for each application.

We found it to be more robust compared to tuning β.

2The error rate for our implementation of the GrabCut method is

slightly different from 8.1% reported in [22], since we use a different

smoothness term and do not downscale images.
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Figure 5. Error-rates for different bin resolutions, as in Table 2.

We experiment on the well known Grab-cut database

[19]3. The error rate is defined as the number of misclassi-

fied pixels within the bounding box R divided by the size

of the box |R|. We test with different number of color

bins and provide quantitative comparison with the grab-cut

method [19] (our implementation, modified to work with

histograms as in [22]) and the dual decomposition method

[22] (results reported by the authors). The Table 2 and the

plots in Fig. 5 report the respective error rates and the av-

erage running times. We tune λ separately for each method
and number of bins.

With 163 bins, the GrabCut method is the most accurate
and fast. However, it is important to see the effect of work-

ing with larger number of bins, as some objects might only

be distinguishable from the background when using higher

dynamic rage. As we increase the number of color bins, the

error rate for the GrabCut method increases, while the error

rate of One-Cut decreases. When using 1283 bins One-Cut
runs twice as fast, while obtaining much lower error rate.

This is because with more bins, more auxiliary nodes are

used, but each auxiliary node is connected to less pixels.

The connectivity density decreases and the mincut/maxflow

algorithm runs faster. DD is hundreds of times slower, while

its error rate is quite high. Note that in [22], images are

down-scaled to maximum side-length of 250 pixels while

the method here deals with the original image.

Finally, Figures 6-7 show examples of input bounding

boxes and segmentation results with the GrabCut [19], Dual

Decomposition [22] and our One-Cut method.

3.1.2 Comparison of Appearance Overlap Terms

Below we discus additional variants for appearance over-

lap penalty term. We explain how they all can be imple-

mented with the construction proposed in Fig. 4 and com-

pare their performance in the task of binary segmentation

applied to the GrabCut dataset [19]. We consider four ap-

pearance overlap terms based on the L1 norm, χ
2 distance,

Bhattacharyya coefficient and Jensen-Shannon divergence

3There are 50 images in the dataset, but we exclude the cross image for

the sake of comparison with [22].
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(a) (b) (c) (d)

Figure 6. Example of segmentation results. From left to right: (a)

user input, (b) GrabCut [19], (c) Dual Decomposition (DD) [22],

(d) our One-Cut. For these examples we used 163 bins.

between histograms. To that end we define

DL1(θ
S , θS̄) =

K∑
k=1

min (nS
k , n

S̄
k ) (11)

Dχ2(θS , θS̄) =
K∑

k=1

nk/2 − (nS
k − nS̄

k )2/(2nk) (12)

DBha(θ
S , θS̄) =

K∑
k=1

√
nS

kn
S̄
k (13)

DJS(θS , θS̄) =
K∑

k=1

nk log nk − nS
k log nS

k − nS̄
k log nS̄

k

2

(14)

where θS and θS̄ are unnormalized histograms of the fore-

ground and background respectively. The DL1 term above

is equivalent to −‖θS − θS̄‖L1 , but we use this notation for

easiness of comparison with other overlap terms. All four

terms above are concave functions of ns
k attaining maxi-

mum at nk/2. See Fig. 9 (top-left) for the visualization of
the terms and comparison with DL1 .

Similarly to [11] we observe that any concave function

can be approximated as a piece-wise linear function by us-

ing a summation of specific (pyramid-like) truncated func-

tions, each having a general form as in (7). For example,

Fig. 8 illustrates one possible approximation using three

components. These truncated components can be incorpo-

rated into our graph using the construction shown in Fig.

4. Note, DL1 is equivalent to Dχ2 , DBha or DJS when

approximated using one truncated component.

All three appearance overlap terms above can be opti-

mized with one graph cut. We wish to find out which term

and what level of approximation accuracy are optimal for

the task of binary segmentation. Therefore, for each term

we vary the approximation accuracy (the number of trun-

Figure 7. Example of segmentation results obtained with our One-

Cut. For these examples we used 1283 bins.

Figure 8. The original concave function (red) is approximated as

a piece-wise linear function (blue, left) using three truncated com-

ponents (blue,middle). Approximation with ten components (blue,

right) is already very accurate.

cated components used) and compare the performance of

Dχ2 , DBha, DJS with that of DL1 .

In the first experiment, we use an adaptive image specific

weight βImg for the appearance overlap term as in (10) and

set β
′

= 0.9 which was found optimal for DL1 overlap

term. Fig. 9 (top-right) shows that as the approximation

accuracy (the number of components used) increases, the

error rate goes up.

In the second experiment, we choose the optimal βImg

separately for each appearance overlap term by replac-

ing the denominator of (10) with either Dχ2(θR, θR̄),

DBha(θ
R, θR̄) or DJS(θR, θR̄) according to the appear-

ance overlap term used. We also tune parameter β
′
sepa-

rately for each appearance overlap term. As shown in Fig.

9 (bottom-right), DL1
achieves the lowest error rate and

has the shortest running time (bottom-right) than any other
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Figure 9. Comparison of appearance overlap terms: (top-left)

shows the functions plotted for one bin k, (top-right) shows seg-
mentation error rates using the same βImg as in (10) for all overlap

terms and (bottom-left) shows segmentation results when using a

term-specific βImg . The running time is shown on (bottom-right).

overlap term with any level of approximation accuracy.

In the third experiment we replace DL1 with the trun-

cated version DLT1
=
∑K

k=1 min(nS
k , n

S̄
k , t · nk/2) where

t ∈ [0, 1] is the truncation parameter. Our DL1 term can be

seen as a special case of the truncated DLT1
where t = 1.

Again, for each value of t we replace the denominator in
(10) by DLT1

(θR, θR̄) and tune β
′
. Fig. 10 reports the error

rates of the segmentation as a function of the parameter t.
It can be seen that the non-truncated version (t = 1) yields
the best performance. This further proves the benefit of our

proposed DL1 appearance overlap term.
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Figure 10. Left: Truncated appearance overlap termDLT1
for a bin

k. Right: Segmentation error rate as a function of parameter t in
DT

L1
. Best results are achieved for t = 1 (no truncation).

3.1.3 Interactive Segmentation with Seeds

Unlike interactive segmentation with abounding box, using

seeds a la Boykov-Jolly [3] makes volumetric balancing

unnecessary due to hard constraints enforced by the user.

Therefore, the segmentation energy is quite simple:

Eseeds(S) = −β‖θS − θS̄‖L1 + λ|∂S|
subject to the hard constraints given by the sees. Figure 11

shows several qualitative segmentation results.

Figure 11. Interactive segmentation with seeds

3.2. Template Shape Matching

Below we discuss how appearance overlap penalty term

can be used for template shape matching. Several prior

methods rely on graph-cut based segmentation with shape

prior [21, 8, 14, 23]. Most commonly, these methods use a

binary template mask M and combine the shape matching

cue a contrast sensitive smoothness term via energy

E1(S) = min
ρ∈Φ

EShape(S,M
ρ) + λ|∂S|. (15)

where ρ denotes a transformation in parameter space

Φ and Mρ is a transformed binary mask. The term

EShape(S,M
ρ) measures the similarity between segment

S and the transformed binary mask Mρ. Possible metric

include Hamming distance or L2 distance. We further in-

corporate the appearance overlap into the energy:

E2(S) = E1(S) − β‖θS − θS̄‖L1 (16)

and compare the performance of E1(S) and E2(S) in the
task of template shape matching. Fig. 12 shows few ex-

amples of input template and matching results. Without the

appearance overlap term shape matching yields erroneous

segmentation due to the clutter edges in the background.

We experiment on Microsoft Research Cambridge Ob-

ject Recognition Image Database4. There are 282 side view

images of cars, roughly of the same scale. We down-scaled

all images to 320×240 and used 1283 color bins per image.
For this experiment, Φ to defined be the set of all possible

translations and horizontal flip. For the template matching,

we scan the image in a sliding-window fashion and com-

pute maxflow/mincut with dynamic graph cut [13]. We use

Hamming distance in (15). In principle, branch-and-mincut

[14] can speed up optimization of both energies (15) and

(16), but this is outside the scope of our paper.

4http://research.microsoft.com/en-us/projects/objectclassrecognition
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(a) (b) (c) (d)

Figure 12. Template shape matching examples: (a) Original im-

ages, (b) Contrast sensitive edge weights, (c-d) Shape matching

with and without the appearance overlap penalty. Input shape tem-

plates are shown as contours around the resulting segmentation.

Fig. 13 shows the coarse car template used for this exper-

iment and some qualitative results. Table 3 provides quan-

titative comparison of the results obtained with and with-

out incorporating the appearance overlap term, namely us-

ing E2(S) and E1(S). The results are reported with re-

spect to manually outlined ground truth segmentations and

clearly point to the benefit of incorporating the overlap term

EL1 into the segmentation energy. When using E2(S) we
achieve higher true positive (TP) rate of 81.88%, lower false

positive (FP) rate of 3.86% and less misclassified pixels

without compromising much the running time.

Figure 13. Template shape matching examples: shape (top left)

and pairs of original images + segmentations with E2(S).

Energy TP FP Error pixels Runtime

E1(S) 76.97% 6.96% 10106 4.1 s

E2(S) 81.88% 3.86% 7480 13.0 s

Table 3. Template shape matching: comparing E1(S) and E2(S)
in terms of TP, FP, misclassified pixels, and mean running time.

We used λ = 5 for E1(S) and (λ = 5, β = 1.1) for E2(S).

3.3. Salient object segmentation

Salient region detection and segmentation is an impor-

tant preprocessing step for object recognition and adaptive

compression. Salient objects usually have an appearance

that is distinct from the background [1, 7, 17]. Below we

show how our appearance overlap penalty term can be used

for the task of salient object segmentation. We use the

saliency map provided by [17] because it yields the best

precision/recall curve when thresholded and compared to

the ground truth. Let A : Ω → [0, 1] denote the normalized
saliency map and <A> be its mean value. Then let

ESalience(S) =
∑
p∈Ω

<A> −(A(p)) · sp (17)

denote an energy term measuring the saliency of a given

segment. We now define two segmentation energies, with

and without the appearance overlap term. Let E3(S) be the
energy combining the saliency and smoothness terms

E3(S) = ESalience(S) + |∂S|, (18)

and E4(S) be the energy with the appearance overlap term

E4(S) = E3(S) − β‖θS − θS̄‖L1 . (19)

E4(S) can be optimized in one graph cut using the con-
struction shown in Fig. 3. We use 1283 color bins, β = 0.3

and smoothness term ωpq = 3(e
−∂I2
2σ2 /||p− q|| + 0.1).

We experiment on publicly available dataset [1] which

provides ground-truth segmentation of 1000 images from

MSRA salient object database [15]. Fig. 14 compares the

performance of E3(S) and E4(S) with that of FT [1], CA
[9], LC [24], HC [7] and RC [7] in terms of precision, recall
and F-measure defined as

F =
1.3 · Precision ·Recall
0.3 · Precision+Recall

. (20)

Optimizing E3(S) results in precision = 91%, recall =
85% and F-measure = 86%, whereas incorporating the ap-
pearance term in E4(S) yields precision = 89%, recall =
89% and F-measure = 89%, which is comparable to the

state-of-the-art results reported in literature [7](precision =
90%, recall = 90%, F-measure = 90%). Note that our op-
timization requires one graph-cut only, rather than the it-

erated EM-style grab-cut refinement in [7]. Assuming the

saliency map is precomputed, the average running time for

optimizing E4(S) is 0.43s and for optimizing E3(S) is
0.39s. Fig. 15 shows qualitative results for our saliency seg-

mentation with and without the appearance overlap term.

4. Conclusions and Future work
We proposed an appearance overlap term for graph-cut

based image segmentation. This term is based on L1 dis-

tance between unnormalized histograms of foreground and

background. We show that this term is easier to implement

and that it is more effective at separating colors than com-

pared to other concave (submodular) separators. While L1

appearance overlap term is a special case of robust Pn-Potts
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Figure 14. Saliency segmentation results reported for dataset [1]:

Precison-Recall and F-measure bars for E3(S), E4(S) are com-
pared to FT[1], CA[9], LC[24], HC[7] and RC[7].

model, we show a simpler construction that can be easily in-

corporated into any graph cut based segmentation method.

In several applications including interactive image segmen-

tation, shape matching and saliency region detection we

achieve the state-of-the-art results. We show that our term is

a good fit for interactive segmentation (with bounding box

or user seeds interfaces). In contrast to other appearance

adaptive methods (e.g. GrabCut) our approach finds guar-

anteed global minimum in one cut.

Future work may include combining submodular L1

color separation term with problematic non-submodular

volume balancing terms like hΩ in (4), which could be effi-

ciently optimized using FTR [10] or auxiliary cuts [2].
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