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Abstract

The goal of high level event classification from videos
is to assign a single, high level event label to each query
video. Traditional approaches represent each video as a set
of low level features and encode it into a fixed length feature
vector (e.g. Bag-of-Words), which leave a big gap between
low level visual features and high level events. Our paper
tries to address this problem by exploiting activity concept
transitions in video events (ACTIVE). A video is treated as
a sequence of short clips, all of which are observations cor-
responding to latent activity concept variables in a Hidden
Markov Model (HMM). We propose to apply Fisher Ker-
nel techniques so that the concept transitions over time can
be encoded into a compact and fixed length feature vector
very efficiently. Our approach can utilize concept annota-
tions from independent datasets, and works well even with
a very small number of training samples. Experiments on
the challenging NIST TRECVID Multimedia Event Detec-
tion (MED) dataset shows our approach performs favorably
over the state-of-the-art.

1. Introduction

Video event classification is an important computer vi-
sion problem needed for many tasks including automatic
tagging and content based retrieval. Early work deals with
well-defined atomic actions such as walking, kissing and
hand shake [17] [10]. The videos are usually short clips
taken in constraint environment. Compared with these,
high level event classification for web videos focuses on
classifying complex events (e.g. wedding ceremony, feed-
ing an animal) from large number of videos in the wild. It
poses several key challenges: First, high level events usu-
ally involve multiple human-object interactions. There is
a hiearchy where events can be decomposed into several
mid-level activities (e.g. dancing), each of which consists
of atomic actions (e.g. walking). We refer the latter two as
activity concepts. Second, the videos are captured by am-
ateurs, with different video qualities, irregular camera mo-
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Figure 1. Illustration of our approach. (Top) A video from Wed-
ding ceremony event is separated into a sequence of clips, each of
which corresponds to an activity concept like kissing and dancing.
(Bottom) Each dimension in our representation corresponds to an
activity concept transition. A positive value indicates the transition
is more likely to happen than parameterized by a Hidden Markov
Model.

tions, shot changes, and huge intra-class variation. Finally,
the datasets usually contain large number of videos.

Facing these challenges, the current state-of-the-art takes
a simple approach yet achieves impressive results. It fol-
lows the Bag-of-Words (BoW) scheme with the following
three steps: low-level feature extraction, fixed-length fea-
ture vector encoding and classification. The features may
include local image descriptors [ 1 3], motion descriptors [8]
[9] [23] or audio descriptors. Effective as it is, there are
some limitations. First, unlike lower level activity concepts
which have relatively discriminative motion or visual pat-
terns, most high level events consist of complex human ob-



ject interaction and various scene backgrounds, which pose
difficulty for the existing low level frameworks. Second,
low level features are usually encoded into a histogram over
the entire video, dropping useful temporal information. Fi-
nally, many activity concepts have pairwise relationships in
temporal domain. These relationships provide useful clues
for classifying high level events. For example, kissing is
usually followed by hugging in a wedding ceremony event,
as shown in Figure 1.

To overcome these limitations, we propose to encode ac-
tivity concept transitions with Fisher kernel techniques [7].
The basic idea is to extract statistics information from some
generative model for classification in a discriminative ap-
proach. It represents a set of data by its derivative of log-
likelihood function over the set of model parameters, which
is used as input for a discriminative classifier like a Support
Vector Machine (SVM). Intuitively, it measures the differ-
ence of the incoming data from an underlying model. Here
we use Hidden Markov Model (HMM) as the underlying
generative model. In this model, a video event is a sequence
of activity concepts. A new concept is generated with cer-
tain probabilities based on the previous concept. An ob-
servation is a low level feature vector from a sub-clip and
generated based on the concepts. By using this model, we
bridge low level features and high level events via activity
concepts, and utilize the temporal relationships of activity
concepts explicitly. We call the vector produced by apply-
ing the Fisher kernel to an HMM to be an HMM Fisher Vec-
tor (HMMFYV). Our approach has the following features:

No maximum a posteriori (MAP) inference needed.
HMM in traditional generative framework requires MAP in-
ference to find out the concept assignments over time with
the highest probability. A separate model for each new
event is needed. Instead, HMMFV only uses HMM for the
purpose of vector generation, and can utilize a single gen-
eral model for all videos.

Efficient for large-scale usage. HMMFYV is a compact
and fixed-length feature vector. It can be used directly in
most classification and retrieval frameworks using low-level
features. HMMFV has a closed form representation and can
be computed by dynamic programming very efficiently.

Robust with limited training data. Our activity con-
cept classifiers are pre-learned and offer a good abstraction
of low level features. This makes it possible to learn robust
event classifiers with very limited training data.

Our approach can utilize both mid-level and atomic ac-
tivity concepts, even when they do not occur in high level
events directly, or are collected from a different domain.
In this case, activity concepts can be seen as groups of
low level features such that each of them can provide use-
ful statistics. Besides, each dimension of HMMFV corre-
sponds to a concept transition. As illustrated in Figure 1,
dimensions with high values correspond to highly possible
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transitions, and can be used to describe the video.

The key contributions of this paper are threefold: First,
we propose to encode activity concept transitions with
Fisher Vectors for high level event classification and de-
scription. Second, we derive HMMFV over the transition
parameters, which has a closed form representation and can
be computed efficiently. Third, we provide detailed experi-
ments and analysis showing our approach enjoys better per-
formance over state-of-the-art in real world settings.

2. Related Work

Low-level features are widely used in high level video
event classification. There are static features like SIFT [13],
and motion features like STIP [9] and Dense Trajectories
(DT) [23]. Feature descriptors can be used either densely
or on the interest points only. Though sparse features are
more compact in size, it is shown that dense features have
better performance in various datasets [24]. For high level
video event classification, [20] evaluates different types of
low-level visual features, and shows a late fusion of these
features can improve performance.

The idea of using concepts has been adopted in image
[22] [11] [3] and video classification [12] under different
names. A set of object concept classifiers called classemes
is used for image classification and novel class detection
tasks in [22]. Meanwhile, Object Bank [ 1] applies object
filters over different locations instead of using whole image
based classemes. Our activity concepts, on the other hand,
are detected on fixed length short video clips. Like [22] and
[11], our framework doesn’t require the concepts classifiers
to be perfect or directly related to target domain.

Recently, [5] models the activity concepts as latent vari-
ables with pairwise correlations, and applies latent SVM
for classification. Unlike our approach, their activity con-
cepts have single responses for the entire video and can-
not model the evolution of concepts over time. Among the
frameworks which also exploit temporal structure, [21] uses
explicit-duration HMM where both concepts and concept
durations are hidden variables, and [4] uses a generative
temporal model by estimating the distribution of relative
concept spacings. Our approach is different from them as
our model with activity concepts is not used for classifica-
tion directly.

Fisher Vector is proposed by [7]. It is introduced to im-
age classification task in [ 5], where the underlying model
is Gaussian Mixtures (GMM). A similar approach is used
in high level video event classification and shows promising
results [19]. The Fisher Vector of HMM has been derived
for the emission probability parameters in [6]. In this pa-
per, we give a brief derivation of HMMFV over transition
probability parameters.
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Figure 2. Illustration of our HMMFYV generation process. An input video is separated into fixed length clips, each has a vector of activity
concept responses. HMMFV is computed by taking the partial derivatives of the video’s log-likelihood in a general HMM over the transition
parameters. Each dimension in HMMFV corresponds to a concept transition.

3. Video Representation

In this section, we describe how we represent videos with
activity concepts, as well as how to get the representation.
To avoid confusion, we first define the term events and ac-
tivity concepts used throughout the paper.

e An activity concept is an atomic action or an activity
containing simple interactions among objects over a
short period of time. (e.g. less than 10 seconds)

e An event is a complex activity consisting of several
activity concepts over a relatively long period of time.
(e.g. 30 seconds or higher)

The activity concepts we use are predefined and trained
under supervision. Activity concept classifiers are built
from low-level visual features. All techniques for event
classification with low level features can be used, resulting
a single fixed-length descriptor x for each video clip.

We then train 1-vs-rest classifier ¢, for each activity con-
cept c. Since x is usually high dimensional, we use linear
SVM to save training and prediction time. The output of
¢.(x) is defined as the probability output returned by LIB-
LINEAR [2] for x under Logistic Regression Model.

After the concept classifiers [¢1 @2 ... @] are obtained,
we scan the video with fixed-length sliding windows and
represent each video by a 7' by K matrix M = [¢ 1], where
T is the number of sliding windows, K is the number of
activity concepts and ¢, j, is the classifier response of the
k-th activity concept for the ¢-th sliding window.

4. HMM Fisher Vector

In this section, we introduce how we model and encode
the transitions of activity concepts in videos. Figure 2 gives
an illustration of the whole process.

4.1. Our Model

We use HMM to model a video event with activity con-
cept transitions over time. There are K states, each corre-
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sponds to an activity concept. Every two concepts i, 7 have
a transition probability P(C;|C;) from concept i to j. Each
observation is a feature vector x extracted from a sliding
window.

Since we are working with a generative model, the emis-
sion probability of x given concept C; is derived from

Pi(x)
P(C;)

P(X‘Cl) ~

where ¢;(x) is the activity concept classifier output and
P(C;) is the prior probability of concept i. Here we assume
uniform prior for all observations.

To make the derivation clearer, we define the following
notations:

e Tr; is the prior probability of concept .

e Ty is the transition probability from concept j to con-
cept <.

e 0,; is the emission probability of x given concept .
4.2. HMMFYV Formulation

The idea of Fisher kernel is first proposed in [7], the goal
is to get the sufficient statistics of a generative model, and
use them as kernel functions in discriminative classifiers
such as SVM.

Denote P(X|0) is the probability of X given parameters
6 for some generative model, Fisher kernel is defined as

Ux = Vylog P(X]0) 6]

K(X;, X;) =Ux I"'Ux, ()

where [ is the Fisher information matrix.

If we ignore I by setting it to identity, Ux can be seen
as a feature vector in linear kernel. In this paper, we use
Ux as a feature vector and name it Fisher Vector for some
generative model.



As the emission probabilities are derived from activity
concept classifiers, we only use partial derivatives over tran-
sition probability parameters 7;; to derive the Fisher Vector
Ux . Besides, we decide not to include event label variable
since it makes the dimension of Fisher Vector growing lin-
early with the number of events, and requires recomputation
of Ux every time there is a new event.

The log-likelihood of HMM is given by

T
Z H HriISiTsilsFl 3)

1500,8n 1=1

log P(X10,7) = log

where si,...,s, are enumerating all the possible activity
concepts. To simplify notation, let 75, |5, = 7s, .
By taking the partial derivative of the log-likelihood

function over 7;;, we have

log P(X|0,7) = Z

t

Tilj

“4)

[&“’” ()

37’1‘]
where
gt(laj) = P(st = Z'astfl = j‘X7977—)

/thl(j) = P(St,1 :j|X797T)

Denote
O‘t(i) = P(Ih cees Lty St = Z|97T)
ﬂt(l) = P(It+1, ...,In|5t = ’Z:, 9,7')

o 0
FV(Z,J):a

Tilj

log P(X |0, T)
We have
FV(i,§) ~ Y or1()) [02,i8: () — Bioa ()] ()

The vector is then normalized to make its L2-norm as 1.

4.3. Parameter Learning

We use only one general model for HMMFV. When there
are new event classes, instead of relearning HMM parame-
ters, we can still use the same model without changing ex-
isting HMMFVs and only update the discriminative classi-
fiers.

Here we use a very simple method to learn the model.
First, we randomly select activity concept responses from
neighboring sliding windows of all events. Model parame-
ters are computed as

iy~ Y i(xP)g (x*0) (6)
k

mi~ > 9i(xH0) (7)
k
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where x** and x*'! are neighboring observations, and k is
over all the samples.

Then we normalize the parameters to make them valid
distributions.

4.4. Discussions

HMMFYV can be computed very efficiently. The «’s and
B’s required for all F'V (i, ) can be computed via standard
dynamic programming [16]. The dimension of HMMFV is
K?2, where K is the number of activity concepts.

Intuitively, by looking into Equation 4, HMMFV accu-
mulates the difference between the actual expectation of
concept transition and the model’s prediction based on the
previous concept. If the observations fit the model perfectly,
the difference is zero. As we are using a single general
model, background information is thus suppressed. This is
especially useful for high level event classification since the
videos often contain irrelevant information.

By taking derivatives of model parameters, HMMFV
preserves the sufficient statistics of HMM. Consider a birth-
day party event, in which people singing and people danc-
ing are often followed by each other, F'V (dancing, singing)
and F'V(singing,dancing) should both have high pos-
itive energy, indicating their transition probabilities
are underestimated in the general model.  Similarly,
FV (washing, sewing) should have high negative energy, in-
dicating their transition probability is overestimated. Based
on this property, we can describe a video using activity con-
cept transitions with high positive values in HMMFV.

5. Experiments

In this section, we describe the dataset we used and
the experiment settings. Then we compare our approach
with baseline, and study the influence of activity concept
selection. Finally we give performance comparison with
two state-of-the-art systems, with abundant and few train-
ing samples.

5.1. Dataset

We used TRECVID MED 11 Event Kit data [1] (Even-
tKit) for evaluation. This dataset contains 2,062 diverse,
user-generated videos vary in length, quality and resolution.
There are 15 event classes: 1. Attempting a board trick, 2.
feeding an animal, 3. landing a fish, 4. wedding ceremony,
5. working on a woodworking project, 6. birthday party, 7.
changing a vehicle tire, 8. flash mob gathering, 9. getting
a vehicle unstuck, 10. grooming an animal, 11. making a
sandwich, 12. parade, 13. parkour, 14. repairing an appli-
ance and 15. working on a sewing project.

For the purpose of training activity concept classifiers,
we used two datasets. We got 60 activity concept annota-
tions used in [5] by communicating with the authors. The



concepts were annotated on the EventKit and highly related
to high level events. We call these concepts Same Domain
Concepts, some of the concept names are shown in Table 1.

Another dataset we used for training concepts is the UCF
101 [18] dataset. It has 13,320 videos from 101 categories.
Most of the videos in UCF 101 are less than 10 seconds
long. The categories range from playing musical instru-
ments to doing sports, most of which are not related to the
events in EventKit directly. We call them Cross Domain
Concepts.

5.2. Experimental Setup

To compare our framework with [5], we followed their
protocol and randomly selected 70% videos from EventKit
for training and 30% for testing. All the videos were re-
sized to have 320 pixels in width. We set the size of sliding
windows as 100 frames, with 50-frame overlap.

Dense Trajectory (DT) feature [23] was used as low level
feature for activity concept classification. DT tracks points
densely and describes each tracklet with its shape and the
HoG, HoF, MBH features around the tracklet. We used the
implementation provided by the authors !, and set sampling
stride to 10.

Recent results in image and video classification [15] [19]
show that encoding low-level features with Gaussian Mix-
ture Model (GMM) and Fisher kernel gives better perfor-
mance than with BoW histograms. Suppose the low-level
feature has D dimensions and the number of cluster centers
for GMM is K, the resulting vector has O(K D) dimen-
sions. We used this encoding scheme and projected DT fea-
ture vectors to D = 128 with PCA, the number of clusters
is 64. Since same domain concepts were annotated on all
EventKit videos, we used only the annotations in training
partition to train the activity concept classifiers. For cross
domain concepts, we used all videos in UCF 101 as training
data.

Max pooling (Max) was selected as the baseline, it rep-
resents a video by the maximum activity concept responses.
Temporal information is dropped. Suppose the concept re-
sponses from the ¢-th sliding window is [¢} @5 ... #% ], max
pooling is defined as [v; vs ... vg] Where

v; = mgx(qﬁﬁ) (8)

The vector is normalized to make its L?-norm as 1, and
used to build discriminative classifiers.

We used SVM classifier with RBF kernel for both
HMMFV and Max, the parameters were selected by a 5-
fold cross validation on training partition. Weighted aver-
age [14] was used to fuse results from different modalities.

All results were evaluated using average precision (AP).

Ihttp://lear.inrialpes.fr/people/wang/dense_
trajectories
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Concept AP Concept AP
Person running  0.059  Person dancing  0.146
Vehicle moving  0.330 Person marching 0.903
Person drilling 0.022  Person walking  0.068
Person kissing 0.147  Person flipping  0.154
Wheel Rotating  0.031 Person hammering 0.136

Animal approaching 0.015  Person carving  0.366
Hands visible 0.193  People dancing  0.146
Open door 0.038  Person singing  0.295
Taking pictures ~ 0.038  Animal eating  0.204
Person cutting 0.017  Person sewing  0.185

Table 1. Average precision for same domain concepts

Same Domain Cross Domain
Event ID Max | HMMFV Max | HMMFV
1 0.846 0.857 0.772 0.806
2 0.272 0.398 0.413 0.458
3 0.708 0.767 0.698 0.748
4 0.640 0.782 0.664 0.717
5 0.525 0.507 0.392 0.646
6 0.611 0.753 0.791 0.831
7 0.393 0.492 0.249 0.355
8 0.660 0.745 0.857 0.864
9 0.635 0.730 0.635 0.687
10 0.498 0.539 0.585 0.606
11 0.252 0.386 0.386 0.436
12 0.645 0.761 0.706 0.741
13 0.528 0.863 0.721 0.818
14 0.344 0.596 0.600 0.596
15 0.381 0.545 0.384 0.545
mean AP || 0.529 0.648 0.590 0.657

Table 2. Average precision comparison for event classification
with same domain concepts and cross domain concepts, bold num-
bers correspond to the higher performance in their groups

5.3. Same Domain Concepts

We first evaluate our framework with same domain con-
cepts. Table 1 shows the performance of our concept clas-
sifiers, the parameters were selected by 5-fold cross valida-
tion. 20 of 60 concepts are randomly selected due to space
limitation.

According to the second and third columns of Table
2, HMMFYV achieves better performance in 14 of the 15
events. This result validates that by encoding concept tran-
sitions, HMMFV preserves more information and has more
discriminative power.

Max pooling achieves better performance in woodwork-
ing event, this may happen when some concept classifiers
have strong performance and are highly correlated to a sin-
gle event (e.g. person carving).

In general, HMMFV achieves 11.9% higher perfor-
mance over the baseline.
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Figure 3. Mean average precisions with different number of con-
cepts. The red line shows a randomly selected subset of cross do-
main concepts from 20 to 101. The cyan line illustrates a randomly
selected subset of same domain concepts from 20 to 60.

5.4. Cross Domain Concepts

Although same domain concepts can provide semantic
meanings for the videos, the annotations can be expensive
and time consuming to obtain and adding new event classes
can become cumbersome. Hence, we also studied the effect
of using cross domain concepts.

Interestingly, the fourth and fifth columns of Table 2
show that even if the activity concepts are not related to
events directly, our framework still achieves comparable
performance. It is quite likely that the concept classifiers
capture some inherent appearance and motion information,
so that they can still be used to provide discriminative in-
formation for event classification. HMMFV still achieves
better performance than max pooling, which indicates that
temporal information is also useful when the activity con-
cepts are from a different domain.

To study the influence of domain relevance, we randomly
selected 20, 40 and 60 concepts from same domain con-
cepts, and 20, 40 and 80 concepts from cross domain con-
cepts for HMMFV. The mean AP performance is plotted
in Figure 3. According to the figure, the performance in-
creases with more concepts. Same domain concepts can
easily outperform cross domain concepts given same num-
ber of concepts and reach the same level of performance
with only 60 concepts, compared with 101 from cross do-
main concepts. Besides, as shown in Table 3, if we combine
the two sets of results by late fusion, mean AP can be further
improved by 4%, which indicates that HMMFV obtained
from same and cross domain concepts have complementary
performance.
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l Concepts \ Same Domain \ Cross Domain \ Both ‘
[mean AP [ 0648 | 0657 ] 0.693 ]

Table 3. Mean average precisions when using same domain con-
cepts, cross domain concepts and both for generating HMMFV

EventID [ Joint [5] | LL[I5] [ HMMFV | HMMFV+LL

1 0.757 0.813 0.885 0.882
2 0.565 0.363 0.468 0.461
3 0.722 0.743 0.796 0.789
4 0.675 0.829 0.771 0.811
5 0.653 0.496 0.604 0.623
6 0.782 0.736 0.811 0.814
7 0.477 0.541 0.482 0.518
8 0.919 0.868 0.873 0.877
9 0.691 0.769 0.756 0.772
10 0.510 0.579 0.617 0.634
11 0.419 0.515 0.476 0.524
12 0.724 0.720 0.770 0.770
13 0.664 0.792 0.886 0.890
14 0.782 0.661 0.619 0.634
15 0.575 0.608 0.575 0.621
mean AP 0.661 0.669 0.693 0.708

Table 4. Average precision comparison with state-of-the-art. Joint
refers to the joint modeling of activity concepts, as described in
[5], LL refers to the low level approach as described in [15]

5.5. Comparison with State-of-the-Art

In this section, we compare our framework with two
state-of-the-art approaches. [5] is an activity concept based
system. It models the joint occurrence of concepts without
considering temporal information. We used their provided
numbers and followed the same data partitioning method.
We also compare our framework with a low level based ap-
proach: we implemented the Fisher kernel with visual vo-
cabulary method in [15] but used only the components cor-
responding to p. We used the same low level features (DT)
for building our concept classifiers. We used both same
domain and cross domain concepts in our framework. An
event-by-event comparison is shown in Table 4.

Our framework outperforms the joint modeling of activ-
ity concepts approach in 11 of the 15 events. Moreover, we
used only a single type of low level feature, and did not fuse
the event classification results obtained from low level fea-
tures directly. Compared with the low-level approach, our
framework is better in 9 of the 15 events. Our framework
achieves the best performance when used alone.

Besides, if we fuse the low level results with our
framework, the overall performance can further increase to
70.8%, a 4% improvement from the two previous systems.

These comparisons indicate that encoding concept tran-
sitions provides useful information for event classification.
Even though the joint modeling approach does consider



l Method \ mean AP
LL 0.421
Max (Same Domain) 0.456
HMMFV (Same Domain) 0.554
Max (Cross Domain) 0.432
HMMFV (Cross Domain) 0.470
HMMFV (Both) 0.562

Table 5. Average precision comparison with 10 training samples
for each event

pairwise relationship of activity concepts, temporal infor-
mation is not preserved.

5.6. Classification with Limited Training Samples

In real world retrieval problems, it is desirable to let users
provide just a few video samples of some event they want
before the system can build a reasonably good event classi-
fier.

In this section, we studied the case when only 10 positive
samples per event are provided for training. The training
videos were randomly selected from the original training
partition, and we used the previous concept classifiers since
they didn’t include test information.

As shown in Table 5, when the number of training sam-
ples is limited, the performance of low level approach
decreases more significantly than activity concept based
HMMFYV, their relative mean AP difference is 14.1%. One
possible explanation is that by using activity concepts, our
framework has a better level of abstraction, which can be
captured by discriminative classifiers even with a few train-
ing samples. Another interesting observation is that, when
the number of training sample is limited, the performance
of same domain concepts is 8.4% higher than the perfor-
mance of cross domain concepts. This is understandable
since some same domain concepts are highly correlated
with high level events (e.g. kissing for wedding ceremony),
they can help preserve highly discriminative information if
their classifiers are strong.

Again, HMMFYV outperforms the max pooling baseline.

5.7. Event Description with Concept Transitions

Finally, we show how to describe high level events with
concept transitions.

In Section 4.4, we showed that F'V (¢, j) has high posi-
tive energy if the transition probability from concept j to ¢ is
high, and is underestimated by the general model. A direct
application is to sort the HMMFV values in descending or-
der and use activity concept transitions with largest values
to describe the video. Compared with the description in [5],
our method returns not only the activity concepts, but also
the transition patterns over time.

We show the event level descriptions in Figure 4, the
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HMMFVs were obtained by averaging over all HMMFVs
from test videos of a single event.

Most of the descriptions are highly semantically mean-
ingful. For example, in a parkour event, the top three con-
cept transitions are: jumping to jumping, flipping to jumping
and dancing to jumping. Some descriptions are not exact
but also informative, like spreading cream to hands visible
in a making a sandwich event.

6. Conclusion

This paper addresses high level event classification prob-
lem by encoding the activity concept transitions over time.
We chose HMM as the underlying model and applied Fisher
kernel technique to obtain a fixed length description for the
model. Our method is fast to compute and easy to use
in existing frameworks. It can also be used to describe
videos with activity concept transitions. Experimental re-
sults show that our approach achieves better results com-
pared with state-of-the-art concept based framework and
low level framework. Moreover, when the number of train-
ing samples is limited, our approach can still work reason-
ably well. Our system can utilize different types of activity
concepts, we recommend same domain concepts for video
description and compact HMMFV generation when they are
available, and cross domain concepts to reduce the need for
event specific concept annotations.

7. Acknowledgement

This work was supported by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via Depart-
ment of Interior National Business Center contract num-
ber D11PC0067. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
nonwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of IARPA, Dol/NBC, or the
U.S. Government. Computation for the work described in
this paper was supported by the University of Southern Cal-
ifornia Center for High-Performance Computing and Com-
munications (hpcc.usc.edu). We thank Dr. Mubarak
Shah of University of Central Florida and Dr. Hui Cheng
of SRI international Sarnoff for sharing the concept annota-
tions. We also thank Boqing Gong, Song Cao and Chenhao
Tan for helpful discussions.

References

[1] http://www-nlpir.nist.gov/projects/
tvpubs/tv.pubs.ll.org.html. 4


hpcc.usc.edu
http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.11.org.html
http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.11.org.html

feeding an animal
(reeling, reeling)
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