
A Fully Hierarchical Approach for Finding Correspondences in Non-rigid
Shapes

Ivan Sipiran1 and Benjamin Bustos2

1Department of Computer and Information Science, University of Konstanz
2Department of Computer Science, University of Chile

Abstract

This paper presents a hierarchical method for finding
correspondences in non-rigid shapes. We propose a new
representation for 3D meshes: the decomposition tree. This
structure characterizes the recursive decomposition process
of a mesh into regions of interest and keypoints. The inter-
nal nodes contain regions of interest (which may be recur-
sively decomposed) and the leaf nodes contain the keypoints
to be matched. We also propose a hierarchical matching al-
gorithm that performs in a level-wise manner. The match-
ing process is guided by the similarity between regions in
high levels of the tree, until reaching the keypoints stored
in the leaves. This allows us to reduce the search space
of correspondences, making also the matching process effi-
cient. We evaluate the effectiveness of our approach using
the SHREC’2010 robust correspondence benchmark. In ad-
dition, we show that our results outperform the state of the
art.

1. Introduction

The problem of finding correspondences in 3D shapes

is an important problem in computer vision and computer

graphics. In particular, the reliable detection of correspon-

dences in non-rigid shapes has received notable attention in

recent years. This problem is difficult to solve due to the

complexity of formally characterizing a non-rigid transfor-

mation. Additionally, in real-world applications, one would

expect shapes containing perturbations such as noise, topo-

logical changes, scale, and so on. Therefore, it is imperative

to devise robust and efficient techniques to finding reliable

correspondences in non-rigid shapes (possibly with pertur-

bations).

The most used approach to tackle this problem involves

finding a mapping between sparse sets of surface points

(keypoints). This problem commonly is formulated as an

optimization problem that involves the matching of local

descriptors and some criterion for geometric consistency.

Generally, the optimization is carried out through an integer

quadratic program.

Due to the combinatorial nature of the correspondence

problem, we need to search strategies to efficiently solve

the problem. Additionally, we need to take into account

the robustness against mesh perturbations. In this paper,

we propose an algorithm to find correspondences in non-

rigid shapes based on a hierarchical decomposition. Re-

cent studies have shown that it is possible to obtain robust

decompositions on 3D meshes [9, 15]. Our motivation is

the fact that if two shapes are near-isometric, they should

have regions which are near-isometric as well. If a shape

S is decomposed in a set of regions S1, S2, . . . , Sn, then a

shape T (near-isometric to S) should also have a partition

set T1, T2, . . . , Tn, where Si is near-isometric to Tj . This

idea can be applied again on regions recursively.

In light of this observation, we propose an algorithm

to build a decomposition tree of a given shape. Internal

nodes represent regions and leaf nodes represent keypoints.

As one traverses the tree in depth, the shape structures are

smaller. In addition, we propose a hierarchical matching al-

gorithm which takes two decomposition trees as input and

performs in a breadth-first manner. This algorithm first

matches regions in high levels of the trees and propagates

the process until reaching the leaf nodes, where the key-

points are finally matched. The decomposition tree is sim-

ilar in spirit to the component tree proposed by Litman et
al. [9]. The main difference is that our representation is

designed to support the subsequent matching process. In

addition, in contrast to the component tree (which makes

use of diffusion geometry), our method uses the distribu-

tion of keypoints on the surface to guide the decomposition

process.

In our method, we address two important aspects: effi-

ciency and robustness. Regarding efficiency, our matching

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.106

817

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.106

817

algorithm has the ability to reduce the searching space of

correspondences by making use of the hierarchical decom-

position. Once two regions correspond (because their inter-

nal nodes matched), we only look for correspondences in

the associated sub-trees. This allows us to discard a consid-

erable amount of matches early in the process. With respect

to the robustness, we take advantage of the provably good

properties of diffusion-based descriptors in the context of

non-rigid matching to obtain discriminative descriptions for

regions and keypoints. In addition, the decomposition pro-

cess is guided by the distribution of robust keypoints on the

shape’s surface.

In summary, the contributions of our work are two-

fold. First, we present a novel representation for non-rigid

shapes: the decomposition tree. This structure character-

izes the hierarchical decomposition process, where the root

node contains the original shape and leaf nodes contain

keypoints. Second, we develop a matching algorithm that

takes advantage of the decomposition trees to find corre-

spondences. Our algorithm is efficient since it allows us to

discard matches in early stages of the process.

Our paper is organized as follows. Section 2 presents

the related work. Section 3 describes our hierarchical de-

composition algorithm and the related decomposition tree.

Section 4 is devoted to present the matching algorithm. Sec-

tion 5 presents our experiments and discusses the obtained

results. Finally, Section 6 draws the conclusions of our

work and gives directions for future works.

2. Related Works
The matching problem can be formulated as a minimum-

distortion problem. Given two near-isometric shapes, the

goal is to find a correspondence set that minimizes the dis-

tortion between the two shapes. Generally, this problem

is stated as an optimization problem where solutions arise

from the need to resolve this problem effectively and effi-

ciently.

Bronstein et al. [5] proposed to match two shapes by em-

bedding one into another. Shapes were treated as metric

spaces using the geodesic distance as metric. They used a

generalization of the multi-dimensional scaling method to

find the minimum-distortion embedding between two met-

ric spaces. On the other hand, a Möbius voting approach

was used by Lipman and Funkhouser [8]. A conformal flat-

tening was applied to shapes, where it was possible to apply

a Möbius transform for triplets of points. The deformation

energy caused by the triplets in the rest of the points of the

mesh allows us to compute a vote for each couple of corre-

spondences. The pairs with high votes were considered as

reliable correspondences.

Many methods solve the problem iteratively through

a process of correspondence refinement. Ovsjanikov et
al. [10] exploited the use of heat kernel maps to find a

unique reliable correspondence. Subsequently, an itera-

tive method propagates the correspondence set according

to a kernel map optimization method. Also, a RANSAC-

like method to find correspondences was proposed in [18].

The algorithm operates over a set of hypothesis from an

initial set computed from keypoints. Similarly, Tevs et
al. [17] presented a probabilistic approach to plan the it-

erative searching of correspondences.

Greedy approaches to tackle the optimization problem

have been also considered. Zhang et al. [21] selected key-

points using a geodesic approach. Then, the search of corre-

spondences was guided by a best-first algorithm that mod-

els the quality of the correspondence set with a geodesic

distortion. On the other hand, Zaharescu et al. [19] pro-

posed a method which resembles the matching of corre-

spondences in images. Adaptations of DoG and HoG were

used for selecting and describing keypoints on the mesh sur-

face. Next, a simple matching algorithm that takes the best

match between descriptors was presented. Also, Sahillioğlu

and Yemez [12] stated the correspondence problem as a

graph problem. They proposed to find an initial match-

ing over a bipartite graph, and subsequently a greedy ap-

proach was responsible of adding and refining new corre-

spondences. Similarly, Sharma et al. [13] proposed a prob-

abilistic method to find dense correspondences based on a

initial greedy-based sparse matches.

A common approach is to state the problem of finding

correspondences as an integer program. Dubrovina and

Kimmel [6] described a mesh point using the eigenfunctions

of the Laplace-Beltrami operator. The matching algorithm

was stated as a quadratic integer program which takes into

account a distortion function to optimize. More recently,

Rodolà et al. [11] formulated the minimum-distortion prob-

lem with a quadratic optimization function. The solution

was obtained with a game-theoretic strategy and a merg-

ing algorithm to get the final correspondence set. Zeng et
al. [20] devised a high-order matching algorithm based on

the Möbius transform to populate the correspondences from

an initial set. They derived a dual decomposition of the orig-

inal problem which involved an integer linear problem.

3. The Decomposition Tree
In this section, we present the decomposition algorithm.

It has two stages: the pre-processing step and the gener-

ation of the decomposition tree. Our approach to decom-

pose a mesh is inspired in the our method to detect key-

components on shapes [15].

3.1. Pre-processing

Given a 3D shape X , we compute a set of keypoints KX

using the Harris 3D algorithm [14]. Subsequently, we cal-

culate the geodesic distances between each pair of keypoints

using the fast marching method [7]. These distances will be

818818

used to control the geometric consistency of the correspon-

dence set in the matching algorithm.

Since the decomposition method is based on the distri-

bution of keypoints on the shape’s surface, we propose a

heuristic to discard isolated keypoints. The heuristic con-

sists of analyzing the distribution of geodesic distances of

a keypoint. Let Dv
p be the geodesic distances from a key-

point v to its p nearest keypoints. We define the density of a

keypoint v as

density(v) =
mean(Dv

n)

mean(Dv
3)

, (1)

where n = |KX |.
Grouped keypoints are expected to have a small

mean(Dv
3) compared to mean(Dv

n), yielding a high den-

sity value. In contrast, isolated keypoints will have more

similar values for these two quantities, with the density ap-

proaching to one. Therefore, keypoints with a low den-

sity value should be discarded. We remove keypoints with

density(v) < 30 from KX . The cut-off value was found

empirically.

In addition, for each remaining keypoint in KX , our

method computes two descriptors which are based on diffu-

sion geometry: HKS (heat kernel signatures [16]) and WKS

(wave kernel signatures [1]). Both descriptors are computed

from the eigenfunctions of the Laplace-Beltrami operator of

the shape. The HKS of a point x is defined as

HKS(x) = (hkst1(x, x), . . . , hkstn(x, x)), (2)

where

hkst(x, x) =
∑
k≥1

exp(−λkt)φ
2
k(x), (3)

and where λk and φk(·) are respectively the eigenvalues and

eigenfunctions of the Laplace-Beltrami operator. Similarly,

the WKS is defined as

WKS(x) = (wkse1(x), . . . , wksen(x)), (4)

where

wkse(x) =
∑
k≥1

f2
e (λk)φ

2
k(x), (5)

and where fe is a family of log-normal energy distributions.

The use of these two descriptors is related to their abil-

ity for feature localization [3]. The heat kernel signature is

a collection of low-pass filters which inhibit high frequen-

cies. For this reason, its nature is more global and it may af-

fect the exact localization of correspondences. In contrast,

the wave kernel signature is a collection of band-pass fil-

ters which reduces the impact of low frequencies, allowing

a better feature localization. Therefore, we take advantage

of these facts and use the HKS and WKS in different lev-

els of our representation. The former is used for describing

Figure 1. A decomposition tree of a human shape. The root node

contains the original mesh and its related data. The first decom-

position generates five regions. The last level contains smaller re-

gions from the head.

regions in the internal nodes of our decomposition tree and

the latter is used for describing keypoints in the leaf nodes.

In summary, after the pre-processing step, we have the

following information: a set of keypoints KX , the complete

set of geodesic distances between keypoints, and descrip-

tors (HKS and WKS) for each keypoint.

3.2. Decomposition

Our decomposition algorithm relies on the distribution

of keypoints on the shape’s surface. Our algorithm per-

forms a hierarchical clustering in the geodesic space of key-

points. More specifically, the algorithm first looks for large

groups of keypoints, and recursively decomposes the groups

into smaller groups. Each group of keypoints determines a

mesh region. The decomposition ends when we cannot di-

vide a group into smaller groups or when the area of the re-

gion that covers a group is very small relative to the area of

the original shape. The outcome is a tree which represents

the decomposition process. Fig. 1 shows a decomposition

tree obtained with our algorithm. Furthermore, Algorithm 1

presents the pseudo-code of the decomposition algorithm in

detail.

The input of the decomposition algorithm is a node T ,

which contains the original shape and all information com-

puted in the pre-processing step (see Sec. 3.1). Technically,

the output of this method is a tree with T as root node. The

first part of the algorithm checks whether it is possible to

continue decomposing a node (lines 3-13). The first check

is through the comparison of areas between the shape at the

input node and the original shape. If the mesh at node T is

819819

Algorithm 1 GenerateTree(T)

Require: Node T
Ensure: Node T and its associated tree

1: areaOriginal← mesh.getArea()

2: areaNode← T .mesh.getArea()

3: if areaNode < 0.1× areaOriginal then
4: isLeaf← true

5: end if
6: if not isLeaf then
7: Let R be the intra-cluster threshold.

8: Let S be the inter-cluster threshold.

9: C ← clustering(T .distancesKeypoints(), R, S)

10: if |C| < 2 then
11: isLeaf← true

12: end if
13: end if
14: if isLeaf then
15: T .leaf← true

16: return T
17: end if
18: for each cluster c in C do
19: Create a new node Tc

20: (oc, rc)← GetMin3DSphere(c.getKeypoints())

21: kc ← c.getMedoid()

22: Tc.mesh← T .mesh.getPatch(oc, rc, kc)

23: Tc.descriptor← T .getPatchDescriptor(c.getKeypoints())

24: Propagate keypoints from T to Tc

25: Propagate keypoint distances from T to Tc

26: Propagate keypoint descriptors from T to Tc

27: T .children[c]← Tc

28: end for
29: for each cluster c in C do
30: for each cluster g in C do
31: T .childrenDistance[c,g]← dg(kc, kg)

32: end for
33: end for
34: for each cluster c in C do
35: T .children[c]← GenerateTree(T .children[c],δ)

36: end for

37: return T

too small, then T is marked as a leaf node. Subsequently,

we propose to apply a medoid-based adaptive clustering to

find groups of keypoints. These groups will generate re-

gions with their associated new nodes. If it is not possible

to obtain more than two clusters, the input node is marked

as a leaf.

There are two aspects of our algorithm that deserve care-

ful attention: the clustering algorithm (line 9) and the cre-

ation of new nodes (lines 18-28). We dedicate the following

sections to describe these two points.

Adaptive Clustering with Medoids

Our algorithm is a variant of the adaptive clustering used

to compute key-components in [15]. The main differences

lie in two aspects. First, we use a medoid-based approach

which prevents the computation of the multi-dimensional

scaling. Second, we take an adaptive approach for deter-

mining the clustering thresholds depending on the hierar-

chical nature of our process.

Our method takes advantage of the distance matrix al-

ready computed in the pre-processing step and it is therefore

not necessary to perform a multi-dimensional scaling to the

keypoints. The clustering algorithm iterates over the set of

keypoints assigning them to near clusters or creating new

clusters otherwise. The decision of assigning a keypoint to

a cluster or creating a new one depends on two parameters:

R (intra-cluster threshold) and S (inter-cluster threshold).

These parameters depend on the area of the mesh in

the input node, and are obtained using an empiric Gaus-

sian function R = 0.4 × exp(−(areaRatio − 1)2/0.5),
where areaRatio is the quotient between areaNode and

areaOriginal. This formulation was designed to control

the clustering thresholds according to the size of the region.

The Gaussian function distributes the values for R in the in-

terval [0.1, 0.4]1 depending on the area of the node region.

This is consistent with the restriction in line 3. Additionally,

the inter-cluster threshold S is always set to 2 × R. There-

fore, the threshold values vary between R = 0.4, S = 0.8
and R = 0.1, S = 0.2.

Once the keypoints have been clustered, we need to

compute the medoids of each resulting cluster. Let C =
{c1, . . . , cn} be a cluster where each ci is a keypoint, the

medoid of C is defined as the keypoint that is approximately

in the center of the distribution of the cluster. More for-

mally,

medoid(C) = argmin
c∈C

n∑
k=1

dg(c, ck). (6)

In addition, if a cluster has a few elements (ten in our

experiments), the cluster is removed. The algorithm repeats

the assignment and update steps until reaching a number of

iterations (for all our experiments, we use ten iterations).

After the clustering, each cluster will generate a new node

in the decomposition tree.

Node Creation

Several steps are performed to create a new node in the tree

from a cluster c. First, the algorithm computes the smallest

sphere which encloses the keypoints within the cluster. The

1The threshold values represent a fraction of the original area, so R =
0.1 really means R = 0.1× areaOriginal. We omitted this to facilitate

the explanation.

820820

obtained information is the sphere center oc and a radius rc.

Second, we fetch the medoid of the cluster, i.e. the keypoint

that is approximately at the center of the keypoint distribu-

tion of the cluster. Third, we extract a mesh patch using a

growing region algorithm. This algorithm starts from the

medoid keypoint and collects faces and vertices until cover-

ing the complete set of keypoints in the cluster. The region

growing algorithm uses the radius rc to determine the patch

which certainly contains the keypoints. Fourth, we compute

a descriptor for the new region. Let C = {c1, . . . , cn} be

the set of keypoints of a cluster, each associated to a HKS

descriptor. The descriptor of the region determined by the

cluster C is

fregion(C) =

∑n
i=1 HKS(ci)

n
, (7)

i.e. the average descriptor of the keypoint collection in the

cluster. Fifth, all information about keypoints and geodesic

distances are propagated from the parent node T to the new

created node. Finally, the new node is stored as a child of

the parent node T .

Subsequently, our decomposition algorithm computes

the geodesic distances between regions (lines 29-33). We

use the medoid keypoint as a reference to accomplish this

goal. Let Tc1 and Tc2 two nodes resulting from the decom-

position of the mesh at node T . The distance between the

regions associated to Tc1 and Tc2 is

dreg(Tc1 , Tc2) = dg(kc1 , kc2), (8)

where kc1 and kc2 stand for the medoids of clusters in nodes

Tc1 and Tc2 , respectively. As a last step, our algorithm pro-

ceeds recursively for each child node (lines 34-36).

4. Hierarchical Matching
This section describes the algorithm to find the corre-

spondences between two shapes. The algorithm 2 presents

the pseudo-code of our method. This algorithm requires

two trees T and P that represent the decomposition of two

shapes as described in Sec. 3.2. The overall algorithm is

based on the ability of matching regions in the internal

nodes and keypoints in the leaf nodes.

The method is performed by depth levels (see Fig. 2).

First, the matching of root nodes (level 0) implies finding

correspondences between their children (level 1). Each cor-

respondence generates a recursive call to the matching algo-

rithm. The method proceeds until reaching the leaf nodes.

In that case, we look for the best correspondence set be-

tween the keypoints in the leaf nodes. If at any time during

the process, an internal node of a tree with a leaf node of

the other is required to match, the internal node is treated

as a leaf node. This is possible because every internal node

contains the information to behave as a leaf node. Next,

Algorithm 2 Matching(T ,P)

Require: Node T
Require: Node P
Ensure: A set of correspondences S

1: if not T .leaf and not P .leaf then
2: Corr←MatchingInternalNodes(T , P)

3: S ← {}
4: for each match (t, p) ∈ Corr do
5: L←Matching(T .children[t], P .children[p])

6: S ← S
⋃
L

7: end for
8: else
9: S ←MatchingLeafNodes(T , P)

10: end if
11: return S

Figure 2. Representation of the matching process. The initial call

to Matching(T, S) (level 0) tries to find correspondences be-

tween the internal nodes in level 1. In the figure, the correspon-

dences {(T1, S3), (T2, S2), (T3, S1)} were found. Each pair gen-

erates a recursive call to the matching algorithm. The correspon-

dence (T1, S3) causes a matching between internal nodes. In con-

trast, correspondences (T2, S2) and (T3, S1) means that algorithm

will propagate the matching between internal nodes. Note that T3

is not a leaf node. However it contains enough information to be

considered as a leaf node, and therefore it can be matched to S1.

we describe how to perform the matching in the aforemen-

tioned cases.

4.1. Matching of Internal Nodes

Let T and S two internal nodes from different trees.

Each node has children represented as children(T) =
{t1, . . . , tn} and children(S) = {s1, . . . , sm}, where T
has n children and S has m children. Here we assume

n ≤ m and therefore, the node with fewer children is

matched to the other node. We define a boolean indicator

variable as follows

x(i, j) =

{
1, if ti matches sj

0 otherwise.
(9)

Then, we formulate a quadratic optimization function as

821821

follows:

F (x) =α
∑

i,j,i′,j′
|dreg(ti, ti′)− dreg(sj , sj′)|x(i, j)x(i′, j′)+

β
∑
i,j

‖fregion(ti)− fregion(sj)‖2x(i, j)+

γ
∑
i,j

|area(ti)− area(sj)|x(i, j) (10)

where α, β and γ weight the contribution of each term in

the function. The optimization function has two linear terms

and a quadratic term. On the one hand, the linear terms eval-

uate the similarity between region descriptors and the con-

sistency of areas. It is expected that two matched regions

have similar descriptors and similar areas, indeed minimiz-

ing the linear terms. On the other hand, the quadratic term

imposes a geometric consistency constraint. If there are two

correspondences x(i, j) and x(i′, j′), it is expected that the

geodesic distance between regions i and i′ in one shape is

quite similar to the geodesic distance between regions j and

j′ in the other shape. Finally, the goal is to obtain the mini-

mizer of F

x∗ = argmin
x

F (x), (11)

subject to∑
i

x(i, j) = 1 ∀j and
∑
j

x(i, j) ≤ 1 ∀i. (12)

The constraint in Eq. 12 controls the multiplicity of an

element in the correspondence set. That is to say, every ti
only can correspond to a unique sj , and vice versa.

4.2. Matching of Leaf Nodes

Unlike the matching of internal nodes, in the leaf nodes

we need to find correspondences between keypoints. Let

T and S two leaf nodes from different trees. Each node

has a set of keypoints represented as keypoints(T) =
{t1, . . . , tn} and keypoints(S) = {s1, . . . , sm}, where T
has n keypoints and S has m keypoints. Using Eq. 9 to

define a boolean indicator variable, we formulate the opti-

mization function for a leaf node as

L(x) =α
∑

i,j,i′,j′
|dg(ti, ti′)− dg(sj , sj′)|x(i, j)x(i′, j′)+

β
∑
i,j

‖WKS(ti)−WKS(sj)‖2x(i, j). (13)

Note that the distances between regions in Eq. 10 have

been replaced by geodesic distances between keypoints in

Eq. 13. In addition, wave kernel signatures are used as de-

scriptors for matching keypoints. Similar to the matching

of internal nodes, our goal is to find a minimizer of L in the

same way as Eq. 11 and the same constraints as Eq. 12.

5. Results and Discussion
We tested our method on the SHREC’2010 correspon-

dence dataset [4]. The ground-truth of the correspondences

was made available by authors for our evaluation. The

dataset consists of three shapes (hereafter referred to as

null shapes) and a set of transformed versions. The ap-

plied transformations are: isometry, holes, local scale, mi-

croholes, noise, sampling, scale, shotnoise, and topology.

Each transformation is applied in five strength levels, lead-

ing to 45 transformed shapes for each null shape. For the

quantitative results, we follow the methodology and nota-

tion proposed in [4]. We define our correspondence set as

C = {(yk, xk)}Mk=1, where M is the number of correspon-

dences, and yk and xk are keypoints in the transformed and

null shape, respectively. The ground-truth is composed by

two correspondence sets C0 and Ĉ0, containing the point-

to-point correspondences for each vertex in a transformed

shape and their symmetric counterpart, respectively.

The measure to quantify the quality of the correspon-

dence set C is

D(C) =
1

M
min

{
M∑
k=1

dg(xk, x
′
k),

M∑
k=1

dg(xk, x
′′
k)

}

(14)

where (yk, xk) ∈ C, (yk, x
′
k) ∈ C0 and (yk, x

′′
k) ∈ Ĉ0.

5.1. Experimental Setting

We detail our configuration as follows. First, we sim-

plified the models to 10,000 vertices. The final correspon-

dences were mapped back to the original shapes for evalu-

ation. Second, we computed 100 Harris keypoints for each

shape. Remember that this number can change after the

filtering. Third, we use the original implementations of

HKS2 and WKS3. Fourth, for Eq. 10 we use the weights:

α = 5× 10−4, β = 1, and γ = 5× 10−2. Fifth, for Eq. 13

we use the weights: α = 5× 10−4, and β = 1. Finally, we

used a branch-and-bound algorithm with LP-relaxation [2]

to solve the integer quadratic programs.

5.2. Qualitative Results

We present results of our method in Fig. 3. The figures

show examples with near-to-perfect localization of corre-

spondences. An advantage of our method is the genera-

tion of very similar decomposition trees for near-isometric

shapes. This enables the matching to be effective, yet fully

exploiting the proposed hierarchical approach in favor of

efficiency.

On the other hand, the addition of perturbations in

meshes may affect the overall performance of finding corre-

spondences. Figure 4 illustrates the correspondences found

2Available in http://www.geomtop.org/software/hks.html.
3Available in http://vision.in.tum.de/members/aubry/publications.

822822

Figure 3. Correspondences found with our approach. Left: # correspondences = 66, geodesic error = 2.83, matching time = 0.12 sec.

Middle: # correspondences = 58, geodesic error = 2.62, matching time = 0.08 sec. Right: # correspondences = 75, geodesic error = 3.51,

matching time = 0.12 sec.

Figure 4. Correspondences found in presence of perturbations.

Left: shotnoise, strength level 4 (# correspondences = 59, geodesic

error = 5.23, matching time = 0.08 sec.). Right: noise, strength

level 5 (# correspondences = 49, geodesic error = 5.42, matching

time = 0.03 sec.).

with our algorithm in presence of strong transformations.

Even in the presence of shotnoise (on the left) and Gaus-

sian noise (on the right), our algorithm performs accept-

ably. Note that there are parts where correspondences were

not found (for instance, the hands in the right figure). This

is because perturbations affect the decomposition process,

and particularly in this case, noise prevented the detection

of robust regions of interest in hands. Nevertheless, other

regions were well detected and interestingly those regions

were well matched to the null shape. Therefore, the decom-

position method delivers robust regions (and their associ-

ated keypoints) which arrive to reliable correspondences.

5.3. Quantitative Results

In this section, we present the performance of our

method using the geodesic error described in Eq. 14 and

compare it with state-of-the-art methods. We compare

our method with the game-theoretic approach (the variant

which merges correspondences gathered from 25 games, as

reported in [11]) and the GMDS method as reported in the

SHREC 2010 contest [4]. These two methods deliver on av-

erage 50 correspondences. Similarly, our method computes

45 correspondences on average.

Table 1 presents the average geodesic error of our

method and the compared approaches with respect to the

Strength
Method. 1 ≤2 ≤3 ≤4 ≤5
GMDS [5] 39.92 36.77 35.24 37.40 39.10

Game-theoretic [11] 10.28 12.51 11.73 14.35 18.26

Our method 7.99 8.07 8.23 8.77 9.38
Table 1. Average geodesic error of correspondences with respect

to the strength level.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 9.37 7.28 6.47 6.11 6.34

Topology 9.02 8.23 8.97 9.88 10.17

Holes 7.13 6.46 6.45 7.55 8.50
Micro holes 5.86 5.60 5.92 6.05 6.18

Scale 6.45 6.57 7.30 7.60 7.79

Local scale 9.45 10.20 9.64 9.84 9.74
Sampling 10.18 11.62 12.96 15.78 19.20
Noise 5.65 8.15 7.79 8.02 8.58
Shot noise 8.80 8.50 8.56 8.04 7.88
Average 7.99 8.07 8.23 8.77 9.38

Table 2. Average geodesic error per transformation and per level.

Average number of correspondences: 45.

strength level of transformation. It is worth noting that

our method significantly reduces the localization error for

correspondences, especially in the stronger levels. For in-

stance, our algorithm halves the error of the game-theoretic

approach in the level 5.

Table 2 reports the average error per transformation and

per strength level. Numbers in bold represent an improve-

ment with respect to the state of the art. Our algorithm

presents low error values in almost all transformations in

strength levels 4 and 5. This is because the decomposition

tree represents a mesh in an effective way, even in presence

of severe perturbations. Hence this fact encourages us to

think that our method is suitable for realistic applications.

However, note that our method did not improve with respect

to the topology transformation. The reason relies on the use

823823

of geodesic distances for the geometric consistency, which

are sensitive to topological changes. A solution would be

the use of a more robust manner for measuring intrinsic

distances (for instance diffusion distances). Also keep in

mind that we have used the original versions of the heat and

wave kernel signatures. Applying scale-invariant versions

of these descriptors could further improve our results.

A note about execution time

Our matching algorithm takes on average 0.1 seconds to

find the correspondences between two shapes. This means

a speedup of 5x-40x with respect to the game-theoretic ap-

proach in [11]. All our experiments were run on a 64-

bits Linux system with Intel Core-i7 (3.40GHz) processors

and 32GB of RAM. Our algorithms were implemented in

C/C++ with interfaces MEX/MATLAB.

6. Conclusions
We proposed a novel hierarchical approach to address

the problem of finding reliable correspondences in non-

rigid shapes. In our experiments, we showed that our

method is robust to severe perturbations, making it suitable

for realistic applications. Also, our approach outperformed

the state of the art with respect to the localization error of

correspondences. In addition, our matching algorithm is

efficient, thanks to the use of the hierarchical structure of

decomposition, which allows the reduction of the search

space. In the future, we plan to use more robust descriptors

and intrinsic distances to improve our results. Furthermore,

a challenging direction is the adaptation of our algorithm to

partial matching.

Acknowledgments
We thank Michael Bronstein for his extremely useful

help with the SHREC benchmark. The work of Ivan Sipiran

was partially supported by EC FP7 STREP Project PRE-

SIOUS, Grant No. 600533. Also, this work was partially

funded by Fondecyt (Chile) Project 1110111.

References
[1] M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel

signature: A quantum mechanical approach to shape analy-

sis. In ICCV Workshops, pages 1626–1633, 2011.

[2] A. Bemporad, D. Mignone, and M. Morari. An Efficient

Branch and Bound Algorithm for State Estimation and Con-

trol of Hybrid Systems. In European Control Conference,

Aug. 1999.

[3] A. M. Bronstein. Spectral descriptors for deformable shapes.

CoRR, abs/1110.5015, 2011.

[4] A. M. Bronstein, M. M. Bronstein, U. Castellani, A. Dubrov-

ina, L. J. Guibas, R. P. Horaud, R. Kimmel, D. Knos-

sow, E. von Lavante, D. Mateus, M. Ovsjanikov, and

A. Sharma. SHREC’10: Robust correspondence benchmark.

In 3DOR’10, pages 87–91.

[5] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Gener-

alized multidimensional scaling: A framework for isometry-

invariant partial surface matching. Proc. of the Natl. Acad.
of Sci., pages 1168–1172, 2006.

[6] A. Dubrovina and R. Kimmel. Matching shapes by eigen-

decomposition of the Laplace-Beltrami operator. In 3DPVT,

2010.

[7] R. Kimmel and J. A. Sethian. Computing Geodesic Paths on

Manifolds. In Proc. Natl. Acad. Sci. USA, pages 8431–8435,

1998.

[8] Y. Lipman and T. Funkhouser. Möbius voting for surface cor-

respondence. ACM Trans. Graph., 28(3):72:1–72:12, July

2009.

[9] R. Litman, A. M. Bronstein, and M. M. Bronstein. Diffusion-

geometric maximally stable component detection in de-

formable shapes. Computers & Graphics, 35(3):549–560,

2011.

[10] M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. J. Guibas.

One Point Isometric Matching with the Heat Kernel. Com-
put. Graph. Forum, 29(5):1555–1564, 2010.

[11] E. Rodolà, A. Bronstein, A. Albarelli, F. Bergamasco, and

A. Torsello. A game-theoretic approach to deformable shape

matching. In CVPR, pages 182–189, 2012.

[12] Y. Sahillioğlu and Y. Yemez. 3D Shape correspondence by

isometry-driven greedy optimization. In CVPR, pages 453–

458, 2010.

[13] A. Sharma, R. Horaud, J. Cech, and E. Boyer. Topologically-

robust 3D shape matching based on diffusion geometry and

seed growing. In CVPR, pages 2481–2488, 2011.

[14] I. Sipiran and B. Bustos. Harris 3D: a robust extension of the

Harris operator for interest point detection on 3D meshes.

The Visual Computer, 27:963–976, 2011.

[15] I. Sipiran and B. Bustos. Key-components: detection of

salient regions on 3D meshes. The Visual Computer, 2013.

To appear.

[16] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-

ably informative multi-scale signature based on heat diffu-

sion. In SGP’09, pages 1383–1392. Eurographics Associa-

tion, 2009.

[17] A. Tevs, A. Berner, M. Wand, I. Ihrke, and H.-P. Seidel.

Intrinsic Shape Matching by Planned Landmark Sampling.

Computer Graphics Forum, 30(2):543–552, 2011.

[18] A. Tevs, M. Bokeloh, M. Wand, A. Schilling, and H. P. Sei-

del. Isometric registration of ambiguous and partial data. In

CVPR, pages 1185–1192, 2009.

[19] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface

feature detection and description with applications to mesh

matching. In CVPR, pages 373–380, 2009.

[20] Y. Zeng, C. Wang, Y. Wang, X. Gu, D. Samaras, and N. Para-

gios. Dense non-rigid surface registration using high-order

graph matching. In CVPR, pages 382–389, 2010.

[21] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick,

and A. Tagliasacchi. Deformation-driven shape correspon-

dence. In SGP’08, pages 1431–1439. Eurographics Associ-

ation, 2008.

824824

