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Abstract

Dense motion of image points over many video frames
can provide important information about the world. How-
ever, occlusions and drift make it impossible to compute
long motion paths by merely concatenating optical flow vec-
tors between consecutive frames. Instead, we solve for en-
tire paths directly, and flag the frames in which each is
visible. As in previous work, we anchor each path to a
unique pixel which guarantees an even spatial distribution
of paths. Unlike earlier methods, we allow paths to be an-
chored in any frame. By explicitly requiring that at least one
visible path passes within a small neighborhood of every
pixel, we guarantee complete coverage of all visible points
in all frames. We achieve state-of-the-art results on real
sequences including both rigid and non-rigid motions with
significant occlusions.

1. Introduction
The goal of long-range, high-density motion estimation

in video analysis is to compute the life of every point in

a dense sampling of the visible surfaces in the scene. The

image projection of a scene point moves along a path in the

image plane. Sometimes the point is visible, and sometimes

it is occluded by some object in the world or by the bound-

aries of the image. In a dense motion estimate, at least one

path passes through every pixel of the sequence.

Dense, long-range motion estimation supports a number

of applications. The computed paths can propagate to mul-

tiple frames any annotations or edits made in a single frame,

thereby easing video labeling and editing. If visible paths

can be extrapolated into regions where they are occluded,

the occluding object can be removed from the video by

painting the pixels it occupies with the extrapolated colors.

Videos can be segmented into separate objects by clustering

paths into coherent groups. The shapes and appearance of

the resulting tube-like regions can support the detection and

recognition of objects and activities.

Image motion information is either poor or altogether

unavailable where the scene has little or no visual texture—

(a) Our approach.

(b) Lagrangian motion [16].

Figure 1: Top: Result of transporting all gray levels in the

25-frame marple7 sequence to frame 13 by the image mo-

tion computed with our method. The camera pans to follow

Miss Marple as she walks from right to left. Pixels inside

the red rectangle are native to frame 13. We find motion in

all regions visible in any frame. Lagrangian motion (b) only

computes paths for points visible in the first or last frame.

The missing crate under the window is behind Miss Marple

in the last frame and off-screen in the first. The missing por-

tion of the wall to the right of the mailbox is behind Miss

Marple in the first frame and off-screen in the last. Details

on the right highlight regions where incorrect estimates in

Lagrangian motion create artifacts which we avoid.

the so-called aperture problem. As a consequence,

regularization—or priors in probabilistic parlance—must be

employed to extrapolate motion information from textured

to poorly textured regions. To this end, we assume that (i)

image paths live in a low-dimensional space, (ii) appearance

remains approximately constant along the visible portion of

a path, and (iii) exactly one world point is visible at ev-

ery image point. The first assumption is exactly satisfied

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.306

2464

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.306

2464



with rigid motion, and approximately satisfied in many cir-

cumstances. The second assumption is pervasive in motion

analysis, and the third excludes semi-transparent objects.

Summary of Contributions

Our formulation is related to the concept of La-

grangian Motion Estimation (LME) proposed by Ricco and

Tomasi [16]. Like them—and several others—we assume

that paths belong to a low-dimensional subspace. We also

anchor each path to a single pixel in the sequence, so as to

keep paths from bunching up. Similarly to LME, we also

describe path visibility with a binary, per-frame flag, and

cast motion estimation as energy minimization.

However, our method differs in important ways from

LME. First, we do not have fixed “reference frames” to an-

chor paths into. By default, LME selects the first and last

frame as reference frames and estimates paths for only those

scene points that are visible in one of those frames. Figure 1

illustrates this limitation; LME misses large regions in an

intermediate frame because the surfaces are not visible in

either reference frame. To guarantee that all visible surfaces

are associated with paths, LME would have to select every

frame as a reference frame, an approach that quickly be-

comes computationally infeasible for long videos. We find

paths wherever they are visible.

Second, we minimize the energy function by direct non-

linear optimization rather than by solving Euler-Lagrange

PDEs. The greater flexibility of our method allows for

both anchors in any frame and more realistic regularization

functionals leading to more accurate paths. For example,

in LME, the regularization terms only enforce consistency

between paths anchored in the same reference frame; our

method encourages consistency across all frames. The de-

tails in the right column of Figure 1 show an example where

the reconstructed image found with our method does not ex-

hibit the artifacts visible in the LME results.

Third, we formulate the computation of the visibility flag

as a Maximum a Posteriori (MAP) Markov Random Field

(MRF) estimation problem, for which an efficient solution

method is available. This formulation allows for the ex-

plicit enforcement of the constraint that there must be some

visible path at every pixel. In contrast, LME’s real-valued

relaxation method for this combinatorial optimization prob-

lem approximates the target function, and leaves pixels un-

explained.

2. Related work
Decades of research into motion estimation has focused

primarily on the computation of optical flow fields between

consecutive frames. Here, we consider approaches that

compute longer paths.

Sundaram et al. [19] concatenate flow fields found by

Large Displacement Optical Flow (LDOF) [4] into longer

paths, each computed independently of the others. Their

paths start in regions with sufficient texture, but cover more

image regions than feature trackers like KLT [14] do. Paths

end at detected occlusion and motion boundaries, found by

comparing flow fields computed forward and backward in

time. Sand and Teller [18] start with concatenated optical

flow vectors but refine these post facto by optimizing a cost

function with multiframe data and smoothness terms. High-

cost paths end at suspected occlusions, and new ones are

started to fill gaps.

Early formulations for temporal regularization penalize

changes in image velocity in both time and space [22].

Structure-from-motion methods regularize more globally

by assuming rigid motion—a restrictive assumption—for

which image paths can be proven [20] to lie in a space of

low and known dimension. This work has been extended to

multiple rigid motions [8] and to non-rigid motion [3, 1].

These techniques precompute paths with frame-to-frame

trackers, and de-noise them post facto by projection into

a low-dimensional subspace.

More recent methods apply subspace constraints during

path estimation to track points that are hard for a frame-to-

frame tracker to follow. Early approaches applied subspace

constraints during optical flow estimation to improve esti-

mates in untextured regions of rigid scenes [12] or sampled

from a path subspace to improve motion estimates along in-

tensity edges affected by the aperture problem [21]. Garg et
al. [9] combine subspace constraints with variational tech-

niques adapted from optical flow estimation to solve for the

multiframe registration of deforming surfaces. They com-

pute full-length paths for every point in a selected reference

frame. An extension softens the subspace constraint to cre-

ate a prior on image motion [10, 11]. These methods do not

handle occlusions, limiting their applicability.

LME finds paths by optimizing a global energy function

over the entire video. It models visibility explicitly, and re-

connects paths across brief occlusions. As explained earlier,

we improve upon LME by removing its reliance on refer-

ence frames, handling visibility combinatorially rather than

by approximate relaxation, and minimizing energy by direct

optimization rather than variational methods. Our extension

has the benefits mentioned in the introduction and demon-

strated by the results in Section 6.

3. Model
Let p be an index into a set of paths xp(t) : T → R

2,

where T is the (discrete) time domain of the video se-

quence. A path is visible at time t iff its visibility flag
νp(t) : T → {0, 1} is equal to 1 at time t. Both functions

xp(t) and νp(t) are unknowns to be estimated for all paths

in a given video sequence. To ensure at least one visible

path per pixel in every frame, we anchor xp(t) to point up

in some frame τp by letting xp(τp) = up and νp(τp) = 1.
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We require (and automatically select) enough anchor points

to have some path pass through every pixel in the video. In

contrast with LME, τp is path-specific and unrestricted.

Paths are assumed to be in the space spanned by a

sequence-specific basis of paths {ϕ1, . . . ,ϕK}, up to a

shift:

xp(t) = up +
K∑

k=1

cpk(ϕk(t)−ϕk(τp)) . (1)

The motion relative to the anchor point xp(τp) = up is de-

termined by the unknown coefficients cp = (cp1, . . . , cpK).
Since paths in a video with F frames have F points,

the standard basis over R2F can represent any path ex-

actly. However, for many sequences a much more com-

pact (K � 2F ) basis is adequate, and provides powerful,

sequence-specific regularization.

Given basis paths and anchor points, we find paths and

visibility flags by interleaving computing optimal paths

given visibility with computing optimal visibility given

paths. The next two sections define the optimality crite-

ria for these computations. Section 4 shows how to find the

path basis and initial anchors, and Section 5 shows how to

adjust the anchors and compute optimal paths and visibility.

3.1. Optimal paths

Given a basis of paths and a set of anchors, we find

the best motion coefficients for each path by minimizing

an objective function that penalizes changes in appearance

along a path (temporal smoothness) and differences be-

tween nearby paths (spatial smoothness):

∑
p∈P

F∑
t=1

ED(cp, t) + λ
∑

p,q∈P
ES(cp, cq) . (2)

The terms in the first summation,

ED(cp, t) = νp(t)Ψ(ΔIp(t)) , (3)

with ΔIp(t) = I(cp, t)−I(cp, τp), employ a robust penalty

function Ψ(s) =
√
s2 + ε2 to measure the difference be-

tween the image intensity I(cp, t) = I(xp(t)) of the path

in frame t and that at the anchor up in frame τp. Multipli-

cation by νp(t) ensures that this penalty is levied only on

visible points. The terms in the second summation above,

ES(cp, cq) = αpq

K∑
k=1

Ψ(cpk − cqk) , (4)

measure the difference between the motion coefficients of

pairs of paths. The multiplier αpq couples nearby paths that

have similar appearance, and is equal to

αpq = exp

(
− (I(cp, τp)− I(cq, τq))

2

σ2

)
(5)

Figure 2: A spatiotemporal cube of the marple7 sequence.

Time runs from left to right. The corner of the crate (cyan)

is first occluded by Miss Marple’s arm (green) in frame 12.

A small patch (red dashed squares) around each path in ev-

ery frame is transported along the current path estimates

and monitored for consistent appearance. The arm patch

(top right) is most consistent, and makes this the control-

ling path at that point and frame. Points along paths that

either coincide with or are substantially parallel to a nearby

controlling path have their observed visibility flag ν̂p(t) set

to 1. All other flags are set to 0. Observed flags affect the es-

timated visibility flags at the nodes of a MRF that enforces

spatial and temporal consistency of the flags and ensures

that at least one path is visible at every pixel.

if the path p is visible in the anchor frame of path q (that is,

if νp(τq) = 1) and passes close enough to the anchor of q
(that is, if ||xp(τq)− uq|| < Δ). Otherwise, αpq = 0.

3.2. Optimal visibility

The binary visibility flag νp(t) for each path and frame is

modeled as a MRF whose structure depends on the current

estimates xp(t) of the paths p ∈ P . The MRF has one

node for each point vp(t) = (xp(t), t) along some path,

for t = 1, . . . , F , and one binary random variable νp(t) per

node. The neighborhood of vp(t) is the set of points vq(t)
with q �= p and ‖vp(t) − vq(t)‖ ≤ Δ for some small fixed

Δ (spatial neighborhood), plus the two points vp(t−1) and

vp(t+1) that are temporally adjacent to vp(t) along path p
(temporal neighborhood).

Each node in the MRF is associated with a binary ob-
served visibility flag ν̂p(t) computed from the data as fol-

lows. Path points in each frame are scored by their patch
consistency, which measures how little a patch around vp(t)
changes as it is transported by the current estimates of paths

near vp(t) to (i) a few frames before and after time t, and

(ii) the anchor frame τp for path p. We use equation (11)

from LME [16] to compute patch consistency and declare

the controlling path at vp(t) to be the most consistent path

through the spatial neighborhood of vp(t). Let now

d̄pq =
1

F

F∑
t=1

||xp(t)− xq(t)|| (6)

be the average distance between two paths, and let p∗ be
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the controlling path at vp(t). Then, the observed visibility

ν̂p(t) is defined as follows (see also Figure 2):

ν̂p(t) =

{
1 if d̄pp∗ ≤ 4 pixels

0 otherwise
. (7)

In words, a path p is observed to be visible at vp(t) when it

either coincides with (p = p∗ so that d̄pp∗ = 0) or is nearly

parallel (d̄pp∗ ≤ 4) to the controlling path p∗ at vp(t). Be-

cause we require that paths must be visible in their anchor

frames, we also always set ν̂p(τp) = 1.

The observed visibility flags ν̂p(t) influence the (hidden)

visibility flags νp(t) through a data term in the MRF. We

define the following average measure of intensity change

along the visible portion of path p:

Δp =

∑F
t=1 ν̂p(t)ΔIp(t)∑F

t=1 ν̂p(t)
, (8)

with ΔIp(t) as defined in Section 3.1. For correctly es-

timated paths, this measure reflects variations of intensity

caused by unmodeled effects such as image noise or global

illumination changes, rather than by occlusions. The data

term of the MRF is then defined as follows:

D(νp(t) = 1) = ΔIp(t) + λL(1− ν̂p(t))

D(νp(t) = 0) = Δp + λLν̂p(t) .
(9)

The terms with multiplier λL bias estimated visibility val-

ues νp(t) toward observed values ν̂p(t). Setting a point to

be visible incurs the additional charge ΔIp(t), equal to the

change in intensity between anchor and current point. Set-

ting a point to be invisible incurs the additional charge Δp

that accounts for the fact that intensity variations may be

caused by other than occlusions.

The weights on edges between the random variables of

the MRF encourage both temporal and spatial consistency

among visibility values. Specifically, a penalty

V
(
νp(t), νp(t+ 1)

)
= λT |νp(t)− νp(t+ 1)| (10)

is added between temporally adjacent neighbors to discour-

age changes of visibility along a path. The weight on an

edge between spatial neighbors is

V
(
νp(t), νq(t)

)
= λSwpq(t)|νp(t)− νq(t)| (11)

with

wpq(t) =
e
−
(

ΔIpq(t)+ΔIpq

σ2

)

d̄pq + ε
(12)

where ε > 0 prevents division by zero. In this expression,

ΔIpq(t) = (I(cp, t)− I(cq, t))
2

ΔIpq = (I(cp, τp)− I(cq, τq))
2 .

(13)

In words, ΔIpq(t) measures difference in appearance be-

tween paths in a single frame, and ΔIpq measures a similar

difference between anchor points. The combined effect of

these two terms is to push discontinuities in visibility closer

to intensity boundaries, and the division by d̄pq reduces the

spatial discontinuity penalty between unrelated paths.

To enforce the physical constraint that there must be

some visible point at every pixel, we clamp some visibil-

ity values to 1 and remove the corresponding nodes from

the MRF. Specifically, we require that νp(τp) = 1 and

νp∗(t) = 1 with p∗ a controlling path in frame t. We roll

the pairwise cost for each edge incident to a clamped node

into the unary cost for the other node of that edge.

4. Preliminaries

Before we solve for motion and visibility, we select basis

paths and an initial set of anchors, paths, and visibility flags.

4.1. Finding the basis paths

Basis paths are obtained by first tracking a sparse set

of feature points with a frame-to-frame tracker [14]. This

yields several tracks, that is, paths that do not necessarily

extend through the entire sequence. These tracks are sup-

plemented with those formed by concatenating optical flow

vectors between consecutive frames [19], as described in

more detail in Section 4.2, where we do the same to initial-

ize a dense set of paths.

For some sequences, several tracks may extend from first

to last frame. PCA can then yield a basis whose size K is

determined by adding principal components until the recon-

struction residual for the input tracks is below, e.g., 2 pixels.

In general, however, occlusions and tracking failures

make tracks start late and end early, leading to a matrix of

track coordinates with missing entries. We iterate between

matrix factorization with missing data [6] and a compaction

step that associates tracks corresponding to the same world

point [17]. If needed, a user can be asked to correct mis-

takes in data association. We scale path coordinates so that

the mean per-path motion between frames is one pixel.

4.2. Initialization

To cover every pixel in a video sequence with paths, we

need to create a number of paths of the same order of the

number of visible points in the sequence. Placing anchor

points at every pixel in the first and last frame at worst over-

estimates the true number of anchors needed by a factor of

two. We place additional anchors to cover visible regions

that happen to be occluded in these two particular frames by

following a procedure inspired by Sundaram et al. [19]. We

first concatenate optical flow vectors into multiframe tracks,

which we break when the optical flow field fails a forward-

backward consistency check or when the point is too close
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to a motion boundary (equations (5) and (6) from [19],

respectively). To prevent merging foreground and back-

ground tracks, we create a thin empty buffer around the

regions where tracks terminate. We initialize a new track

at any pixel that is more than one pixel away from any track

propagated from the previous frame.

Track fragments that start in the first frame are converted

into paths with anchor points in the first frame. If the frag-

ments are long enough, the initial coefficients for the path

are computed by projecting the track onto the path basis.

Otherwise, we select coefficients by copying from nearby

track fragments, picking the coefficients that create the path

with the best brightness constancy measured over a few

frames. Track fragments that reach the last frame are con-

verted into paths anchored at points in the last frame using

the same procedure. The temporal extent of the track frag-

ments provides an initial conservative estimate for the path

visibility flags.

For all other track fragments, we place a (possible) an-

chor point in the frame in which they are initialized and

convert to a path as before. We iterate through these poten-

tial paths and only include the anchor points for those that

differ from already included paths by more than an average

of 2 pixels per frame. Figure 3a shows the anchor points

selected in this way for the marple7 sequence. Colors other

than gray are anchors, and similar colors correspond to sim-

ilar sets of path coefficients.

After this initialization stage, the energy functions de-

fined in Section 3 are minimized by the algorithms de-

scribed in Section 5. This can result in the insertion of

additional anchor points. Figure 3b shows the color-coded

anchor points after convergence.

5. Optimization
Starting with the paths and visibility flags constructed

as described in Section 4.2, we interleave two steps during

optimization: a combinatorial optimization step finds visi-

bility flags νp(t) for the current path estimates, and a con-

tinuous optimization step updates path coefficients cp given

the current visibility estimates. In the process, we add an-

chor points until every pixel in the sequence has at least one

path through it, and remove anchors of invisible paths. We

stop when the maximum change in every path falls below

one pixel in every frame.

The initial path estimates are often poor along occlusion

boundaries, because visibility is not yet accounted for. Be-

cause of this, we heuristically regroup paths between each

combinatorial and continuous step to let foreground and

background vie for paths between them.

We now describe the continuous step, path regrouping,

combinatorial step, anchor management, and termination.

Continuous step. We update path coefficients by minimiz-

ing the energy function (2) via trust-region Newton conju-

gate gradients optimization [15]. This method only requires

computing vectors of the form Hv where H is the Hessian,

rather than the very large but sparse H itself. The sparsity

pattern of H changes over time because the coupling coef-

ficients αpq in equation (5) depend in turn on the path co-

efficients. When computing successive conjugate gradients,

we treat the terms αpq as constants—a good approximation

for small path perturbations—and recompute them between

full descent steps.

Path regrouping. After 40 descent steps, we allow paths

to copy their coefficients and visibility flags from one of

their neighbors if doing so improves the path’s fit to data.

Specifically, path p copies from q if τp �= τq , νq(τp) = 1,

||xq(τp) − up|| < Δ,
∑F

t=1 νq(t) ≥ F/2, and the copy

improves the data fit for p the most.

Combinatorial step. Visibility flags are updated after path

regrouping by using graph cuts [2, 13] to compute the MAP

estimate for the MRF in Section 3.2 . The energy function

is amenable to this method as the edge costs (11) satisfy

V (0, 0) + V (1, 1) ≤ V (0, 1) + V (1, 0) . (14)

Anchor management. When the maximum change in any

path in any frame is less than one pixel, we check that every

pixel in the video has a visible path through it. If not, we

add new anchor points to fill voids and resume optimization.

Newly inserted paths copy their initial parameters from the

closest visible path.

Anchors on paths that are invisible everywhere except at

the anchor itself (which is always visible) are deleted. These

one-point paths occur when visibility estimation correctly

identifies an outlier with an incorrect path estimate.

Termination. Optimization terminates when all path esti-

mates change by less than a pixel in every frame and all

pixels in the video have a path through them.

6. Results
We evaluate the performance of our technique on five

real sequences of increasing complexity, all with large mo-

tions and significant occlusions. The popular flowerbed
(29 frames) and a new sequence with a truck driving be-

hind a road sign (33 frames) contain only rigid motion.

The three with non-rigid motion are from the Berkeley mo-

tion segmentation dataset [5]: 60 frames from marple1, 72

frames from marple8, and 25 frames from marple7. The

marple7 and flowerbed sequences are the same as those

evaluated in LME. Figure 4 shows sample frames; the

full sequences and more detailed results can be found at

www.cs.duke.edu/˜tomasi/video-motion. We

set λ = 1, σ = 50, and λL = λT = λS = 0.5 and used

the same values for all five sequences. In our experiments,

the results were relatively insensitive to small changes in

the values of λ or σ, but were more sensitive to the values

of the parameters for the occlusion detection step.
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(a) (b)

Figure 3: Anchor points selected during initialization (a) and at convergence (b). Colors other than gray denote anchor points,

and similar colors denote similar sets of path coefficients. Due to space constraints we display odd-numbered frames only

(although anchors exist in all frames). Note the improved segmentation of Miss Marple after convergence. The initial path

estimates in regions near occlusions are poor because the occlusions have yet to be considered properly. Path regrouping

allows the solution to escape from local optima near the initial solution and achieve a much better final solution.

(a) Flowerbed. Two basis functions.
(b) Truck. Four basis functions.

(c) Marple1. Eight basis functions. (d) Marple7. Five basis functions.

(e) Marple8. Eight basis functions. Miss Marple (off-screen in the

first and last frames) walks across the scene, completely occluding

the background. An intermediate frame can be seen in Figure 5b.

Figure 4: Results of our method. For each sequence, we show the first and last frames, followed by the last frame warped to

align with the first frame, and vice versa. Regions detected as occluded in the source frame of the warp are marked in white.

Full videos and comparison with LDOF trajectories and LME paths are available on the project website.

6.1. Qualitative evaluation

For a qualitative evaluation, we use our motion results to

warp all frames to a selected frame. This creates a motion-

compensated video that should appear static except for re-

gions that are occluded in a particular frame (which we de-

tect and paint white). Figure 4 shows the last frame aligned

to the first frame, and vice versa, for all sequences.

We compare our results to LME paths and LDOF tra-

jectories using implementations provided by their authors.

We also ran two-frame optical flow between all pairs of

frames, but even methods specifically aimed at large dis-

placements [4] failed for distant frames. Figure 5 shows ex-

amples of mistakes made by competing methods. Videos

showing comparisons for all sequences and methods are

available on the project website.

6.2. Quantitative evaluation

It is difficult to get reliable ground truth paths for realis-

tic sequences. The synthetic datasets in [7] do not preserve

associations across occlusions. Manual labeling for real se-

quences is painstaking and unreliable, particularly for com-

plex motions or low-texture regions.

Instead, we measure the degree to which intensities re-

main constant along computed paths as a proxy for geomet-

ric accuracy. The all-path interpolation error (APIE) is the

absolute deviation from the expected appearance of the ap-

propriate path, averaged over all visible frames for all paths.

We use the median intensity value along the estimated visi-

ble portion of each path

Îp = argmin
a

∑
t

νp(t)|I(cp, t)− a| . (15)
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Sequence Method APIE Path length Pixel distance
Mean Std. dev. 50th 95th 99th percentile

Flowerbed

LDOF traj. 4.54 11.2 10.5 0.47 8.5 15.2

LME 3.65 23.9 7.3 0.31 0.79 1.3

Ours 2.59 23.1 7.4 0.29 0.66 0.85

Truck

LDOF traj. 5.40 6.8 7.5 1.2 47.0 70.0

LME 5.97 23.4 7.4 0.39 1.9 4.4

Ours 3.56 20.9 9.1 0.28 0.67 0.91

Marple7

LDOF traj. 2.50 6.7 6.4 0.47 6.9 13.3

LME 2.64 15.9 7.5 0.43 5.7 9.7

Ours 2.27 14.7 6.8 0.30 0.68 0.87

Marple1

LDOF traj. 4.57 9.4 11.4 0.51 14.7 26.7

LME 4.11 25.9 19.4 0.62 9.1 18.9

Ours 2.61 11.21 14.7 0.32 0.84 1.0

Marple8

LDOF traj. 3.70 14.9 14.7 0.47 7.4 16.4

LME 5.17 59.9 15.7 0.35 1.9 6.0

Ours 2.79 29.5 25.3 0.24 0.65 0.90

Table 1: Solution quality metrics. APIE measures average intensity constancy along estimated paths (smaller is better,

assuming the brightness constancy assumption holds). Path length is the number of frames in which a path is reported as

visible (longer is typically better). Pixel distance measures path density by reporting the distance to the nearest visible path

for each pixel. We report the 50th, 95th, and 99th percentiles (smaller is better).

as the expected appearance to eliminate dependence on the

choice of anchor frame. Our quality metric is then

APIE =

∑
p

∑
t νp(t)|I(cp, t)− Îp|∑

p

∑
t νp(t)

. (16)

Note that APIE for ground truth paths would typically be

non-zero as it also measures violations of the brightness

constancy assumption. In general, however, lower val-

ues for APIE indicate better performance. Table 1 reports

APIE for each sequence, computed with intensity values in

[0, 255]. LDOF trajectories do not report visibility; corre-

spondences after occlusions are simply missing. We treat

missing entries as if they had νp(t) = 0.

We could artificially decrease APIE by returning many

paths, each visible in only a few frames. This runs contrary

to our goal of recovering correspondences between distant

frames across occlusions. We confirm that our solution is

not overwhelmed by numerous short tracks by measuring

the average visible length of a path. As shown in Table 1,

our method and LME return significantly longer paths on

average because they detect dissoclusions.

A key feature of our algorithm is the ability to compute

the path for every visible point in a scene. We measure path

density by computing the distance to the closest visible path

for each pixel in the sequence. Table 1 reports the 50th,

95th, and 99th percentile for each method. LDOF trajec-

tories leave many pixels unexplained because they are not

initialized in low-texture areas. LME misses objects not vis-

ible in either the first or last frame of a sequence. In many

sequences, these missed objects can account for a signifi-

cant fraction of the scene.

In addition to the increased pixel coverage, our algo-

rithm is faster than LME. For example, we terminated after

1.4 hours on the flowerbed sequence; LME took 3.4 hours.

The marple8 sequence required the largest motion basis and

contains the most frames, making it the most expensive for

LME at 205.6 hours. Video motion took 89.4 hours. Be-

cause video motion paths cover every visible point, our run-

ning time scales with the quantity of motion. As a result, the

marple1 sequence requires the most computation. We took

150 hours compared to 188.5 for LME. Due to its high com-

putational cost, we ran LME for only 10 iterations instead

of the suggested 20 on both sequences.

7. Conclusion

We introduced a method to compute extended video mo-

tion paths that explain every pixel of a video sequence. We

regularize the solution by projection on a low-dimensional

basis of motion paths, and can follow points through brief

occlusions. In contrast with previous methods, we can han-

dle occlusions wherever they occur. This is made possi-

ble by a new, non-variational formulation that allows for

more realistic visibility and appearance constraints and is

also more efficient than the variational approach. While we

focused on grayscale, extending to color is straightforward.

Much work remains to be done. Video with many

or highly deformable moving objects such as crowds or

flags [9] may require nonparametric methods, and our so-

lution may perhaps be used for initialization. Sparsity-

inducing priors on the path coefficients are an intriguing

alternative, in which each path is allowed to use a small
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(a) Warp from frame 60 of marple1 (LDOF vs. ours).

(b) Warp from frame 13 of marple8 (LME vs. ours).

Figure 5: Examples of mistakes made by other methods

visible when warping to align with the first frame. Cor-

rect warps should match the first image in each row with

occluded pixels replaced with white masks. The second im-

age in each row shows the source frame for the warp. Re-

sults from video motion paths (rightmost column) are con-

sistently higher quality; the third column shows the inferior

result from a competing method. In (a), fewer LDOF trajec-

tories survive to the last frame. Those that do suffer from

drift: the man’s face is misaligned in the warped image. In

(b), because LME paths ignore objects not visible in the

reference frames, Miss Marple is untracked. As a result,

LME cannot reliably detect the occlusion she causes and

erroneously includes her image in the warped frame. Video

motion paths track every visible point and correctly mark

the background she obscures as occluded in the warp. Full

results for competing methods can be found on the project

website.

number of functions from a large basis. Processing even

longer sequences than the one we can handle will require

models of long-term, global changes in illumination, and

separate motion bases for different video segments. How

to splice together solutions from these segments is an open

challenge, and so is greater computational efficiency.
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