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Abstract

Tracking the articulated 3D motion of the hand has im-
portant applications, for example, in human–computer in-
teraction and teleoperation. We present a novel method
that can capture a broad range of articulated hand motions
at interactive rates. Our hybrid approach combines, in a
voting scheme, a discriminative, part-based pose retrieval
method with a generative pose estimation method based
on local optimization. Color information from a multi-
view RGB camera setup along with a person-specific hand
model are used by the generative method to find the pose
that best explains the observed images. In parallel, our
discriminative pose estimation method uses fingertips de-
tected on depth data to estimate a complete or partial pose
of the hand by adopting a part-based pose retrieval strat-
egy. This part-based strategy helps reduce the search space
drastically in comparison to a global pose retrieval strat-
egy. Quantitative results show that our method achieves
state-of-the-art accuracy on challenging sequences and a
near-realtime performance of 10 fps on a desktop computer.

1. Introduction

Interactive markerless tracking of articulated hand mo-
tion has many applications in human–computer interaction,

teleoperation, sign language recognition, and virtual char-

acter control among others. Marker or glove-based solu-

tions exist for tracking the articulations of the hand [25],

but they constrain natural hand movement and require ex-

tra user effort. Recently, many commercial sensors have

been developed that detect 3D fingertip locations without

using markers but these sensors do not recover a semanti-

cally meaningful skeleton model of the hand.

In this paper we describe a novel markerless hand mo-

tion tracking method that captures a broad range of articu-

lations in the form of a kinematic skeleton at near-realtime

frame rates. Hand tracking is inherently hard because of

Figure 1. Our approach combines two methods (a) Generative pose

estimation on multiple RGB images using local optimization (bot-

tom row and top left) (b) Part-based pose retrieval on five finger

databases indexed using detected fingertips (top right).

the large number of degrees of freedom (DoF) [9], fast mo-

tions, self-occlusions, and the homogeneous color distribu-

tion of skin. Most previous realtime markerless approaches

(see Section 2) capture slow and simple articulated hand

motion since reconstruction of a broader range of complex

motions requires offline computation. Our algorithm fol-

lows a hybrid approach that combines a generative pose

estimator with a discriminative one (Figure 1). The input

to our method are RGB images from five calibrated cam-

eras, depth data from a monocular time-of-flight (ToF) sen-

sor and a user-specific hand model (Section 3). The output

of our method are the global pose and joint angles of the

hand represented using 26 parameters.

Our approach is informed by the robustness and accuracy

of recent hybrid methods for realtime full-body tracking [2].

However, using the same strategy for hand tracking is chal-

lenging because of the absence of sufficiently discriminat-

ing image features, self-occlusions caused by fingers, and

the large number of possible hand poses.

Figure 2 gives an overview of our algorithm. Similar to

previous work in full-body motion tracking [2, 26, 29] we

instantiate two pose estimators in parallel. First, the gener-
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Figure 2. Overview of our approach. SoG stands for Sum of Gaussians

ative pose estimator uses local optimization and a similarity

metric based on the Sum of Gaussians (SoG) model [23]

to find the pose that best explains the input RGB images

(Section 4). Second, the discriminative pose estimator, the

key technical contribution of this paper, is a part-based
retrieval technique that allows us to recover poses span-

ning a large hand articulation space while dealing with self-

occlusions. Our discriminative pose estimation method first

detects fingertips on depth data using a linear SVM classi-

fier (Section 5.3). The detected fingertips are then used in a

hypothesize-and-test framework along with five finger pose

databases to obtain multiple pose hypotheses, each of which

is tested using two criteria (Section 5.4). The final (com-

plete or partial) hand pose is the pose that has the least er-

ror between the estimated and observed fingertip positions.

This is then used as initialization for local optimization in

the generative pose estimator. This part-based approach re-

duces the database size dramatically as only the articula-

tions of each finger need to be indexed. The evidence from

both pose estimators are fused using an error metric to ob-

tain a final hand pose (Section 6).

To critically assess our method, we report evaluations us-

ing challenging, kinesiologically motivated datasets. While

there are numerous benchmark datasets for full-body pose

estimation, we know of none for hand motion tracking. We

therefore created seven annotated datasets recorded using

multiple calibrated sensors. The motions cover the full

abduction–adduction and flexion–extension ranges of hand.

Quantitative results show that we can cover a broad range

of motions with an average error of around 13 mm. Our ap-

proach compares favorably in terms of accuracy and com-

putational cost to a previous state-of-the-art approach [14].

To sum up, the primary contributions of this paper are:

• A hybrid approach that combines a generative pose es-

timator based on local optimization with a novel part-

based pose retrieval strategy.

• A near-realtime framework that captures hand motions

with a level of precision and speed necessary for inter-

active applications.

• An extensive, annotated benchmark dataset consisting

of general hand motion sequences.

2. Related Work

One of the first kinematics-based hand motion tracking

methods was presented by Rehg and Kanade [18]. The first

study of size of the motion space of hand articulations when

using kinematic skeletons was done by Lin et al. [11, 28].

They identified three types of constraints: joint angle limits

(type I), intra-finger constraints (type II) and naturalness of

hand motion (type III). Subsequent surveys of vision-based

hand tracking methods [5] have divided methods into two

categories—generative methods based on local or global

optimization and discriminative methods based on learning

from exemplars or exemplar pose retrieval.

Generative Methods: Oikonomidis et al. [14] presented

a method based on particle swarm optimization for full DoF

hand tracking using a depth sensor. They reported a frame

rate of 15 fps with GPU acceleration. Other generative ap-

proaches have been proposed that use objects being manip-

ulated by the hand as constraints [7, 8, 15, 19]. One such

approach by Ballan et al. [3] used discriminatively learned

salient features on fingers along with edges, optical flow,

and collisions in an optimization framework. However, this

method is unsuitable for interactive applications due to its

large computation time. Other model-based global opti-

mization approaches suffer from the same runtime perfor-

mance problem [12, 22].

Discriminative Methods: A method for 3D hand pose

estimation framed as a database indexing problem was pro-

posed by Athitsos and Sclaroff [1]. Their method used a

database of 26 hand shapes and a chamfer distance metric

to find the closest match of a query in the database. The

idea of using a global pose retrieval from a database of hand

poses was explored by Wang et al. [24, 25]. However, in

order to cover the whole range of hand motions the size of

the database required would be large. Keskin et al. [10]

proposed a method for hand pose estimation by hand part

labeling but not as a kinematic skeleton.
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Full-Body Motion Tracking: Given the similarity, vol-

ume, and success of existing research in full-body track-

ing, it would be natural to adopt one of those techniques

for hand motion tracking. Several methods produce a 3D

mesh and/or kinematic skeleton as their output [13, 17].

Some techniques such as Stoll et al. [23] rely on multi-

ple RGB cameras while many others use depth informa-

tion from time-of-flight (ToF) or structured light depth cam-

eras [2, 6, 20]. However, direct application of these methods

to hand tracking is not straightforward because of homoge-

neous skin color, fast motions, and self-occlusions.

Our approach takes inspiration from hybrid approaches

to full-body pose estimation, such as Ye et al. [29], Baak

et al. [2], and Wei et al. [26]. However, our discriminative

pose estimator uses a part-based pose retrieval technique as

opposed to global pose retrieval.

3. Input Data and Hand Modeling
Figure 2 shows our setup consisting of multiple RGB

cameras and a monocular ToF depth sensor. The image data

from RGB cameras provides high visual accuracy for track-

ing. The complementary single-view depth data helps us to

retrieve poses effectively, as we can resolve depth ambigui-

ties and detect fingertip features in the 2.5D data. Retrieval

efficiency is also supported by having to consider monocu-

lar image data only.

RGB Images: We use multiple, synchronized, and cal-

ibrated cameras to obtain RGB image data. We position

nk cameras in an approximate hemisphere such that typi-

cal hand motions within this hemispherical space would be

visible in multiple cameras. All cameras are calibrated to

obtain both the intrinsic and extrinsic parameters. We de-

note the RGB image produced by each camera as Ikr . In all

our experiments we used five Sony DFW-V500 cameras set

at a resolution of 320× 240 and a frame rate of 30 fps.

Depth Data: The other input to our method comes from

a single time-of-flight (ToF) depth camera. The ToF camera

is placed such that the hand motion space is within its range

and is extrinsically calibrated along with the RGB cameras.

We denote the depth image produced by the ToF camera

as Id and the unprojected point cloud representation of the

scene as Cd. We used the Creative Interactive Gesture Cam-

era as our ToF depth data sensor.

Hand Modeling: In order to capture the articulations

of the hand we model it as a kinematic chain consisting

of 32 joints (see Figure 4). We model the 26 degrees-of-

freedom (DoF) of the hand using parameters Θ = {θi},
where 0 ≤ i ≤ 25 (20 joint angles, 3 global rotations,

and 3 global translations). Each joint angle is limited to a

fixed range, θi ∈ [limin, l
i
max], taken from studies of the

hand [21]. Since we use a SoG model based generative

tracking approach we also augment the kinematic skeleton

with 30 uniform 3D Gaussians with a fixed mean, variance,

(a) (b) (c)

Figure 3. (a) Hand model consisting of a kinematic skeleton, at-

tached 3D Gaussians (with radius set to the Gaussian variance for

illustration), and a mesh. (b, c) Quadtree clustering of image into

2D SoG.

and color (c.f. [23]). Finally, we attach a 3D mesh,M, con-

sisting of 1774 vertices to the skeleton. The final output of

our method are the parameters Θ of the kinematic skeleton.

4. Generative Hand Pose Estimation

Generative tracking estimates the hand pose parameters

ΘG that best match a given set of nk input RGB images ac-

cording to a consistency energy. We adopt a local energy

maximization approach similar to that of Stoll et al. [23]

but modified to account for hand motions which are differ-

ent from full-body motion. In this approach both the hand

and the input measurements are modeled using a Sum of
Gaussians (SoG) representation. SoGs are mathematically

smooth, yield analytical expressions for the energy func-

tional and its derivative thereby enabling fast optimization.

Our consistency energy is given as

E(Θ) = E(Θ)− wlElim(Θ), (1)

where E(Θ) is a model-to-image similarity measure (Sec-

tion 4.1). The second term, wlElim(Θ), is a soft constraint

on skeleton joint limits and has the same formulation as

Stoll et al. The weight parameter wl was set to be 0.1 in

all of our experiments.

4.1. Model-to-Image Similarity Measure

Given a 3D SoG based model of the hand and multiple

input RGB images, we want to have a measure of similarity

between the model and the images. We approximate each

image with a 2D SoG model by performing quadtree clus-

tering into regions of similar color, and fitting a 2D Gaus-

sian with an average color to each region (Figure 3). Given

two 2D SoGs Ka and Kb with associated colors c, their

24582458



similarity is defined as [23],

E(Ka,Kb)

=

∫
Ω

∑
i∈Ka

∑
j∈Kb

d(ci, cj)Bi(x)Bj(x) dx

=
∑
i∈Ka

∑
j∈Kb

Eij , (2)

where B(x) is a Gaussian basis function

B(x) = exp

(
−‖x− μ‖2

2σ2

)
. (3)

Eij is the similarity between a pair of Gaussians Bi and Bj

given their colors ci and cj and is defined as

Eij = d(ci, cj)

∫
Ω

Bi(x)Bj(x) dx

= d(ci, cj)2π
σi

2σj
2

σi
2 + σj

2
exp

(
−‖μi − μj‖2

σi
2 + σj

2

)
. (4)

The color similarity function d(ci, cj) measures the Eu-

clidean distance between ci and cj in the HSV color space

and feeds the result into a Wendland function [27]. This ren-

ders d, a smooth function bounded in [0, 1] (0 for dissimilar

input and 1 for similar input).

Using the above defined similarity measure, we can find

how similar a particular pose of the 3G SoG hand model is

to the observed RGB images. To this end, the 3D Gaussians

are projected onto the images using a projection operator

Ψ(Km) [23]. We now define the final similarity measure as

Esim(KI ,Km(Θ))

=
∑
i∈KI

min

⎛⎝⎛⎝ ∑
j∈Ψ(Km)

wm
j Eij

⎞⎠ , Eii

⎞⎠ , (5)

where wm
j is a weighting factor for each projected 3D Gaus-

sian Ψ(Km). With this parameter we control the relative

influence of each 3D Gaussian on the final similarity.

To prevent overlapping projected 3D Gaussians from

contributing multiple times in the above sum and distort-

ing the similarity function, we clamp the similarity to be

at most Eii, which is the similarity of the image Gaussian

with itself. This can be seen as a simple approximation of

an occlusion term.

The offline step in this optimization method is to perform

person-specific customization of the hand model’s shape

and dimensions, once for each actor. We adopt the semi-
automatic process described by Stoll et al. [23] to our de-

fault hand skeleton template. We captured four static hand

poses in which joints were clearly visible, and manually po-

sitioned our default hand skeleton to fit the poses. After this

step, the position, variance, and color of the 3D Gaussians

and bone lengths are optimized. This hand model is used

throughout in all stages of our method.

4.2. Optimization

The goal of the optimization step is to estimate the pose

parameters Θt at every time instant. We adapted the gradi-

ent ascent local optimization method proposed by Stoll et
al. which enables realtime estimation of the pose parame-

ters at every time instant t, as analytical gradients can be

computed for our energy function. Each iteration of the op-

timization is initialized by extrapolating the estimated pose

from two previous times steps as

Θt
0 = Θt−1 + α(Θt−1 −Θt−2), (6)

where α is set to 0.5. In Section 5, we describe how our

part-based pose retrieval strategy can be used to initialize

the optimization.

Even though the generative pose optimization method

is fast and proven to be reliable for full-body tracking, it

quickly reaches its limits during hand tracking and fails by

converging to local pose optima from which it cannot re-

cover. This is because the hand exhibits a higher articula-

tion complexity than the body (thus allowing for a much

wider range of poses in a small space), faster motions, and

homogeneous color. The consequences are frequent self-

occlusions and large visible displacements of the hand be-

tween two frames which challenge a local pose optimizer.

Furthermore, the uniform skin color of the bare hand makes

model-to-image associations much more ambiguous than in

the case of humans wearing colored clothing. We there-

fore complement our generative tracker with an efficient

discriminative hand pose estimation algorithm described in

the following sections. It generates hand pose hypotheses in

parallel to the generative method and is able to re-initialize

it in case of convergence to a wrong pose.

5. Part-based Pose Retrieval
The goal of our discriminative pose estimation method

is to estimate a complete or partial pose, Θ̃D, of the hand

from a single depth image Id. We do this by adopting a

part-based strategy i.e. instead of trying to recover the full

hand pose, we separately recover the pose of each finger

Θf
D. This is achieved by extracting fingertips on the depth

image using a linear SVM classifier, and by using the de-

tected positions to find the closest match in multiple exem-

plar finger pose databases. Having separate databases for

each finger has several advantages. First, for combinatorial

reasons, the articulation space that we are able to represent

in a pose database of necessarily limited size is much larger

than when using a single pose database with exemplars for

the entire hand (Section 5.1). Second, our approach has
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the advantage of being able to recover a partial hand pose

(i.e. missing some finger poses) even when some of the fin-

gers are occluded. The recovered finger poses are then as-

sembled using a hypothesize-and-test framework to form a

complete or partial pose Θ̃D.

5.1. Multiple Finger Pose Database Generation

We briefly motivate the need for using multiple finger

databases as opposed to a single global pose database. The

global pose retrieval method of Wang and Popović [25] uses

18, 000 poses sampled from real hand motion. Although

one of their goals was to avoid oversampling, the size of

their database is still insufficient to span the range of articu-

lations that can occur in natural motion. One way to quanti-

tatively assess the relationship between the range of articu-

lations and the size of the database is to consider discretiza-

tions of joint angles within allowable joint limits. Ignor-

ing global motion, we model the hand using 21 joint angles

(DoFs). If each joint angle were discretized into 3, then for

global pose retrieval the size of the database would be of the

order of 1010. On the other hand, part-based pose retrieval

would need five databases, each with a size of 81. Thus,

part-based pose retrieval results in much smaller databases

for the hand than global pose retrieval. This prevents over-

sampling while still keeping the articulation space large.

Previous approaches [2, 25] that use global pose retrieval

capture real data using motion capture systems for generat-

ing a pose database. However, complex hand motions are

difficult to capture using mocap systems because of self-

occlusions and glove constraints. We therefore obtain our

finger pose database by synthetically generating the poses

over discretizations of all joint angles for each finger. To

this end we use the person-specific model of the hand ob-

tained earlier (Section 4.1)

For each synthetic pose generated per finger, Θf
S , we

compute the end effector position xf
s with respect to a local

skeleton coordinate system (see Section 5.2). We use the

computed 3D end effector position as our database index-

ing feature since it uniquely identifies a pose of the finger

and can be detected comparatively easily on depth data. We

use a k-d tree for indexing the features. In all our experi-

ments we used a database size of 4096 corresponding to a

joint discretization of 8 levels per DoF.

5.2. Palm and Hand Orientation Estimation

Since our finger pose databases are indexed based on fea-

tures relative to the hand model, we need to normalize the

detected query features so that they lie in the same frame of

reference. To this end, we extract the palm and its orienta-

tion from the depth data. We first apply a box filter on the

depth image Id to extract the depth image, Ib, and unpro-

jected point cloud, Cb, corresponding to the hand only. We

use the morphological operations erode and dilate on Ib to

(a) (b) (c)

Figure 4. (a) Palm extracted from the point cloud (white) and hand

orientation normalization (arrows). (b) Fingertips detected using a

linear SVM classifier. (c) Estimated partial or complete hand pose.

remove fingers but retain the palm. The result is a binary

mask of the palm which is used to obtain a basic segmented

point cloud of the palm, Cs. However, Cs might contain

fingers that lie on the line of sight between the sensor and

the palm. We therefore fit a plane, P , to Cs using RANSAC

with a consensus threshold of 5 mm to obtain the final seg-

mented point cloud of the palm, Cp. We compute the center

of the palm as the point that lies on P and is the centroid

of the axis aligned bounding box of Cp. We then perform

principal component analysis (PCA) of Cb projected onto

the plane P to find the principal directions of the hand and

palm. As a final step, we use a Kalman filter in order to

reduce jitter in the estimated orientation. The detected palm

center and orientations serve to stabilize the results of the

finger pose database look up (see Figure 4).

5.3. Fingertip Detection

For our part-based pose retrieval strategy, we need to re-

liably detect the end effector positions in the depth data.

Previous work in full-body pose estimation has used fea-

tures such as Geodesic extrema [2, 16] which do not work

well for the hand and result in spurious extrema which are

difficult to disambiguate from the real extrema. In order

to overcome this problem, we use a machine learning ap-

proach to detect fingertips using a linear SVM classifier and

HOG descriptors as features. We follow the object detection

framework of Dalal and Triggs [4] on depth images instead

of RGB images. For training our linear SVM we used a

combination of manually annotated real sequences, anno-

tated synthetic sequences, and rotated versions of both (4
orientations). We use a fingertip detection window size of

32× 32. Because of the high cost of not detecting a finger-

tip in the pose retrieval step we adjusted the parameters of

the linear SVM for higher recall rates. We found that most

false positives could be eliminated using assumptions about

the position of the finger i.e. a fingertip cannot lie far away

or too close to the center of the palm. After elimination, we

obtain five or less fingertip candidate points xf
c . Figure 1

shows one depth frame with detected fingertips overlaid and

Figure 4 shows the filtered fingertips on the point cloud.
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5.4. Finger Pose Estimation

The final step of discriminative pose estimation is to find

the complete or partial pose of the hand, Θ̃D. However,

in order to query the finger pose databases we would need

to label each detected fingertip. This is a hard problem

since there is tremendous variation in fingertip appearance

in depth or RGB images. We instead adopt a hypothesize-

and-test framework to test all elements in the set of per-

mutations of labels, Σ, using two criteria. First, for each

permutation σi ∈ Σ we reject a hypothesized pose early

based on the distance of each detected fingertip to the near-

est neighbor in the finger pose database corresponding to

the current labeling for that fingertip. We set a distance

threshold μ = 20 mm in all our experiments. Only those

hypotheses that pass the first stage are tested with the dis-

tance measure which is given as

δ(σi, Θ̃) =
1

r
‖xi − xf

c ‖2, (7)

where r is the number of detected fingertips, xi is the posi-

tion of a fingertip corresponding to a candidate fingertip xf
c

and Θ̃ is the current hypothesis pose. The pose that has the

lowest distance measure is selected as the best pose Θ̃D.

In the case of less than five detected fingertip locations, a

partial pose with the lowest distance is still recovered since

partial poses are also part of the permutations set Σ.

6. Pose Candidate Fusion
At this stage, we have two hand pose candidates, ΘG and

Θ̃D, from the generative and discriminative methods. In or-

der to combine them together to find the best pose, we first

initialize a second instance of the generative tracker with

Θ̃D instead of extrapolation. Those pose parameters that

are not part of Θ̃D are extrapolated using Equation 6. Upon

optimization we obtain the pose ΘD and an associated op-

tima energy E(ΘD) (see Equation 1). The final pose, ΘF ,

is the pose that has the higher energy given by

ΘF = argmax
Θ∈{ΘG,ΘD}

{E(ΘG), E(ΘD)}. (8)

7. Results
We implemented and tested our method, algorithmic

variants of it, and a related algorithm from literature [14] on

a computer with a clock speed of 3.30 GHz, 8 GB of RAM,

and an Nvidia NVS 300 GPU. On this machine, our method

achieved an interactive frame rate of 10 fps. With our un-

optimized C++ code, the most time consuming components

were the local optimization for generative pose estimation

(53 ms) and multiscale fingertip detection (40 ms).

We will now present results from extensive experimen-

tal evaluation that we conducted using our method on a

variety of sequences. Unlike previous approaches that

used a combination of synthetic and real data for eval-

uation, we used a large corpus of real data. We col-

lected seven real sequences consisting of synchronized and

calibrated multi-view RGB images, as well as monocu-

lar ToF and Kinect data (see Figure 2). All sequences

were manually annotated to mark fingertip and palm cen-

ter positions in the depth data. In total, our test se-

quences consist of 2137 frames of data containing both

slow and fast motions with a static background and general

illumination conditions. The sequences that we captured

span a range of hand movement from flexion–extension

(e.g. fingerwave, flexex1, pinch, fingercount),

abduction–adduction (e.g. abdadd), and included random

motions (e.g. random, fingerwave).

Overall quantitative results from our experiments show

that our approach of combining a generative pose estimation

method with a discriminative part-base pose retrieval tech-

nique (SoG + PBPFingertip) performs better than other al-

ternatives in most cases. Our algorithm is stable and all

results were recorded using the same parameters. We com-

pared our approach with several algorithmic alternatives—

(a) generative pose estimation with SoG model only (SoG),

(b) generative pose estimation method combined with a

global pose retrieval technique based on normalized depth

images (SoG + GPImage), and (c) publicly available im-

plementation of the method proposed by Oikonomidis et
al. [14] (FORTH, one sequence only).

Evaluation Metric: To enable relative comparison with

other methods we adopted an error metric similar to that

used by Oikonomidis et al. [15]. The Euclidean distance

between the estimated and ground truth fingertip positions

and palm center positions are computed for each frame for

all datasets. We find the average error, Δ̃, over all frames

within each dataset.

Quantitative Results: Figure 5 compares our result

(SoG + PBPFingertips) with using only SoG and SoG +

GPImage. Our hybrid method produces better results and

achieves an accuracy of 13.24 mm on average which is close

to the best offline methods [3]. This can be attributed to the

fact that each time generative pose estimation fails, the dis-

criminative part-base pose retrieval strategy re-initializes it

appropriately. This is clear in Figure 6 which shows the

error as a function of the frame number. The error starts ac-

cumulating in the generative method at about frame 25 and

never goes down. But our method periodically re-initializes

so as to maintain a constant error rate even in long se-

quences. Most notably, towards the end of the sequence

our method produces errors that are not too different from

the first few frames. One surprising result here is that SoG +

GPImage produces a higher error than SoG only which in-

dicates that image based global retrieval is sensitive to noise

in the depth data.
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Figure 5. The average position error over the entire dataset for SoG

only, SoG + GPImage and SoG + PBPFingertips (ours).

We also tested the FORTH method on a dataset contain-

ing motions similar to fingerwave but under different il-

lumination conditions as we were unable to get their method

to work on any one of our seven sequences. Their method

is based on GPU acceleration and runs at only 2.5 fps com-

pared to our 10 fps on the same machine indicating that

optimization of our code could lead to faster frame rates.

We then computed the error measure, Δ̃, for the FORTH

method over the entire (similar) sequence and found it to

be 10.31 mm. This compares favorable with the mean er-

ror of our method which was 13.24 mm. Thus, our method

performs well for similar datasets while using less compu-

tational budget than FORTH.

8. Conclusion and Future Work

In this paper, we presented a novel method for tracking

the articulated 3D motion of the human hand using a hy-

brid method. Our method advances the state-of-the-art by

demonstrating high accuracy across a large corpus of mo-

tions with a frame rate that is sufficient for many interac-

tive applications. Our main contribution was the use of

a new method for part-based pose retrieval in conjunction

with image-based pose optimization. Part-based pose re-

trieval enables recovery and stable tracking of poses with

self-occlusions that are characteristic of hand motion, and

enables a dramatic reduction of the pose database size.

Although our method achieves good performance on real

sequences there is still room for improvement. Many of our

datasets exhibit motion blur due to fast motions. Therefore,

we would like to explore the use of new temporal priors

along with high frame rate cameras. Our calibrated multi-

camera setup requires time to setup. We would therefore

like to explore reducing the number of cameras and incor-

porating depth data into generative pose optimization. Fi-

nally, we would like to achieve faster frame rates by using

the parallel structure of generative pose optimization.

Figure 6. The average position error over the fingerwave
dataset for SoG only and SoG + PBPFingertip (ours).
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hand-tracking for computer aided design. In Proc. ACM
UIST, pages 549–558. ACM, 2011. 2
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