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Abstract

We propose a co-detection and labeling (CoDeL) frame-
work to identify persons that contain self-consistent ap-
pearance in multiple images. Our CoDeL model builds
upon the deformable part-based model to detect human
hypotheses and exploits cross-image correspondence via a
matching classifier. Relying on a Gaussian process, this
matching classifier models the similarity of two hypotheses
and efficiently captures the relative importance contributed
by various visual features, reducing the adverse effect of
scattered occlusion. Further, the detector and matching
classifier together make our model fit into a semi-supervised
co-training framework, which can get enhanced results with
a small amount of labeled training data. Our CoDeL
model achieves decent performance on existing and new
benchmark datasets.

1. Introduction

We in this paper tackle the human co-detection problem,

which can be defined in the following way. Given N images

I = {I1, . . . , IN}, which contain a group of M persons

denoted as H = {H1, . . . , HM}, the objective includes

detecting human in the image set and labeling them into

groups by their identities.

Human co-detection has its notable merit in many prac-

tical computer vision applications. For example, it can help

group personal photos not only with face similarity, but also

based on respective appearance. Fig. 1 shows an example.

Current commercial systems, such as Picasa or facebook,

have already provided the human grouping function based

on face similarity. These methods work well for frontal

faces, but could be less stable for others. Previous human i-

dentity grouping research [27, 20, 1] extends faces to torsos,

given the fact that a person appearing in multiple images

taken in the same day or during the same event often wears

the same clothes. Since face detector is vulnerable to head-

pose variation, not to mention occlusion or back views. This

∗Both authors contributed equally to this work.

Figure 1. Human co-detection. The cross-image correspondence

in color and texture features can improve detection, and provides

a natural extension for individual grouping.

makes existing approaches have various limitations when

handling challenging data. In this regard, a reliable human

detector would be vastly valuable to the community.

For most classical single-image human detectors [5, 29,

6], input images generally contain pedestrians in standing

or walking poses. Our method relaxes this latent constraint

in detecting and grouping persons, thus working on data

that could fail conventional human detectors and human

template matching. Moreover, the possible high variation

of backgrounds in different images would make the human

template matching really challenging.

Our system makes three assumptions following common

knowledge to make the co-detection problem tractable.

First, each image in I contains a subset of humans in H.

Second, each person can only appear once in one image.

Third, only a person with self-consistent appearance in

multiple images can be grouped. Obviously, if one is with

different dressings across images, identification based on

body appearance is almost impossible.

To efficiently utilize the human co-occurrence informa-

tion in multiple images, we develop a human co-detection
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and labeling (CoDeL) framework. It is in a semi-supervised

learning manner, since the number of manually annotated

regions is limited [8] and most existing human detection

datasets [6] seldom offer labeling about whether two de-

tected persons actually correspond to the same one.

Our CoDeL follows a co-training scheme [4, 30] to

consider insufficiently labeled data. It trains two classifiers,

including a detector and a matching classifier, based on two

feature sets, which are conditionally independent given the

class labels. The detected region gives an indication on

which part of the image is used for matching. Meanwhile,

the matching process among different images can help

retrieve missing data as well as rejecting false alarm for the

detector.

In particular, for the detection part, we resort to the

deformable part-based model [10, 8], which exploits edge

information, like HOG [5], to distinguish human from back-

ground. Part-based model represents a human hypothesis

as multiple flexible parts. It reduces background noise and

is also robust to deformation of human body, which often

occurs. For the matching process, we build a potential

function through a Gaussian process [15]. It not only

incorporates the similarity between any two parts [2] but

also measures the similarity between two human hypothe-

ses, thus being robust to partial appearance variation. It

functions if two candidate regions have similar color and

texture features. From another point of view, the two

feature sets used by the two classifiers are conditionally

independent given human labels.

With the initial annotated human regions and labeled

matching region pairs, we train the part-based human

detector and matching classifier respectively. We regard

the positive outputs of one classifier as the weak positive

samples of the other, and iterate this process until reliable

classifiers are yielded. In testing, given the trained detector

and matching classifier, we apply CoDeL to detect and label

human regions.

Our main contributions are as follows. First, we propose

an iterative co-training framework for human co-detection

and labeling. Second, we design a new matching classifier

to capture occurrence of the same person. Finally, we

conduct experiments on two datasets, including a new

one built by us with ground-truth labels. Our empirical

results are satisfactory, with performance better than other

alternatives.

2. Related Work
Previous work for human identity grouping [27, 20,

1] usually extracts visual features from face regions and

clothes. Performance of the face detector is important in

these methods. If faces are heading in different directions

or are occluded, the detector could fail. Another stream of

human identity identification [18, 21] is to handle videos via

trackers. Moreover, Garg et al. [9] matches human in crowd

images given the user input as initial label to retrieve under a

small-motion assumption. Beyond matching given detected

results, Sivic et al. [19] extended the contextual information

in family album to improve detection. It can avoid missing

persons from face detector. It applies a pictorial structure

model on human parts (hair, face and torso), which can be

regarded as a special version in our general framework.

Detecting human is a substantial hot topic in computer

vision. Started with [5, 29], the problem is addressed via a

two-stage framework including feature extraction and clas-

sifier building. Dollár et al. [6] provided a comprehensive

survey on it. From the feature perspective, histogram of

gradients (HOG) [5] forms a prominent type. Follow-up

methods extend it to combination with color [14], texture

feature [23, 25], etc. In terms of classifiers, linear SVM [5,

25], Ada-boost [29] and partial least square analysis [17] are

among the mainstreams. Most previous human detectors

concentrate on pedestrians, where sliding windows are

adopted. For general human bodies with large deformation,

object detector trained on human datasets performs better.

Representative methods include implicit shape model [26],

latent hough transform [16] and deformable part-based

model [8] where the latter one provides leading perfor-

mance as reported in several recent VOC competitions.

Recently, image sets with similar foregrounds were used

in several applications. Kim et al. [11] proposed a mul-

tiple foreground co-segmentation method, where images

are captured for the same group of humans or in the

same scene. Bao et al. [2] introduced object co-detection,

which finds matched objects from two or multiple related

images. It provides a promising direction where the similar-

foreground assumption gives an essential clue to improve

detection. Although this method incorporates a unified

energy function on both detection and matching, the two

steps are optimized separately. Besides, this model requires

a relatively large amount of labeled matching objects in

training.

3. Co-Detection and Labeling
Given a general human detection training set and an

additional small set with matching labels, we aim to build

a human co-detection and labeling (CoDeL) solution. We

start with the human representation.

3.1. Human Representation

Following the convention of star models in [8], our

representation contains a root filter r and K part filters

denoted as P = {p1, . . . , pK}. Since face is potentially

important as reported in [27, 20, 1] and the technique for

detecting faces [24] is mature, we add the face filter f as

an additional constraint for human hypothesis. As long as

the ratio of overlapping area between human bounding box
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and face exceeds a predefined threshold (set to 0.5 in our

experiments), face and human are grouped together. The

overall human model is defined as H = (r,P, f).
3.2. Energy Function for CoDeL

The goal of our CoDeL model is to incorporate the

human detecting and matching classifiers in the same

framework, so that the two classifiers could help improve

each other by adding weak positive samples according to

their classification results. The input contains N images

denoted as I = {I1, . . . , IN}. Our CoDeL framework aims

to detect human regions as H = {H1, . . . , HM}, and give

pair-wise matching scores via the matching classifier. Its

energy function contains two parts, expressed as

E(H,I)=
N∑

n=1

∑
Hi∈In

{
Eu(Hi,In)+

N∑
l=n+1

Em(Hi,In,Hl,Il)
}
,

(1)

where Hi is the ith human hypothesis inH. The restriction

Hi ∈ In confirms that Hi is detected within image In.

Hl is the set of all human hypotheses in image Il. Eu

in Eq. (1) is the unary potential term, which measures the

compatibility between human hypothesis Hi and observed

image In. Em is the matching potential term, measuring

pairwise similarity between Hi in image In and human

hypotheses setHl in image Il.
Specifically, the unary potential Eu for human hypothe-

sis Hi in image In, which is the detection classifier in our

CoDeL model, is defined as

Eu(Hi, In) = Ef (fi, In) + Eh(ri,Pi, In), (2)

where Ef is the potential which indicates the likelihood of

containing a face in the area. We give this face potential

score via the statistical explanation of Ada-boost in [28] as

Ef = 1/(
∑

i exp{−yig(fi, wf )}+1), where g(fi, wf ) is a

convex function defined on the face region as the sum over

weighted outputs of weak classifiers, wf is its parameter

set, and yi is the classifier label in this region. The higher

the value Ef is, the more likely the region contains a face.

Eh measures the compatibility between image In and part-

based human hypothesis Hi represented by {ri,Pi}. We

adopt the star model in part-based representation as

Eh(ri,Pi,In)=Er(ri,In)+
K∑

k=1

Ep(p
k
i ,In)+

K∑
k=1

Ec(ri,p
k
i ,In),

(3)
where Er and Ep are the unary potentials for the root

and part filters respectively. Ec provides the connecting

potential for deformation cost between root ri and each part

pki . We define the energy Er, Ep and Ec following those

of [8].

The second term Em(Hi,In,Hl,Il) in Eq. (1) defines

the human hypothesis level matching potential between Hi

in image In and the set of hypotheses Hl in Il. Perfect

matching of the same person contributes a large value to

this term. We model matching as

Em(Hi, In,Hl, Il) = T (max
Hj∈Il

Êm(Hi, Hj), t), (4)

where T (x, t) is a threshold function to measure the simi-

larity between Hi and the best matched human hypothesis

Hj in image Il. Matching is established when T (x, t) = x
given the best matching score x ≥ t; otherwise T (x, t) = 0.

With this threshold, only human hypothesis pairs with sim-

ilarity scores larger than t can contribute to the final energy.

It can avoid establishing excessive or incorrect matching

linkage between any two human pairs. Êm(Hi, Hj) reports

the similarity between two human hypotheses Hi and Hj .

Based on common sense that each person only appears once

in an image, only the largest potential of Hi with respect to

all Hj in image Il has the chance to compete for matching.

We define Êm(Hi, Hj) as a biased log marginal likelihood:

Êm(Hi, Hj) = log p(yij = 1 |Hi, Hj ) + C, (5)

where C is a constant to ensure positive Êm(Hi, Hj) and

yij is a label, setting to 1 when Hi and Hj are matched, −1
otherwise. To describe the marginal likelihood explicitly,

we introduce a latent function λ and transform the matching

value to obtain a valid probability measure as

p(yij = 1 |Hi, Hj ) = σ(λ(Hi, Hj)), (6)

where σ is a logistic function. For modeling the latent func-

tion λ effectively, we adopt Gaussian process (GP) [15] as a

nonparametric prior, making the overall marginal likelihood

a Gaussian process classifier. In particular, the input of λ is

defined as the difference between two stacked feature vec-

tors extracted from parts of human hypotheses respectively.

The correspondences of parts for two human hypotheses

are obtained similarly as in the part-base model [10]. The

covariance function of GP classifier captures the relative

importance of both different features and different parts. It

is robust against scattered occlusion.

In the overall energy Eq. (1), the unary potential corre-

sponds to a classifier based on face and part-based human

detectors, which largely rely on edge information. The

matching potential, differently, contains a classifier taking

part-level similarity scores measured as difference upon

color and texture features. The feature sets (edge vs. color-

texture) are conditionally independent given human labels,

since edges are used to distinguish between human and non-

human while color and texture are responsible for measur-

ing similarity of two human hypotheses. The two classifiers

supplement each other. When the labeled training data

are not enough, we can use positive samples produced by

one classifier as weak positive ones for updating the other.
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Figure 2. CoDeL co-training framework.

This semi-supervised manner is named co-training [4, 30]

in literatures, which explains why our CoDeL framework

works.

3.3. Model Learning

In model learning, given a group of training data with

part of them containing detected bounding boxes and a

subset with labeled human correspondences, we learn the

parameters for Eq. (1), i.e., the human detector and match-

ing classifier. To maximize Eq. (1), we first train the

initial classifiers with labeled training data, and then update

the unary and matching terms iteratively in a co-training

manner by exploring unlabeled training data. In each round,

the two terms are optimized as follows.

Since frontal faces do not often appear in our dataset, we

first obtain the parameter wf in the face detector through

training Ada boost [24] on common face dataset and fix it

in remaining iterations. Therefore, maximizing the unary

term in Eq. (2) is equivalent to

arg min
wr,wp,wc

1

2
(‖wr‖22 + ‖wp‖22 + ‖wc‖22)

+

M∑
i=1

max(0, 1− yi max
Pi

Eh(ri,Pi, In)),

(7)

where wr, wp, and wc are the parameters for root, part, and

connecting potentials in Eq. (3) respectively. We train the

part-based detector for wr, wp, and wc following the setting

in [10, 8]. The detector is a two-component mixture model

as [8] – visually one for full body and one for upper body.

For the matching term in Eq. (5), the input matched

pair of GP classifier is represented as a concatenated

vector of feature difference. During training GP, we

choose the logistic function as the likelihood and resort

to Laplace approximation for calculating the desired pos-

terior of the latent function λ. More specifically, the

posterior p(λ|Hi, Hj , yij) is approximated by a Gaussian

N (λ| λ̂,K). λ̂ and K are the approximated mean function

and covariance matrix respectively. Our GP covariance

function is a full squared exponential. By Bayes rule, the

log-posterior Ψ(λ) = log p(λ|Hi, Hj , yij) is expressed as

Ψ(λ) ∝ log p(yij |λ ) + log p(λ|Hi, Hj), (8)

where p(yij |λ ) is the logistic likelihood function. λ̂ and K
are given by

λ̂ = argmax
λ

Ψ(λ),

K = −∇∇Ψ(λ)|λ=λ̂,
(9)

where ∇∇ is the Hessian operator. Note Eq. (9) can be

solved efficiently via the Newton-Raphson method [15].

Based on the above two updating steps, we perform co-

training to generate new weak labeled positive samples. The

flowchart is shown in Fig. 2. We first learn two initial

classifiers and use the initial trained human detector to

test new unlabeled images. Since output of the detector

contains no label, they cannot be directly employed by the

successive matching classifier. To overcome this problem,

we build a confidence criterion based on the probabilistic

property of the GP classifier, which lets the mean prediction

of the GP learned in last round determine whether two new

hypotheses produced by the detector match. The mean

prediction of the two human hypotheses H∗
i and H∗

j in the
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GP classifier is defined as

ȳ∗ij =
∫

p(yij |λ∗ )p(λ∗|H, H∗
i , H

∗
j )dλ

∗ (10)

where λ∗ is the current latent function corresponding to the

test pair and H is the initial training human hypotheses set.

When ȳ∗ij is above a threshold (0.8 in our experiment), these

two human hypotheses are denoted as weak positive and

are added to the training data of matching in the next round.

This confidence criterion essentially shares the same insight

with the rejection option studied in GP classification [15, 3]

and provides a very useful hint on finding positive data.

Statistical properties of this confidence criterion are demon-

strated by the error-reject curve in Section 4.3. Since these

input hypotheses are selected from output of the detector

with high unary scores, we pass these hypotheses pairs to

retrain the matching classifier, illustrated in Fig. 2.

Given the updated matching classifier, we retrieve weak

positive human hypotheses to train the detector, shown in

the bottom row in Fig. 2. First, a base hypotheses pool

is generated by a human detector with a low unary score

threshold, thus with high recall. For each pair of hypotheses

in this base pool, we calculate the total energy in Eq. (1)

and discard those with low scores to construct the final

complete hypothesis pool. Since the total energy indicates

the confidence of a human region, we retrain our detector

with data remaining in this complete hypothesis pool.

These two steps iterate in a way to test new data and add

them to the training set when confident. It stops when the

maximum number of iterations is reached or performance

is not improved anymore. Thus, with only a small amount

of labeled training data, we can efficiently learn our CoDeL

framework via the semi-supervised co-training setting.

3.4. Model Inference

In model inference, our goal is to detect human hypothe-

ses and report their corresponding labels on new data given

the human detector and matching classifier. We use the face

and part-based human detectors to find candidates. The

detector is tuned to a low threshold to achieve high recall

so that most candidates are included. Then we adopt the

GP classifier on each pair of human hypotheses to get the

matching score via Eq. (10).

If the total score for a particular human body in Eq. (1) is

above 1.5, we label it as a human body. Therefore, the final

confidence includes both the unary and matching scores. If

a human region finds similar ones in other images, which

are also labeled as human, it becomes more confident.

Meanwhile, the detected false-alarm regions have relatively

low unary scores and could hardly find matches among

other human regions.

With this process, we quickly increase precision and

preserve the recall of detection. After we obtain all detected
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Figure 3. Co-training evaluation. The detection performance

increases along with growth of semi-supervised training rounds.

human regions and their pairwise matching potential scores,

we assign the human labels via hierarchical clustering [22],

which assures the difference of scores within a cluster is less

than a predefined distance.

4. Experiments
In this section, after describing our experimental set-

tings, we evaluate our method in the following four aspects.

1) How does the co-training setting improve the perfor-

mance of CoDeL in a semi-supervised manner? 2) How

useful is the criteria of confidence in Eq. (10)? 3) Can our

matching classifier correctly distinguish between matched

pairs and others? 4) How to compare our detection results

under the co-detection setting with previous single-image

detection methods?

4.1. Experimental Settings

In our experiments, we use two datasets. One is the

pedestrian dataset provided in [7] where the stereo image

pairs serve as a natural source of matched pairs following

the setting of [2]. The other dataset, denoted as human
co-detection dataset (HCD dataset), is collected by us

with some images from the co-segmentation dataset [11],

representative frames in “Big Bang Theory” season 1, etc.

It conforms to the assumptions of our human co-detection

tasks – that is, each human appears in only part of the

image set with consistent appearance. For the pedestrian

set [7], we use 450 pairs of images to train and 354 to test

as [7]. For HCD set, we provide around 400 images, 90%

of which are for training and 10% for testing. This splitting

is repeated 10 times for average accuracy.

To evaluate the detection performance, we report average

precision (AP) following the criteria in PASCAL VOC

challenge. The matching classifier is evaluated by the clas-

sification accuracy with respect to ground truth matching

labels. For the part-based detector, we use the star model

of DPM-v4 [8]. The training set combines training data

from VOC2010, pedestrian set and HCD set. We have two

threshold levels according to Fig. 2. The high threshold is
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Figure 4. Statistics in the form of the error-reject curve.

set to 0.7 while the low threshold is -1.0. In the matching

part, we use three sets of features to describe similarity

in terms of color and texture as in Eq. (5). They include

difference of color histograms (32D color histogram on

the H channel of LSH color space), difference of LBP

features [13], and the logarithm of matched SIFT [12] point

number. Each feature represents a human hypothesis via a

stacked vector among all parts. We transform the color and

LBP features via PCA to 50D respectively. All parameters

are tuned on a hold-out validation set.

4.2. Co-training Evaluation

In this section, we verify the effectiveness of our co-

training process in a semi-supervised manner. We train

CoDeL on an initial set of 20 images from HCD dataset

with both bounding box labels and matching labels. Then

in each round, we randomly pick 10 new unlabeled images

from the remaining ones to conduct co-training described

above. We iterate these procedures for 15 rounds and

record the precision in each stage, which is evaluated on

an independent testing set of 30 images. This process

is repeated 10 times to compute AP. The result is shown

in Fig. 3. With increase of unlabeled training data, our

co-training system gradually enriches the training set by

adding weak positive samples and improves the detection

performance.

4.3. Error-Reject Curve

We study empirical properties of confidence criteria in

Eq. (10), which is used to generate weak labeled human

pairs to retrain the matching classifier. The mean prediction

value in Eq. (10) of a testing sample is adopted as an

indication of rejection. In particular, we calculate the values

of all testing pairs in our HCD dataset and regard them as

positive if they are above a threshold. With the threshold

varying from 0.0 to 1.0, different misclassification error

rates are recorded and shown in Fig. 4. We found that, when

the threshold is very low, the misclassification error rate is

rather high, since most negative samples are misclassified as

positive ones. As the threshold goes up, the error rate drops,

Pedestrian [7] HCD Dataset

SVM+Color 60.39 52.29

SVM+LBP 54.29 53.21

SVM+SIFT 81.59 61.80

SVM+Color+LBP+SIFT 88.52 63.03

GP+Color 77.66 61.10

GP+LBP 82.08 62.76

GP+SIFT 88.57 62.73

GP+Color+LBP+SIFT 91.43 68.07
Table 1. Matching accuracy (%) for human co-detection on the

pedestrian dataset [7] and our human co-detection (HCD) dataset.

indicating rejection of more negative samples. Threshold

around 0.8 gives the smallest error rate.

4.4. Matching Classifier

We evaluate the performance of our matching classifier,

and show it in Table 1. All three kinds of features are

tested alone with linear SVM and GP classifier. Features

of matched SIFT yield good results on the pedestrian

dataset because the scales of most persons are small and the

majority of them are with dark clothes. In our HCD dataset,

people poses are with a large variation and clothes are in

different colors, making the performance of SIFT features

drop. Other challenges introduced by this dataset include

matching pair chosen among all images and background

noise caused by deformable body parts. It leads to less per-

fect results for each type of features. Feature combination

performs better on both datasets. Also the GP classifier is

consistently better than the linear SVM classifier used in [2]

due to its non-liner property.

4.5. Co-Detection Results

We compare our method with the widely used face

detector [24], one of state-of-the-art human detectors [8]

and object co-detection method [2]. The results are reported

in Table 2.

The face detector cannot deal with the situation that

the face is partly or completely missing. It achieves high

precision and low recall on our HCD dataset. We do not

evaluate this detector on the pedestrian dataset, since faces

can hardly be found. Compared to single-image human

detector [8], our matching classifier can increase the score

of unreliable human hypotheses when they have confident

matches.

We also compare our method with object co-

detection [2]. The gain is partly due to the matching

potential, which captures more informative clues and is

robust to deformation, as shown in Section 4.4. Further,

our CoDeL framework yields a larger increase on the

HCD dataset than that on the pedestrian one, since HCD

provides more images with potential matching pairs. We
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Pedestrian [7] (all) Pedestrian [7] (h > 120) HCD Dataset

Face – – 5.95

Part-based model [8] 59.7 55.4 69.94

Object co-detection [2] 62.7 63.4 –

CoDeL 74.4 73.8 74.94

Table 2. Average precision (%) for human co-detection on the pedestrian dataset [7] and our human co-detection (HCD) dataset. We

directly quote results of the object co-detection method reported in [2].

Figure 5. Visual examples for human co-detection and labeling in the baseball scene (rows 1-2) and big bang series scene (rows 3-6) in our

HCD dataset. Persons are labeled in different colors.
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show a few co-detection and labeling results obtained

with HCD in Fig. 5. It is notable that errors may occur

when two different human hypotheses are of quite similar

appearances, as illustrated in the first row of Fig. 5. Also,

there are several hard cases that cannot be detected, e.g.,

the last image of the second row and the first two images in

row 6. They contain back views or poses that rarely exist in

the image data.

5. Conclusion and Future Work
We have proposed a human co-detection and labeling

(CoDeL) framework. It is formed in a semi-supervised

manner to boost performance given insufficient labels. Also

we define our matching classifier via a Gaussian process

on the human hypothesis level. Experiments demonstrate

our approach produces reasonable matching and detection

results compared with other methods.

Our future work includes extending the matching clas-

sifier by integrating spatial relationship among parts. Also

we will build an online algorithm.

Acknowledgments
This work is supported by a grant from the Research

Grants Council of the Hong Kong SAR (project No.

413110) and by NSF of China (key project No. 61133009).

References
[1] D. Anguelov, K. chih Lee, S. B. Gokturk, and B. Sumengen.

Contextual identity recognition in personal photo albums. In

CVPR, pages 1–7, 2007.

[2] S. Y. Bao, Y. Xiang, and S. Savarese. Object co-detection. In

ECCV, 2012.

[3] P. L. Bartlett and M. H. Wegkamp. Classification with a

reject option using a hinge loss. The Journal of Machine
Learning Research, 9:1823–1840, 2008.

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled

data with co-training. In Annual Conference on Computa-
tional Learning Theory, pages 92–100, 1998.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005.

[6] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian

detection: An evaluation of the state of the art. PAMI,
34(4):743–761, 2012.

[7] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for

mobile scene analysis. In ICCV, 2007.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan. Object detection with discriminatively trained

part based models. PAMI, 32(9):1627–1645, 2010.

[9] R. Garg, D. Ramanan, S. M. Seitz, and N. Snavely. Where’s

Waldo: matching people in images of crowds. In CVPR,

pages 1793–1800, 2011.

[10] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester.

Discriminatively trained deformable part models, release 5.

http://people.cs.uchicago.edu/ rbg/latent-release5/.

[11] G. Kim and E. P. Xing. On multiple foreground cosegmen-

tation. In CVPR, pages 837–844, 2012.

[12] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[13] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution

gray-scale and rotation invariant texture classification with

local binary patterns. PAMI, 24(7):971–987, 2002.

[14] P. Ott and M. Everingham. Implicit color segmentation

features for pedestrian and object detection. In ICCV, pages

723–730, 2009.

[15] C. E. Rasmussen. Gaussian processes for machine learning.

Citeseer, 2006.

[16] N. Razavi, J. Gall, P. Kohli, and L. V. Gool. Latent hough

transform for object detection. In ECCV, pages 312–325,

2012.

[17] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis.

Human detection using partial least squares analysis. In

ICCV, pages 24–31, 2009.

[18] J. Sivic, M. Everingham, and A. Zisserman. Who are you?-

Learning person specific classifiers from video. In CVPR,

pages 1145–1152, 2009.

[19] J. Sivic, C. L. Zitnick, and R. Szeliski. Finding people in

repeated shots of the same scene. In BMVC, 2006.

[20] Y. Song and T. Leung. Context-aided human recognition–

clustering. ECCV, pages 382–395, 2006.

[21] M. Tapaswi, M. Bauml, and R. Stiefelhagen. Knock! Knock!

Who is it? probabilistic person identification in TV-series. In

CVPR, pages 2658–2665, 2012.

[22] H. Trevor, T. Robert, and J. H. Friedman. The elements of
statistical learning. Springer New York, 2001.

[23] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via

classification on riemannian manifolds. PAMI, 30(10):1713–

1727, 2008.

[24] P. Viola and M. J. Jones. Robust real-time face detection.

IJCV, 57(2):137–154, 2004.

[25] X. Wang, T. X. Han, and S. Yan. An HOG-LBP human

detector with partial occlusion handling. In ICCV, pages 32–

39, 2009.

[26] P. Wohlhart, M. Donoser, P. M. Roth, and H. Bischof.

Detecting partially occluded objects with an implicit shape

model random field. In ACCV, 2012.

[27] L. Zhang, L. Chen, M. Li, and H. Zhang. Automated

annotation of human faces in family albums. In ACM
international conference on Multimedia, pages 355–358,

2003.

[28] T. Zhang. Statistical behavior and consistency of classifica-

tion methods based on convex risk minimization. Annals of
Statistics, pages 56–85, 2004.

[29] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast

human detection using a cascade of histograms of oriented

gradients. In CVPR, pages 1491–1498, 2006.

[30] X. Zhu and A. B. Goldberg. Introduction to semi-supervised

learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 3(1):1–130, 2009.

2103


